Probabilistic Graphical Models

Bayesian Nonparametrics: Indian Buffet Process

Eric Xing
Lecture 24, April 15, 2020

Reading: see class homepage

© Eric Xing @CMU, 2014-2020

Recap of last lecture

- Dirichlet process: a distribution over discrete probability distributions with infinitely many atoms.
- Can be used to create a nonparametric version of a finite mixture model.

Recap of last lecture

- We can think of the Dirichlet process in a number of ways:
- The infinite limit of a Dirichlet distribution.
- A rich-gets-richer predictive distribution over the next data point (Chinese restaurant process, Polya urn scheme).
- An iterative procedure for generating samples from the Dirichlet process - the stick breaking representation.

Limitations of a simple mixture model

- The Dirichlet distribution and the Dirichlet process are great if we want to cluster data into non-overlapping clusters.
- However, DP/Dirichlet mixture models cannot share features (i.e., cluster centroids, prototypes) between clusters.
- In many applications, data points exhibit properties of multiple latent features
- Images contain multiple objects.
- Actors in social networks belong to multiple social groups.
- Movies contain aspects of multiple genres.

Latent variable models

- Latent variable models allow each data point to exhibit multiple latent features, to varying degrees.
- Example: Factor analysis

$$
\mathbf{X}=\mathbf{W A}^{\top}+\varepsilon
$$

- Rows of $\mathbf{A}=$ latent features
- Rows of $\mathbf{W}=$ data-point-specific weights for these features
- $\varepsilon=$ Gaussian noise.
- Example: LDA
- Each document represented by a mixture of features.

Infinite latent feature models

- Problem: How to choose the number of features?

- Example: Factor analysis

$$
\mathbf{X}=\mathbf{W A}^{\top}+\varepsilon
$$

- Each column of \mathbf{W} (and row of \mathbf{A}) corresponds to a feature.
- Question: Can we make the number of features unbounded a posteriori, as we did with the DP?
- Solution: allow infinitely many features a priori - i.e. let W (or A) have infinitely many columns (rows).
- Problem: We can't represent infinitely many features!
- Solution: make our infinitely large matrix sparse.

Recall the CRP: a distribution over indicator matrices

- Recall that the CRP gives us a distribution over partitions of our data.
- We can represent this as a distribution over binary (indicator) matrices, where each row (which is a "one-hot vector") corresponds to a data point, and each column to a cluster.

A sparse, finite latent variable model

- We want a sparse model - so let

$$
\begin{aligned}
\mathbf{X} & =\mathbf{W A}^{T}+\epsilon \\
\mathbf{W} & =\mathbf{Z} \odot \mathbf{V}
\end{aligned}
$$

for some sparse matrix \mathbf{Z}.

- Place a beta-Bernoulli prior on Z:

$$
\begin{aligned}
\pi_{k} & \sim \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right), k=1, \ldots, K \\
z_{n k} & \sim \operatorname{Bernoulli}\left(\pi_{k}\right), n=1, \ldots, N .
\end{aligned}
$$

A sparse, finite latent variable model

- If we integrate out the π_{k}, the marginal probability of a matrix \mathbf{Z} is:

$$
\begin{aligned}
p(\mathbf{Z}) & =\prod_{k=1}^{K} \int\left(\prod_{n=1}^{N} p\left(z_{n k} \mid \pi_{k}\right)\right) p\left(\pi_{k}\right) d \pi_{k} \\
& =\prod_{k=1}^{K} \frac{B\left(m_{k}+\alpha / K, N-m_{k}+1\right)}{B(\alpha / K, 1)} \\
& =\prod_{k=1}^{K} \frac{\alpha}{K} \frac{\Gamma\left(m_{k}+\alpha / K\right) \Gamma\left(N-m_{k}+1\right)}{\Gamma(N+1+\alpha / K)} \\
m_{k} & =\sum_{n=1}^{N} z_{n k}
\end{aligned}
$$

- This is exchangeable (doesn't depend on the order of the rows or columns)

A sparse, finite latent variable model

- If we integrate out the π_{k}, the marginal probability of a matrix \mathbf{Z} is:

$$
\begin{aligned}
p(\mathbf{Z}) & =\prod_{k=1}^{K} \int\left(\prod_{n=1}^{N} p\left(z_{n k} \mid \pi_{k}\right)\right) p\left(\pi_{k}\right) d \pi_{k} \\
& =\prod_{k=1}^{K} \frac{B\left(m_{k}+\alpha / K, N-m_{k}+1\right)}{B(\alpha / K, 1)} \\
& =\prod_{k=1}^{K} \frac{\alpha}{K} \frac{\Gamma\left(m_{k}+\alpha / K\right) \Gamma\left(N-m_{k}+1\right)}{\Gamma(N+1+\alpha / K)} \\
m_{k} & =\sum_{n=1}^{N} z_{n k}
\end{aligned}
$$

- How is this sparse?

$$
\begin{aligned}
& m_{1} k!\left(N-m_{1} k\right)!/(N+1)! \\
& =1 * 2 * . . *\left(N-m_{-} k\right) /\left(m_{_} k+1\right) *\left(m_{-} k+2\right) * \ldots *(N+1) \\
& =\left(1 /\left(m_{-} k+1\right)\right) *\left(2 /\left(m_{-} k+2\right)\right)^{*} \ldots{ }^{*}\left(\left(N-m_{2} k\right) /(N+1)\right)
\end{aligned}
$$

An equivalence class of matrices

- We can naively take the infinite limit by taking K to infinity
- Because all the columns are equal in expectation, as K grows we are going to have more and more empty columns.
- We do not want to have to represent infinitely many empty columns!
- Define an equivalence class [Z] of matrices where the non-zero columns are all to the left of the empty columns.
- Let lof(.) be a function that maps binary matrices to left-ordered binary matrices - matrices ordered by the binary number made by their rows.

P Left-ordered matrices

Figure 5: Binary matrices and the left-ordered form. The binary matrix on the left is transformed into the left-ordered binary matrix on the right by the function $\operatorname{lof}(\cdot)$. This left-ordered matrix was generated from the exchangeable Indian buffet process with $\alpha=10$. Empty columns are omitted from both matrices.

Image from Griffiths and Ghahramani, 2011

How big is the equivalence set?

- All matrices in the equivalence set [Z] are equiprobable (by
 exchangeability of the columns), so if we know the size of the equivalence set, we know its probability.
- Call the vector $\left(z_{1 k}, z_{2, k}, \ldots, z_{(n-1) k}\right)$ the history of feature k at data point n (a number represented in binary form).
- Let K_{h} be the number of features possessing history h, and let K_{+}be the total number of features with non-zero history.
- The total number of lof-equivalent matrices in [Z] is

$$
\binom{K}{K_{0} \cdots K_{2^{N}-1}}=\frac{K!}{\prod_{n=0}^{2^{N}-1} K_{n}!}
$$

Probability of an equivalence class of finite binary matrices.

- If we know the size of the equivalence class [Z], we can evaluate its probability:

$$
\begin{aligned}
p([\mathbf{Z}])= & \sum_{\mathbf{Z} \in[\mathbf{Z}]} p(\mathbf{Z}) \\
= & \frac{K!}{\prod_{n=0}^{2^{N}-1} K_{n}!} \prod_{k=1}^{K} \frac{\alpha}{K} \frac{\Gamma\left(m_{k}+\alpha / K\right) \Gamma\left(N-m_{k}+1\right)}{\Gamma(N+1+\alpha / K)} \\
= & \frac{\alpha^{K_{+}}}{\prod_{n=1}^{2^{N}-1} K_{n}!} \frac{K!}{K_{0}!K^{K_{+}}}\left(\frac{N!}{\prod_{j=1}^{N} j+\alpha / K}\right)^{K} \\
& \cdot \prod_{k=1}^{K_{+}} \frac{\left(N-m_{k}\right)!\prod_{j=1}^{m_{k}-1}(j+\alpha / K)}{N!}
\end{aligned}
$$

Taking the infinite limit

- We are now ready to take the limit of this finite model as K tends to infinity:

$$
\frac{\alpha^{K_{+}}}{\prod_{n=1}^{2^{N}-1} K_{n}!} \frac{K!}{K_{0}!K^{K_{+}}}\left(\frac{N!}{\prod_{j=1}^{N} j+\frac{\alpha}{K}}\right)^{K} \prod_{k=1}^{K_{+}} \frac{\left(N-m_{k}\right)!\prod_{j=1}^{m_{k}-1}\left(j+\frac{\alpha}{K}\right)}{N!}
$$

$$
\begin{gathered}
\downarrow K \rightarrow \infty \\
\frac{\alpha^{K_{+}}}{\prod_{n=1}^{2^{N}-1} K_{n}!} \quad 1<\exp \left\{-\alpha H_{N}\right\} \\
\prod_{k=1}^{K_{+}} \frac{\left(N-m_{k}\right)!\left(m_{k}-1\right)!}{N!}
\end{gathered}
$$

Predictive distribution: The Indian buffet process

- We can describe this model in terms of the following restaurant analogy.
- A customer enters a restaurant with an infinitely large buffet
- He helps himself to Poisson(a) dishes.

Predictive distribution: The Indian buffet process

- We can describe this model in terms of the following restaurant analogy.
- A customer enters a restaurant with an infinitely large buffet
- He helps himself to Poisson(a) dishes.
- The $n^{\text {th }}$ customer enters the restaurant
- He helps himself to each previously chosen dish with probability m_{k} / n
- He then tries Poisson(a / n) new dishes

Predictive distribution: The Indian buffet process

- We can describe this model in terms of the following restaurant analogy.
- A customer enters a restaurant with an infinitely large buffet
- He helps himself to Poisson(a) dishes.
- The $n^{\text {th }}$ customer enters the restaurant
- He helps himself to each previously chosen dish with probability m_{k} / n
- He then tries Poisson (a / n) new dishes

Proof that the IBP is lof-equivalent to the infinite betaBernoulli model

- What is the probability of a matrix \mathbf{Z} ?
- Let $K_{1}{ }^{(n)}$ be the number of new features in the $n^{\text {th }}$ row.

$$
\begin{aligned}
& p(\mathbf{Z})=\prod_{n=1}^{N} p\left(\mathbf{z}_{n} \mid \mathbf{z}_{1:(n-1)}\right) \\
= & \prod_{n=1}^{N} \operatorname{Poisson}\left(K_{1}^{(n)} \left\lvert\, \frac{\alpha}{n}\right.\right) \prod_{k=1}^{K_{+}}\left(\frac{\sum_{i=1}^{n-1} z_{i k}}{n}\right)^{z_{n k}}\left(\frac{n-\sum_{i=1}^{n-1} z_{i k}}{n}\right)^{1-z_{n k}} \\
= & \prod_{n=1}^{N}\left(\frac{\alpha}{n}\right)^{K_{1}^{(n)}} \frac{1}{K_{1}^{(n)}!} e^{-\alpha / n} \prod_{k=1}^{K_{+}}\left(\frac{\sum_{i=1}^{n-1} z_{i k}}{n}\right)^{z_{n k}}\left(\frac{n-\sum_{i=1}^{n-1} z_{i k}}{n}\right)^{1-z_{n k}} \\
= & \frac{\alpha^{K_{+}}}{\prod_{n=1}^{N} K_{1}^{(n)}!} \exp \left\{-\alpha H_{N}\right\} \prod_{k=1}^{K_{+}} \frac{\left.N-m_{k}\right)!\left(m_{k}-1\right)!}{N!}
\end{aligned}
$$

- If we include the cardinality of [Z], this is the same as before

Properties of the IBP

a "Rich get richer" property - "popular" dishes become more popular.

- The number of nonzero entries for each row is distributed according to Poisson (a) - due to exchangeability.
a Recall that if $x_{1} \sim \operatorname{Poisson}\left(a_{1}\right)$ and $x_{2} \sim \operatorname{Poisson}\left(a_{2}\right)$, then $\left(x_{1}+x_{2}\right)$ Poisson $\left(a_{1}+a_{2}\right)$
- The number of nonzero entries for the whole matrix is distributed according to Poisson(Na).
- The number of non-empty columns is distributed according to Poisson $\left(a H_{N}\right)$

Building latent feature models using the IBP

- We can use the IBP to build latent feature models with an unbounded number of features.
- Let each column of the IBP correspond to one of an infinite number of features.
- Each row of the IBP selects a finite subset of these features.
- The rich-get-richer property of the IBP ensures features are shared between data points.
- We must pick a likelihood model that determines what the features look like and how they are combined.

A linear Gaussian model

- General form of latent factor model: $\mathbf{X}=\mathbf{W A}^{\top}+\varepsilon$
- Simplest way to make an infinite factor model:
- Sample W ~IBP(a)
- Sample $\mathbf{a}_{\mathrm{k}} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{a}{ }^{2} \mathbf{I}\right)$
- Sample $\varepsilon_{n k} \sim \mathcal{N}\left(0, \sigma_{\varepsilon}{ }^{2}\right)$

Infinite factor analysis

- Problem with linear Gaussian model: Features are "all or nothing" due to the binary "loading matrix" W.
- Factor analysis: $\mathbf{X}=\mathbf{W A}^{\top}+\varepsilon$
- Rows of $\mathbf{A}=$ latent features (Gaussian)
- Rows of $\mathbf{W}=$ data-point-specific weights for these features (Gaussian)
- $\varepsilon=$ Gaussian noise.
- Write $\quad \mathbf{W}=\mathbf{Z} \odot \mathbf{V}$
- $\mathbf{Z} \sim \operatorname{IBP}(\mathrm{a})$
- $\mathbf{V} \sim \mathcal{N}\left(0, \sigma_{v}{ }^{2}\right)$
- $\mathbf{A} \sim \mathcal{N}\left(0, \sigma_{A}{ }^{2}\right)$

A binary model for latent networks

- Motivation: Discovering latent causes for observed binary data
- Example:
- Data points = patients
- Observed features = presence/absence of symptoms
- Goal: Identify biologically plausible "latent causes" - e.g. illnesses.
- Idea:
- Each latent feature is associated with a set of symptoms
- The more features a patient has that are associated with a given symptom, the more likely that patient is to exhibit the symptom.

A binary model for latent networks

- We can represent this in terms of a Noisy-OR model:

$$
\begin{array}{rlrl}
\mathbf{Z} & \sim \operatorname{IBP}(\alpha) & \\
y_{d k} & \sim \operatorname{Bernoulli}(p) & \begin{array}{l}
d^{\mathrm{th}} \text { observed symptom } \\
k^{\mathrm{th}} \text { latent disease }
\end{array} \\
p\left(x_{n d}=1 \mid \mathbf{Z}, \mathbf{Y}\right) & =1-(1-\lambda)^{\mathbf{z}_{n} \mathbf{y}_{d}^{T}}(1-\epsilon)
\end{array}
$$

- Intuition:
- Each patient has a set of latent causes, as indicated by Z
- Each latent cause (disease) k exhibit a symptom d with a Bernoulli rate
- For each symptom,, we toss a coin with probability λ for each latent cause that is "on" for that patient and associated with that feature, plus an extra coin with probability ε.
- If any of the coins land heads, we exhibit that feature.

Inference in the IBP

- Recall inference methods for the DP:
- Gibbs sampler based on the exchangeable model.
- Gibbs sampler based on the underlying Dirichlet distribution
- Variational inference
- Particle filter.
- We can construct analogous samplers for the IBP

Inference in the restaurant scheme

- Recall the exchangeability of the IBP means we can treat any data point as if it's our last.
- Let K_{+}be the total number of used features, excluding the current data point.
- Let Θ be the set of parameters associated with the likelihood - eg the Gaussian matrix A in the linear Gaussian model
- The prior probability of choosing one of these features is m_{k} / N
- The posterior probability is proportional to

$$
\begin{aligned}
& p\left(z_{n k}=1 \mid \mathbf{x}_{n}, \mathbf{Z}_{-n k}, \Theta\right) \propto m_{k} f\left(\mathbf{x}_{n} \mid z_{n k}=1, \mathbf{Z}_{-n k}, \Theta\right) \\
& p\left(z_{n k}=0 \mid \mathbf{x}_{n}, \mathbf{Z}_{-n k}, \Theta\right) \propto\left(N-m_{k}\right) f\left(\mathbf{x}_{n} \mid z_{n k}=0, \mathbf{Z}_{-n k}, \Theta\right)
\end{aligned}
$$

- In some cases, we can integrate out Θ, otherwise we must sample this.

Inference in the restaurant scheme

- In addition, we must propose adding new features.
- Metropolis Hastings method:
- Let $K_{\text {old }}^{*}$ be the number of features appearing only in the current data point.
- Propose $K^{*}{ }_{n e w} \sim$ Poisson (a / N), and let \mathbf{Z}^{*} be the matrix with K^{*} new f features appearing only in the current data point.
- With probability

$$
\min \left(1, \frac{f\left(\mathbf{x}_{n} \mid \mathbf{Z}^{*}, \Theta\right)}{f\left(\mathbf{x}_{n} \mid \mathbf{Z}, \Theta\right)}\right)
$$

accept the proposed matrix.

Beta processes and the IBP

- Recall the relationship between the Dirichlet process and the Chinese restaurant process:
- The Dirichlet process is a prior on probability measures (distributions)
- We can use this probability measure as cluster weights in a clustering model - cluster allocations are i.i.d. given this distribution.
- If we integrate out the weights, we get an exchangeable distribution over partitions of the data - the Chinese restaurant process.
- De Finetti's theorem tells us that, if a distribution X_{1}, X_{2}, \ldots is exchangeable, there must exist a measure conditioned on which X_{1}, X_{2}, \ldots are i.i.d.

Beta processes and the IBP

- Recall the finite beta-Bernoulli model:

$$
\begin{aligned}
\pi_{k} & \sim \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right) \\
z_{n k} & \sim \operatorname{Bernoulli}\left(\pi_{k}\right)
\end{aligned}
$$

- The $z_{n k}$ are i.i.d. given the π_{k}, but are exchangeable if we integrate out the π_{k}.
- The corresponding distribution for the IBP is the infinite limit of the beta random variables, as K tends to infinity.
- This distribution over discrete measures is called the beta process.
- Samples from the beta process have infinitely many atoms with masses between 0 and 1.

Posterior distribution of the beta process

- Question: Can we obtain the posterior distribution of the column probabilities in closed form?
- Answer: Yes!
- Recall that each atom of the beta process is the infinitesimal limit of a Beta($a / K, 1$) random variable.
- Our counts of observations for that atom are a Binomial $\left(\pi_{k}, N\right)$ random variable.
- We know the beta distribution is conjugate to the Binomial, so the posterior is the infinitesimal limit of a $\operatorname{Beta}\left(a / K+m_{k}, N+1-m_{k}\right)$ random variable.

> Theorem: Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent Bernoulli random variables, each with the same parameter p. Then the sum $X=X_{1}+$. $\cdots+X_{n}$ is a binomial random variable with parameters n and p.

A stick-breaking construction for the beta process

- We can construct the beta process using the following stick-breaking construction:
- Begin with a stick of unit length.
- For $k=1,2, \ldots$
- Sample a beta $(a, 1)$ random variable μ_{k}.
- Break off a fraction μ_{k} of the stick. This is the $k^{\text {th }}$ atom size.
- Throw away what's left of the stick.
- Recurse on the part of the stick that you broke off

$$
\pi_{k}=\prod_{j=1}^{k} \mu_{j} \quad \mu_{j} \sim \operatorname{Beta}(\alpha, 1)
$$

- Note that, unlike the DP stick breaking construction, the atoms will not sum to one.

Inference in the stick-breaking construction

- We can also perform inference using the stick-breaking representation - Sample Z|п, \mathbf{O}
- Sample ாiZ
- The posterior for atoms for which $m_{k}>0$ is beta distributed.
- The atoms for which $m_{k}=0$ can be sampled using the stick-breaking procedure.
- We can use a slice sampler to avoid representing all of the atoms, or using a fixed truncation level.

A two-parameter extension

- In the IBP, the parameter a governs both the number of nonempty columns and the number of features per data point.
- We might want to decouple these properties of our model.
a Reminder: We constructed the IBP as the limit of a finite beta-Bernoulli model where

$$
\begin{aligned}
\pi_{k} & \sim \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right) \\
z_{n k} & \sim \operatorname{Bernoulli}\left(\pi_{k}\right)
\end{aligned}
$$

- We can modify this to incorporate an extra parameter:

$$
\begin{aligned}
\pi_{k} & \sim \operatorname{Beta}\left(\frac{\alpha \beta}{K}, \beta\right) \\
z_{n k} & \sim \operatorname{Bernoulli}\left(\pi_{k}\right)
\end{aligned}
$$

A two-parameter extension

- Our restaurant scheme is now as follows:
- A customer enters a restaurant with an infinitely large buffet
- He helps himself to Poisson(a) dishes.
- The $n^{\text {th }}$ customer enters the restaurant
- He helps himself to each dish with probability $m_{k} /(\beta+n-1)$
- He then tries Poisson $(a \beta /(\beta+n-1)$ new dishes
- Note
- The number of features per data point is still marginally Poisson (a).
- The number of non-empty columns is now

$$
\operatorname{Poisson}\left(\alpha \sum_{n=1}^{N} \frac{\beta}{\beta+n-1}\right)
$$

- We recover the IBP when $\beta=1$.

Two parameter IBP: examples

Image from Griffiths and Ghahramani, 2011

Other distributions over infinite, exchangeable matrices

- Recall the beta-Bernoulli process construction of the IBP.
- We start with a beta process - an infinite sequence of values between 0 and 1 that are distributed as the infinitesimal limit of the beta distribution.
- We combine this with a Bernoulli process, to get a binary matrix.
- If we integrate out the beta process, we get an exchangeable distribution over binary matrices.
a Integration is straightforward due to the beta-Bernoulli conjugacy.
- Question: Can we construct other infinite matrices in this way?

The infinite gamma-Poisson process

- The gamma process can be thought of as the infinitesimal limit of a sequence of gamma random variables.
- Alternatively,

$$
\begin{aligned}
\text { if } D & \sim \operatorname{DP}(\alpha, H) \\
\text { and } \gamma & \sim \operatorname{Gamma}(\alpha, 1) \\
\text { then } G & =\gamma D \sim \operatorname{GaP}(\alpha H)
\end{aligned}
$$

- The gamma distribution is conjugate to the Poisson distribution.

The infinite gamma-Poisson process

- We can associate each atom v_{k} of the gamma process with a column of a matrix (just like we did with the atoms of a beta process)
- We can generate entries for the matrix as $z_{n k} \sim \operatorname{Poisson}\left(v_{k}\right)$

The infinite gamma-Poisson process

- Predictive distribution for the $n^{\text {th }}$ row:
- For each existing feature, sample a count $z_{n k} \sim \operatorname{NegBinom}\left(m_{k}, n /(n+1)\right)$

4	2	4	7	0	0	0	0	0
5	0	2	9	4	1	0	0	0
3	2	1	6	2	1	0	0	0
7	1	3	6	3	0	0	0	0

The infinite gamma-Poisson process

- Predictive distribution for the $n^{\text {th }}$ row:
- For each existing feature, sample a count $z_{n k} \sim \operatorname{NegBinom}\left(m_{k}, n /(n+1)\right)$

4	2	4	7	0	0	0	0	0
5	0	2	9	4	1	0	0	0
3	2	1	6	2	1	0	0	0
7	1	3	6	3	0	0	0	0
5								

The infinite gamma-Poisson process

- Predictive distribution for the $n^{\text {th }}$ row:
- For each existing feature, sample a count $z_{n k} \sim \operatorname{NegBinom}\left(m_{k}, n /(n+1)\right)$

4	2	4	7	0	0	0	0	0
5	0	2	9	4	1	0	0	0
3	2	1	6	2	1	0	0	0
7	1	3	6	3	0	0	0	0
5	0							

The infinite gamma-Poisson process

- Predictive distribution for the $n^{\text {th }}$ row:
- For each existing feature, sample a count $z_{n k} \sim \operatorname{NegBinom}\left(m_{k}, n /(n+1)\right)$

4	2	4	7	0	0	0	0	0
5	0	2	9	4	1	0	0	0
3	2	1	6	2	1	0	0	0
7	1	3	6	3	0	0	0	0
5	0	4	5	2	0			

The infinite gamma-Poisson process

- Predictive distribution for the $n^{\text {th }}$ row:
- For each existing feature, sample a count $z_{n k} \sim \operatorname{NegBinom}\left(m_{k}, n /(n+1)\right)$
- Sample $K^{*}{ }_{n} \sim \operatorname{NegBinom}(a, n /(n+1))$

4	2	4	7	0	0	0	0	0
5	0	2	9	4	1	0	0	0
3	2	1	6	2	1	0	0	0
7	1	3	6	3	0	0	0	0
5	0	4	5	2	0			

The infinite gamma-Poisson process

- Predictive distribution for the $n^{\text {th }}$ row:
- For each existing feature, sample a count $z_{n k} \sim \operatorname{NegBinom}\left(m_{k}, n /(n+1)\right)$.
- Sample $K^{*}{ }_{n} \sim \operatorname{NegBinom}(a, n /(n+1))$.
- Partition K_{n}^{*} according to the CRP, and assign the resulting counts to new columns.

4	2	4	7	0	0	0	0	0
5	0	2	9	4	1	0	0	0
3	2	1	6	2	1	0	0	0
7	1	3	6	3	0	0	0	0
5	0	4	5	2	0	3	1	0

