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; Recap of last lecture

o Dirichlet process: a distribution over discrete probability distributions
with infinitely many atoms.

o Can be used to create a nonparametric version of a finite mixture model.



% Recap of last lecture

o We can think of the Dirichlet process in a number of ways:
o The infinite limit of a Dirichlet distribution.

o Arich-gets-richer predictive distribution over the next data point (Chinese restaurant
process, Polya urn scheme).

o An iterative procedure for generating samples from the Dirichlet process — the stick
breaking representation.



Limitations of a simple mixture model

o The Dirichlet distribution and the Dirichlet process are great if we want to

cluster data into non-overlapping clusters.

o However, DP/Dirichlet mixture models cannot share features (i.e., cluster

centroids, prototypes) between clusters.

o In many applications, data points exhibit properties of multiple latent

features
o Images contain multiple objects.
o Actors in social networks belong to multiple social groups.
o Movies contain aspects of multiple genres.



% Latent variable models

o Latent variable models allow each data point to exhibit multiple latent
features, to varying degrees.
o Example: Factor analysis w
X=WA'" +¢
o Rows of A = latent features
o Rows of W = data-point-specific weights for
these features
o ¢ = (Gaussian noise.

o Example: LDA
o Each document represented by a mixture of features.




Infinite latent feature models -

o Problem: How to choose the number of features?
o Example: Factor analysis

X=WA'"+¢

o Each column of W (and row of A) corresponds to a feature.

o Question: Can we make the number of features unbounded a posteriori,
as we did with the DP?

o Solution: allow infinitely many features a priori —i.e. let W (or A) have
infinitely many columns (rows).

o Problem: We can’t represent infinitely many features!
o Solution: make our infinitely large matrix sparse.

Griffiths and Ghaharamani, 2006
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/
(/ Recall the CRP: a distribution over indicator matrices

o Recall that the CRP gives us a distribution over partitions of our data.

o We can represent this as a distribution over binary (indicator) matrices,
where each row (which is a “one-hot vector”) corresponds to a data

point, and each column to a cluster.




/
(/ A sparse, finite latent variable model

o We want a sparse model — so let
X = WAT +e

W=20V

for some sparse matrix Z.
a Place a beta-Bernoulli prior on Z: ,

Wkaeta(%J),k:l,...,K

Znk ~ Bernoulli(7g),n=1,..., N.




ﬁ A sparse, finite latent variable model

o If we integrate out the g7, the marginal probability of a matrix Z is:

p(Z H/(HP anlﬂk) (71 ) dy

k=1
B s B(mi +a/K, N —my + 1)
_I};[l : B(a/K,1) :
_ ﬁ ;F(mk +a/K)D(N —myg +1)

here 11 (N +1+a/K)

my = qujzl “nk
o Thisis exchangeable (doesn’t depend on the order of the rows or
columns)



ﬁ A sparse, finite latent variable model

o If we integrate out the g7, the marginal probability of a matrix Z is:

p(Z H/(HP anlﬂk) (71 ) dy

k=1

=

B(mk —|—CV/K,N — Mg + 1)
Bla/K.1)

k=1

al'(mg +a/K)['(N —mg + 1)
_H : N+1+a/K)k

=

where
N
mp = anl Znk
o How is this sparse?

_k'(N m_K)! /(N +1)!
1%2* *(N=m_K)/(m_k+1)*(m_k+2)*..*(N+1)
(1

l(m k+1)) 2/ (m_k+2))*...* ((N=m_k)/ (N +1))

non g



An equivalence class of matrices

o We can naively take the infinite limit by taking K to infinity

o Because all the columns are equal in expectation, as K grows we are

going to have more and more empty columns.

o We do not want to have to represent infinitely many empty columns!
ao Define an equivalence class [Z] of matrices where the non-zero columns

are all to the left of the empty columns.

o Let /of(.) be a function that maps binary matrices to left-ordered binary

matrices — matrices ordered by the binary number made by their rows.



/ Left-ordered matrices

lof

It

;

-
-

| |

i

Figure 5: Binary matrices and the left-ordered form. The binary matrix on the left is transformed
into the left-ordered binary matrix on the right by the function /of(-). This left-ordered
matrix was generated from the exchangeable Indian buffet process with oo = 10. Empty

columns are omitted from both matrices.

Image from Griffiths and Ghahramani, 2011
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How big is the equivalence set?

o All matrices in the equivalence set [Z] are equiprobable (by

exchangeability of the columns), so it we know the size of the
equivalence set, we know its probability.

o Call the vector (z,254,...,24.1%) the history of feature k at data point n (a
number represented in binary form).

a Let K, be the number of features possessing history h, and let K, be the
total number of features with non-zero history.

a The total number of lof-equivalent matrices in [Z] is

K K
Ko Kon_4 _HQN_lK!

n=0 n



/
/ Probability of an equivalence class of finite binary

matrices.

o If we know the size of the equivalence class [Z], we can evaluate its

probability:
p(lZ]) =

> p(2)
Zc|Z]

K

K! H al'(mg +a/K)I'(N —mg + 1)
[, Kl oo K I(N+1+a/K)

8

Ky K! ( N! )K
1250 K, B K \TTY G+ /K
(N —m ! TG+ oK)

11 N

k=1




/
{/ Taking the infinite limit

o We are now ready to take the limit of this finite model as K tends to
infinity:

Qs K! ( N )Kﬁ(N—mk)!HT“l_l(j+%)
11

N _ K N .
Hi=1 1 K, | Ky K5+ S 2 - N

I K — o0

oK+ 1 ﬁ (N — mp)!(my — 1)!
[ K 1 N

n=1




/
(/ Predictive distribution: The Indian buffet process

o We can describe this model in terms of the following restaurant analogy.
o A customer enters a restaurant with an infinitely large buffet
o He helps himself to Poisson(a) dishes.




/
(/ Predictive distribution: The Indian buffet process

o We can describe this model in terms of the following restaurant analogy.
o A customer enters a restaurant with an infinitely large buffet
o He helps himself to Poisson(a) dishes.
a The n customer enters the restaurant
o He helps himself to each previously chosen dish with probability m,/n
a He then tries Poisson(a/n) new dishes




/
(/ Predictive distribution: The Indian buffet process

o We can describe this model in terms of the following restaurant analogy.
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a He then tries Poisson(a/n) new dishes




/
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(/ Proof that the IBP is lof-equivalent to the infinite beta-
Bernoulli model

o What is the probability of a matrix Z?
o Let K, be the number of new features in the n” row.

H p Zn‘zl (n 1)
N n—1 Zn n—1 1_Zn
- H Poisson K( ) H 2izy Zik (M 2oy Zik )
n n n

n=1 k=1
(n) K n— 2, Yy .
— ﬁ <Q>Kl ! e/ ﬁ (21—11 zﬂc) " (” — Zi:f sz)l ’
aK+ N — mk) (mk — 1)
= exp{ —aH
[, Ky P f:[ N

o If we include the cardinality of [Z], this is the same as before



% Properties of the IBP

a “Rich getricher” property — “popular” dishes become more popular.

o The number of nonzero entries for each row is distributed according to
Poisson(a) — due to exchangeability.

o Recall that if x,~Poisson(a,) and x,~Poisson(a.), then
(x;+x,)~Poisson(a,+a,)
o The number of nonzero entries for the whole matrix is distributed according to
Poisson(Na).
a The number of non-empty columns is distributed according to Poisson(aH,,)



Building latent feature models using the IBP

o We can use the IBP to build latent feature models with an unbounded

number of features.

o Let each column of the IBP correspond to one of an infinite number of

features.

o Each row of the IBP selects a finite subset of these features.
o The rich-get-richer property of the IBP ensures features are shared

between data points.

o We must pick a likelihood model that determines what the features look

like and how they are combined.



/
f A linear Gaussian model

o General form of latent factor model: X = WA + ¢
o Simplest way to make an infinite factor model:

o Sample W ~ IBP(q)
o Sample a, ~ N (0, 0.21)
o Sample €., ~ N (0, 07

*

A

/

a N

!

Griffiths and Ghahramani, 20086, ccv 20162020 2

s



; Infinite factor analysis

o Problem with linear Gaussian model: Features are “all or nothing” due to
the binary “loading matrix™ W.

a Factor analysis: X = WA + ¢
o Rows of A = latent features (Gaussian)
o Rows of W = data-point-specific weights for these features (Gaussian)
o ¢ = (Gaussian noise.

o Write W=Z06V
a Z ~ IBP(a)
a V~N(0,0,°)
a A~ N(0,0,°

Knowles and Ghahramani, 2007
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A binary model for latent networks

o Motivation: Discovering latent causes for observed binary data

o Example:
o Data points = patients
o Observed features = presence/absence of symptoms
o Goal: Identify biologically plausible “latent causes” — e.g. illnesses.

o |ldea:
o Each latent feature is associated with a set of symptoms

o The more features a patient has that are associated with a given symptom,
the more likely that patient is to exhibit the symptom.

Wood et al, 2006



/
f A binary model for latent networks

o We can represent this in terms of a Noisy-OR model:

Z ~ IBP(a)
B 11 d™ observed symptom,
Yar ~ bernou 1(p ) k™ latent disease

p(tng = 1)Z,Y) =1— (1= \)?i (1 —¢)

a Intuition:

Q
a
Q

Each patient has a set of latent causes, as indicated by Z

Each latent cause (disease) k exhibit a symptom d with a Bernoulli rate

For each symptom,, we toss a coin with probability A for each latent cause
that is “on” for that patient and associated with that feature, plus an extra coin
with probabillity €.

It any of the coins land heads, we exhibit that feature.



% Inference in the IBP

o Recall inference methods for the DP:
o Gibbs sampler based on the exchangeable model.
o Gibbs sampler based on the underlying Dirichlet distribution
o Variational inference
a Particle filter.

o We can construct analogous samplers for the IBP

© Eric Xing @ CMU, 2014-2020



Inference in the restaurant scheme

Q

Recall the exchangeability of the IBP means we can treat any data point
as if it's our last.

Let K, be the total number of used features, excluding the current data
point.

Let © be the set of parameters associated with the likelihood — eg the
Gaussian matrix A in the linear Gaussian model

The prior probability of choosing one of these features is m,/N

The posterior probabillity is proportional to
p(znk — 1|Xn7 Z—nka @) X mkf(xnlznk — 17 Z—nlm @)

p(znk — O|Xn7 Z—nka @) X (N — mk)f(xn‘znk — O, Z—nlm @)
In some cases, we can integrate out ©, otherwise we must sample this.

Griffiths and Gharamani, 2006
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/
{/ Inference in the restaurant scheme

o In addition, we must propose adding new features.

o Metropolis Hastings method:
o Let K*,,, be the number of features appearing only in the current data point.
a Propose K%, ~ Poisson(a/N), and let Z* be the matrix with K%, features
appearing only in the current data point.

o With probability .
. (17 (x| 2 ,@>)
f(Xn‘Za @)

accept the proposed matrix.



Beta processes and the IBP

o Recall the relationship between the Dirichlet process and the Chinese

restaurant process:
o The Dirichlet process is a prior on probability measures (distributions)
o We can use this probability measure as cluster weights in a clustering model
— cluster allocations are i.i.d. given this distribution.
o If we integrate out the weights, we get an exchangeable distribution over
partitions of the data — the Chinese restaurant process.

a De Finetti’'s theorem tells us that, if a distribution X;, X,,... is
exchangeable, there must exist a measure conditioned on which X,

Xs,... are i.i.d.



Beta processes and the IBP

o Recall the finite beta-Bernoulli model:

T ~ Beta(%, 1)

Znk ~ Bernoulli(7y)

a The z, are i.i.d. given the 1, but are exchangeable if we integrate out the ,.
o The corresponding distribution for the IBP is the infinite limit of the beta

random variables, as K tends to infinity.

a This distribution over discrete measures is called the beta process.
o Samples from the beta process have infinitely many atoms with masses

between O and 1.

Thibaux and Jordan, ZOOZE. Xing @MU, 20142020 51 Lg



/
f Posterior distribution of the beta process

o Question: Can we obtain the posterior distribution of the column
probabilities in closed form?

o Answer: Yes!
o Recall that each atom of the beta process is the infinitesimal limit of a
Beta(a/K, 1) random variable.
a Our counts of observations for that atom are a Binomial(rr,, N) random
variable.
o We know the beta distribution is conjugate to the Binomial, so the posterior is
the infinitesimal limit of a Beta(a/K+m,,N+1-m,) random variable.

Theorem: Let X1, X2, - - -, Xnbe independent Bernoulli random
variables, each with the same parameter p. Then the sum X = X1+ -
-+ + Xais a binomial random variable with parameters n and p.



A stick-breaking construction for the beta process

o We can construct the beta process using the following stick-breaking
construction:

o Begin with a stick of unit length.
o Fork=1,2,...
o Sample a beta(a,1) random variable y,.
o Break off a fraction p, of the stick. This is the k" atom size.

o Throw away what'’s left of the stick.
o Recurse on the part of the stick that you broke off

Tk = ....?:1 Hj Hj ~ Beta(av 1)

o Note that, unlike the DP stick breaking construction, the atoms will not
sum to one.

Teh et al, 2007



Inference In the stick-breaking construction

o We can also perform inference using the stick-breaking representation
a Sample Z|m,0
o Sample nlZ

a The posterior for atoms for which m, > 0 is beta distributed.

a The atoms for which m, = O can be sampled using the stick-breaking
procedure.

o We can use a slice sampler to avoid representing all of the atoms, or
using a fixed truncation level.

Teh et al, 2007



A two-parameter extension

o Inthe IBP, the parameter a governs both the number of nonempty
columns and the number of features per data point.

o We might want to decouple these properties of our model.
o Reminder: We constructed the IBP as the limit of a finite beta-Bernoulli

model where
T ~ Beta (%, 1)

Znk ~ Bernoulli(7y)

o We can modity this to incorporate an extra parameter:

T ~ Beta(%, B)

Znk ~ Bernoulli(7g) Sollich, 2005



% A two-parameter extension

a Our restaurant scheme is now as follows:
o A customer enters a restaurant with an infinitely large buffet
o He helps himself to Poisson(a) dishes.
a The n'" customer enters the restaurant
a He helps himself to each dish with probability m, / (B+n-1)
a He then tries Poisson(aB / (B+n-1) new dishes

o Note

o The number of features per data point is still marginally Poisson(q).
o The number of non-empty columns is now

Poisson (a Y7, #)

o We recover the IBP when 8= 1.

© Eric Xing @ CMU, 2014-2020



%
/ Two parameter IBP: examples
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Image from Griffiths and Ghahramani, 2011
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{/ Other distributions over infinite, exchangeable matrices

o Recall the beta-Bernoulli process construction of the IBP.

o We start with a beta process — an infinite sequence of values between O
and 1 that are distributed as the infinitesimal limit of the beta distribution.

o We combine this with a Bernoulli process, to get a binary matrix.

o If we integrate out the beta process, we get an exchangeable distribution
over binary matrices.

o Integration is straightforward due to the beta-Bernoulli conjugacy.
o Question: Can we construct other infinite matrices in this way?



The infinite gamma-Poisson process

o The gamma process can be thought of as the infinitesimal limit of a
seqguence of gamma random variables.

o Alternatively,
if D ~ DP(a, H)
and v ~ Gamma(a, 1)
then G = ~vD ~ GaP(aH)

o The gamma distribution is conjugate to the Poisson distribution.



/
{/ The infinite gamma-Poisson process

o We can associate each atom v, of the gamma process with a column of
a matrix (just like we did with the atoms of a beta process)

o We can generate entries for the matrix as z,,~Poisson(v,)

E>N RS I RO TN I ST IS o
NSRS el HESI ROV I N0}
\SR I Ranll IR [ NS I NS}
NSl N VI Nenll Rawll 1
SN~ DN O
=il =3 Rewll § \O R Rl Ren}
[l el Bl Kool Rl s
[l el fenll Kol Ranll Kanl

NI NEYNNE
(el Hen kil Nenll el Nan)
(@)

IBP infinite gamma-Poisson
TitsiaS, 2008 © Eric Xing MU, 2014-2020 40



/
(/ The infinite gamma-Poisson process

a Predictive distribution for the n row:
a For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))

412|4|17(0(0]|0]|0]|O0
5101294 |1]0|0|O0
312|116 (2[1]0]0]|O0
71113[6[3[0|0|0|O0




/
(/ The infinite gamma-Poisson process

a Predictive distribution for the n row:
a For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))
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/
(/ The infinite gamma-Poisson process

a Predictive distribution for the n row:
a For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))
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/
(/ The infinite gamma-Poisson process

a Predictive distribution for the n row:
a For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))

412|4|17(0(0]|0]|0]|O0
5101294 |1]0|0]O0
312|116 (2]1]0]0]|O0
71113[6[3[0|0|0|O0
51014 |5[|2]|0




/
(/ The infinite gamma-Poisson process

a Predictive distribution for the n row:
a For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))
o Sample K*, ~NegBinom(a, n/(n+1))

4|2|4|7(0fo0f0f0]o0
5(0[2[9(4|1]|0]0]0
3(2(1]6]2]1]0]0]0O 4
711]3]6|3]|0[0]|0]0
5(0[4[5]2]0




/
(/ The infinite gamma-Poisson process

a Predictive distribution for the n row:
a For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1)).
o Sample K*, ~NegBinom(a, n/(n+1)).
o Partition K*, according to the CRP, and assign the resulting counts to new
columns.

412|4|17(0(0]|0]|0]|0O0
5102941 ]0]|0]|O0
312|162 ]|1]0]0]|O0
71113|6[3[0|0|0]|O0
51014 (52|03 |1]O0




