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Recap of last lecture

q Dirichlet process: a distribution over discrete probability distributions 
with infinitely many atoms.

q Can be used to create a nonparametric version of a finite mixture model.
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Recap of last lecture

q We can think of the Dirichlet process in a number of ways:
q The infinite limit of a Dirichlet distribution.
q A rich-gets-richer predictive distribution over the next data point (Chinese restaurant 

process, Polya urn scheme).
q An iterative procedure for generating samples from the Dirichlet process – the stick 

breaking representation.
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Limitations of a simple mixture model

q The Dirichlet distribution and the Dirichlet process are great if we want to 
cluster data into non-overlapping clusters.

q However, DP/Dirichlet mixture models cannot share features (i.e., cluster 
centroids, prototypes) between clusters.

q In many applications, data points exhibit properties of multiple latent 
features

q Images contain multiple objects.
q Actors in social networks belong to multiple social groups.
q Movies contain aspects of multiple genres.
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Latent variable models

q Latent variable models allow each data point to exhibit multiple latent
features, to varying degrees.

q Example: Factor analysis
X = WAT + ε

q Rows of A = latent features
q Rows of W = data-point-specific weights for 

these features
q ε = Gaussian noise.

q Example: LDA
q Each document represented by a mixture of features.
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Infinite latent feature models

q Problem: How to choose the number of features?
q Example: Factor analysis

X = WAT + ε
q Each column of W (and row of A) corresponds to a feature.
q Question: Can we make the number of features unbounded a posteriori, 

as we did with the DP?
q Solution: allow infinitely many features a priori – i.e. let W (or A) have 

infinitely many columns (rows).
q Problem: We can’t represent infinitely many features!
q Solution: make our infinitely large matrix sparse.

Griffiths and Ghaharamani, 2006
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Recall the CRP: a distribution over indicator matrices

q Recall that the CRP gives us a distribution over partitions of our data.
q We can represent this as a distribution over binary (indicator) matrices, 

where each row (which is a “one-hot vector”) corresponds to a data 
point, and each column to a cluster.
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A sparse, finite latent variable model

q We want a sparse model – so let 

for some sparse matrix Z.
q Place a beta-Bernoulli prior on Z:

X = WAT + ✏

W = Z�V

⇡k ⇠ Beta

✓
↵

K
, 1

◆
, k = 1, . . . ,K

znk ⇠ Bernoulli(⇡k), n = 1, . . . , N.
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A sparse, finite latent variable model

q If we integrate out the πk, the marginal probability of a matrix Z is:

where 

q This is exchangeable (doesn’t depend on the order of the rows or 
columns)

p(Z) =
KY

k=1

Z ✓ NY

n=1

p(znk|⇡k)

◆
p(⇡k)d⇡k

=
KY

k=1

B(mk + ↵/K,N �mk + 1)

B(↵/K, 1)

=
KY

k=1

↵

K

�(mk + ↵/K)�(N �mk + 1)

�(N + 1 + ↵/K)

mk =
PN

n=1 znk
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A sparse, finite latent variable model

q If we integrate out the πk, the marginal probability of a matrix Z is:

where 

q How is this sparse?

p(Z) =
KY

k=1

Z ✓ NY

n=1

p(znk|⇡k)

◆
p(⇡k)d⇡k

=
KY

k=1

B(mk + ↵/K,N �mk + 1)

B(↵/K, 1)

=
KY

k=1

↵

K

�(mk + ↵/K)�(N �mk + 1)

�(N + 1 + ↵/K)

mk =
PN

n=1 znk
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An equivalence class of matrices

q We can naively take the infinite limit by taking K to infinity
q Because all the columns are equal in expectation, as K grows we are 

going to have more and more empty columns.
q We do not want to have to represent infinitely many empty columns!
q Define an equivalence class [Z] of matrices where the non-zero columns 

are all to the left of the empty columns.
q Let lof(.) be a function that maps binary matrices to left-ordered binary 

matrices – matrices ordered by the binary number made by their rows.

© Eric Xing @ CMU, 2014-2020 11



Left-ordered matrices

Image from Griffiths and Ghahramani, 2011
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How big is the equivalence set?

q All matrices in the equivalence set [Z] are equiprobable (by 
exchangeability of the columns), so if we know the size of the 
equivalence set, we know its probability.

q Call the vector (z1k,z2,k,…,z(n-1)k) the history of feature k at data point n (a 
number represented in binary form).

q Let Kh be the number of features possessing history h, and let K+ be the 
total number of features with non-zero history.

q The total number of lof-equivalent matrices in [Z] is
✓

K

K0 · · ·K2N�1

◆
=

K!
Q2N�1

n=0 Kn!
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Probability of an equivalence class of finite binary 
matrices.

q If we know the size of the equivalence class [Z], we can evaluate its 
probability:

p([Z]) =
X

Z2[Z]

p(Z)

=
K!

Q2N�1
n=0 Kn!

KY

k=1

↵

K

�(mk + ↵/K)�(N �mk + 1)

�(N + 1 + ↵/K)

=
↵K+

Q2N�1
n=1 Kn!

K!

K0!KK+

✓
N !

QN
j=1 j + ↵/K

◆K

·
K+Y

k=1

(N �mk)!
Qmk�1

j=1 (j + ↵/K)

N !
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Taking the infinite limit

q We are now ready to take the limit of this finite model as K tends to 
infinity:

↵K+

Q2N�1
n=1 Kn!

K!

K0!KK+

✓
N !

QN
j=1 j +

↵
K

◆K K+Y

k=1

(N �mk)!
Qmk�1

j=1 (j + ↵
K )

N !

# K ! 1

↵K+

Q2N�1
n=1 Kn!

1 exp{�↵HN}
K+Y

k=1

(N �mk)!(mk � 1)!

N !
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Predictive distribution: The Indian buffet process

q We can describe this model in terms of the following restaurant analogy.
q A customer enters a restaurant with an infinitely large buffet
q He helps himself to Poisson(α) dishes.
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Predictive distribution: The Indian buffet process

q We can describe this model in terms of the following restaurant analogy.
q A customer enters a restaurant with an infinitely large buffet
q He helps himself to Poisson(α) dishes.
q The nth customer enters the restaurant
q He helps himself to each previously chosen dish with probability mk / n
q He then tries Poisson(α/n) new dishes
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Predictive distribution: The Indian buffet process

q We can describe this model in terms of the following restaurant analogy.
q A customer enters a restaurant with an infinitely large buffet
q He helps himself to Poisson(α) dishes.
q The nth customer enters the restaurant
q He helps himself to each previously chosen dish with probability mk / n
q He then tries Poisson(α/n) new dishes
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Example

© Eric Xing @ CMU, 2014-2020 19



Proof that the IBP is lof-equivalent to the infinite beta-
Bernoulli model

q What is the probability of a matrix Z?
q Let K1

(n) be the number of new features in the nth row.

q If we include the cardinality of [Z], this is the same as before

p(Z) =
NY

n=1

p(zn|z1:(n�1))

=

NY

n=1

Poisson

✓
K(n)

1

����
↵

n

◆ K+Y

k=1

✓Pn�1
i=1 zik
n

◆znk
✓
n�

Pn�1
i=1 zik
n

◆1�znk

=
NY

n=1

✓
↵

n

◆K(n)
1 1

K(n)
1 !

e�↵/n

K+Y

k=1

✓Pn�1
i=1 zik
n

◆znk
✓
n�

Pn�1
i=1 zik
n

◆1�znk

=

↵K+

QN
n=1 K

(n)
1 !

exp{�↵HN}
K+Y

k=1

N �mk)!(mk � 1)!

N !
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Properties of the IBP

q “Rich get richer” property – “popular” dishes become more popular.
q The number of nonzero entries for each row is distributed according to 

Poisson(α) – due to exchangeability.
q Recall that if x1~Poisson(α1) and x2~Poisson(α2), then 

(x1+x2)~Poisson(α1+α2)
q The number of nonzero entries for the whole matrix is distributed according to 

Poisson(Nα).
q The number of non-empty columns is distributed according to Poisson(αHN)
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Building latent feature models using the IBP

q We can use the IBP to build latent feature models with an unbounded 
number of features.

q Let each column of the IBP correspond to one of an infinite number of 
features.

q Each row of the IBP selects a finite subset of these features.
q The rich-get-richer property of the IBP ensures features are shared 

between data points.
q We must pick a likelihood model that determines what the features look 

like and how they are combined.
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A linear Gaussian model

q General form of latent factor model: X = WAT + ε
q Simplest way to make an infinite factor model:

q Sample W ~ IBP(α)
q Sample ak ~ N (0, σa

2 I)
q Sample εnk ~ N (0, σε2)
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Infinite factor analysis

q Problem with linear Gaussian model: Features are “all or nothing” due to 
the binary “loading matrix” W. 

q Factor analysis: X = WAT + ε
q Rows of A = latent features (Gaussian)
q Rows of W = data-point-specific weights for these features (Gaussian)
q ε = Gaussian noise.

q Write
q Z ~ IBP(α)
q V ~ N (0,σv

2)
q A ~ N (0,σA

2)

Knowles and Ghahramani, 2007

W = Z�V
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A binary model for latent networks

q Motivation: Discovering latent causes for observed binary data
q Example: 

q Data points = patients
q Observed features = presence/absence of symptoms
q Goal: Identify biologically plausible “latent causes” – e.g. illnesses.

q Idea:
q Each latent feature is associated with a set of symptoms
q The more features a patient has that are associated with a given symptom, 

the more likely that patient is to exhibit the symptom.

Wood et al, 2006
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A binary model for latent networks

q We can represent this in terms of a Noisy-OR model:

q Intuition:
q Each patient has a set of latent causes, as indicated by Z
q Each latent cause (disease) k exhibit a symptom d with a Bernoulli rate
q For each symptom,, we toss a coin with probability λ for each latent cause 

that is “on” for that patient and associated with that feature, plus an extra coin 
with probability ε.

q If any of the coins land heads, we exhibit that feature.

Z ⇠ IBP(↵)

ydk ⇠ Bernoulli(p)

p(xnd = 1|Z,Y) = 1� (1� �)

zny
T
d
(1� ✏)
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Inference in the IBP

q Recall inference methods for the DP:
q Gibbs sampler based on the exchangeable model.
q Gibbs sampler based on the underlying Dirichlet distribution
q Variational inference
q Particle filter.

q We can construct analogous samplers for the IBP
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Inference in the restaurant scheme

q Recall the exchangeability of the IBP means we can treat any data point 
as if it’s our last.

q Let K+ be the total number of used features, excluding the current data 
point.

q Let Θ be the set of parameters associated with the likelihood – eg the 
Gaussian matrix A in the linear Gaussian model

q The prior probability of choosing one of these features is mk / N
q The posterior probability is proportional to

q In some cases, we can integrate out Θ, otherwise we must sample this.

Griffiths and Gharamani, 2006

p(znk = 1|xn,Z�nk,⇥) / mkf(xn|znk = 1,Z�nk,⇥)

p(znk = 0|xn,Z�nk,⇥) / (N �mk)f(xn|znk = 0,Z�nk,⇥)
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Inference in the restaurant scheme

q In addition, we must propose adding new features.
q Metropolis Hastings method:

q Let K*old be the number of features appearing only in the current data point.
q Propose K*new ~ Poisson(α/N), and let Z* be the matrix with K*new features 

appearing only in the current data point.
q With probability 

accept the proposed matrix.

min

✓
1,

f(xn|Z⇤,⇥)

f(xn|Z,⇥)

◆
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Beta processes and the IBP

q Recall the relationship between the Dirichlet process and the Chinese 
restaurant process:

q The Dirichlet process is a prior on probability measures (distributions)
q We can use this probability measure as cluster weights in a clustering model 

– cluster allocations are i.i.d. given this distribution.
q If we integrate out the weights, we get an exchangeable distribution over 

partitions of the data – the Chinese restaurant process.
q De Finetti’s theorem tells us that, if a distribution X1, X2,… is 

exchangeable, there must exist a measure conditioned on which X1, 
X2,… are i.i.d.

© Eric Xing @ CMU, 2014-2020 30



Beta processes and the IBP

q Recall the finite beta-Bernoulli model:

q The znk are i.i.d. given the πk, but are exchangeable if we integrate out the πk.
q The corresponding distribution for the IBP is the infinite limit of the beta 

random variables, as K tends to infinity.
q This distribution over discrete measures is called the beta process.
q Samples from the beta process have infinitely many atoms with masses 

between 0 and 1.

Thibaux and Jordan, 2007

⇡k ⇠ Beta

✓
↵

K
, 1

◆

znk ⇠ Bernoulli(⇡k)
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Posterior distribution of the beta process

q Question: Can we obtain the posterior distribution of the column 
probabilities in closed form?

q Answer: Yes!
q Recall that each atom of the beta process is the infinitesimal limit of a 

Beta(α/K,1) random variable.
q Our counts of observations for that atom are a Binomial(πk, N) random 

variable.
q We know the beta distribution is conjugate to the Binomial, so the posterior is 

the infinitesimal limit of a Beta(α/K+mk,N+1-mk) random variable.
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Theorem: Let X1, X2, · · · , Xn be independent Bernoulli random 
variables, each with the same parameter p. Then the sum X = X1 + · 
· · + Xn is a binomial random variable with parameters n and p. 



A stick-breaking construction for the beta process

q We can construct the beta process using the following stick-breaking 
construction:

q Begin with a stick of unit length.
q For k=1,2,…

q Sample a beta(α,1) random variable μk.
q Break off a fraction μk of the stick. This is the kth atom size.
q Throw away what’s left of the stick.
q Recurse on the part of the stick that you broke off

q Note that, unlike the DP stick breaking construction, the atoms will not
sum to one.

Teh et al, 2007

⇡k =
Qk

j=1 µj µj ⇠ Beta(↵, 1)
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Inference in the stick-breaking construction

q We can also perform inference using the stick-breaking representation
q Sample Z|π,Θ
q Sample π|Z

q The posterior for atoms for which mk > 0 is beta distributed.
q The atoms for which mk = 0 can be sampled using the stick-breaking 

procedure.
q We can use a slice sampler to avoid representing all of the atoms, or 

using a fixed truncation level.

Teh et al, 2007
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A two-parameter extension

q In the IBP, the parameter α governs both the number of nonempty 
columns and the number of features per data point.

q We might want to decouple these properties of our model.
q Reminder: We constructed the IBP as the limit of a finite beta-Bernoulli 

model where

q We can modify this to incorporate an extra parameter:

Sollich, 2005

⇡k ⇠ Beta

✓
↵

K
, 1

◆

znk ⇠ Bernoulli(⇡k)

⇡k ⇠ Beta

✓
↵�

K
,�

◆

znk ⇠ Bernoulli(⇡k)
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A two-parameter extension

q Our restaurant scheme is now as follows:
q A customer enters a restaurant with an infinitely large buffet
q He helps himself to Poisson(α) dishes.
q The nth customer enters the restaurant
q He helps himself to each dish with probability mk / (β+n-1)
q He then tries Poisson(αβ / (β+n-1) new dishes

q Note 
q The number of features per data point is still marginally Poisson(α).
q The number of non-empty columns is now 

q We recover the IBP when β = 1.

Poisson

�
↵
PN

n=1
�

�+n�1

�
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Two parameter IBP: examples

GRIFFITHS AND GHAHRAMANI

7.1 A Two-Parameter Generalization

As was discussed in Section 4.6, the distribution on the number of features per object and on the
total number of features produced by the IBP are directly coupled, through α. This is an undesirable
constraint, as the sparsity of a matrix and its dimensionality should be able to vary independently.
Ghahramani et al. (2007) introduced a two-parameter generalization of the IBP that separates these
two aspects of the distribution.6 This generalization keeps the average number of features per object
at α as before, but allows the overall number of represented features to range from α, an extreme
where all features are shared between all objects, to Nα, an extreme where no features are shared at
all. Between these extremes lie many distributions that capture the amount of sharing appropriate
for different domains.

As the one-parameter model, this two-parameter model can be derived by taking the limit of
a finite model, but using πk|α,β ∼ Beta(αβK ,β) instead of Equation 9. Here we will focus on the
equivalent sequential generative process. To return to the language of the Indian buffet, the first
customer starts at the left of the buffet and samples Poisson(α) dishes. The ith customer serves
himself from any dish previously sampled by mk > 0 customers with probability mk/(β+ i− 1),
and in addition from Poisson(αβ/(β+ i−1)) new dishes. The parameter β is introduced in such a
way as to preserve the expected number of features per object, α, but the expected overall number of
features is α∑N

i=1
β

β+i−1 , and the distribution of K+ is Poisson with this mean. The total number of
features used thus increases as β increases. For finite β, the expected number of features increases
as αβ lnN, but if β≫ 1 the logarithmic regime is preceded by linear growth at small N < β.

Figure 10 shows three matrices drawn from the two-parameter IBP, all with α = 10 but with
β= 0.2, β= 1, and β= 5 respectively. Although all three matrices have roughly the same number
of non-zero entries, the number of features used varies considerably. At small values of β features
become likely to be shared by all objects. At high values of β features are more likely to be spe-
cific to particular objects. Further details about the properties of this distribution are provided in
Ghahramani et al. (2007).
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Figure 10: Three samples from the two-parameter Indian buffet process with α = 10 and β = 0.2
(left), β= 1 (middle), and β= 5 (right).

7.2 A Stick-Breaking Construction

Our strategy of taking the limit of a finite exchangeable distribution in deriving the IBP was inspired
by the derivation of the CRP as the limit of a Dirichlet-multinomial model. However, there are many

6. The original idea and analysis was described in an unpublished note by Sollich (2005).

1214

Image from Griffiths and Ghahramani, 2011
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Other distributions over infinite, exchangeable matrices

q Recall the beta-Bernoulli process construction of the IBP.
q We start with a beta process – an infinite sequence of values between 0 

and 1 that are distributed as the infinitesimal limit of the beta distribution.
q We combine this with a Bernoulli process, to get a binary matrix.
q If we integrate out the beta process, we get an exchangeable distribution 

over binary matrices.
q Integration is straightforward due to the beta-Bernoulli conjugacy.
q Question: Can we construct other infinite matrices in this way?

© Eric Xing @ CMU, 2014-2020 38



The infinite gamma-Poisson process

q The gamma process can be thought of as the infinitesimal limit of a 
sequence of gamma random variables.

q Alternatively, 

q The gamma distribution is conjugate to the Poisson distribution.

if D ⇠ DP(↵, H)

and � ⇠ Gamma(↵, 1)

then G = �D ⇠ GaP(↵H)
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The infinite gamma-Poisson process

q We can associate each atom νk of the gamma process with a column of 
a matrix (just like we did with the atoms of a beta process)

q We can generate entries for the matrix as znk~Poisson(νk)

IBP infinite gamma-Poisson
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The infinite gamma-Poisson process

q Predictive distribution for the nth row:
q For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))
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The infinite gamma-Poisson process

q Predictive distribution for the nth row:
q For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))
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The infinite gamma-Poisson process

q Predictive distribution for the nth row:
q For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))
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The infinite gamma-Poisson process

q Predictive distribution for the nth row:
q For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))
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The infinite gamma-Poisson process

q Predictive distribution for the nth row:
q For each existing feature, sample a count znk~NegBinom(mk, n/(n+1))
q Sample K*n~NegBinom(α, n/(n+1))
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The infinite gamma-Poisson process

q Predictive distribution for the nth row:
q For each existing feature, sample a count znk~NegBinom(mk, n/(n+1)).
q Sample K*n~NegBinom(α, n/(n+1)).
q Partition K*n according to the CRP, and assign the resulting counts to new 

columns.
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