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; Covered in PGM so far

Module 1: Representation & Exact Inference

Module 2: Approximate Inference (VI, MC, SMC, MCMC, etc.)
Module 3: [introduced in 2015] Deep Learning & Generative Models
Module 4: Structure Learning and Causal Inference

Module 5: [introduced in 2019] RL and Control as Inference in GM

Goal: gentle introduction to basic concepts of RL with a focus on
connections between control and inference in a probabilistic GM



% A note on materials used in this module

o Sutton & Barto. Reinforcement Learning: An Introduction. 279 edition.

o David Silver’s UCL course on reinforcement learning.

0 Materials from UC Berkeley’'s Deep RL course.

Q Sergey Levine’s tutorial on RL and control as inference.

0 Brian Ziebart's PhD thesis (maximum causal entropy models).


http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://rail.eecs.berkeley.edu/deeprlcourse/
https://arxiv.org/pdf/1805.00909.pdf
http://reports-archive.adm.cs.cmu.edu/anon/anon/home/ftp/usr/ftp/ml2010/CMU-ML-10-110.pdf

RL has already come up previously (in text generation)

e The generalized ERPO objective [Tan, Hu, et al., 2018]:

L(q,0) = Eq[R(y | y")] — a KL[g(y [ X)[|pe (¥ [ )] + f H(q)

e The reward term is a non-differentiable function of the sample y and the
true sequence y* (e.g., represented by the BLEU metric).

e More generally, objectives of this form are called stochastic objectives:

L(O) = Ex~pgx) [f ()]

e As we will see, such objectives often come up in RL.



% Plan

Part 1: Intro to RL and Control as Inference Framework
0 Intro to Reinforcement Learning (RL)

o RL and Control as Inference: The GM framework

o Connections to variational inference

Part 2: Max-entropy RL Algorithms Rigortom T Soft Acor e
. . . . torcacn frstondo
0 Classical Q-learning and policy gradient methods o oviomnt s do
. . . . . St41 ~ P(Seq1lse, ar)
a Derivation of the soft Q-learning and soft policy gradients 2 & DUTGuaur(en )
. . . for each gradient step do
o Algorithms and applications PR AR

P ¢— A,,V¢J,r(?)
YT+ (-1
end for
end for




; Plan

Part 1: Intro to RL and Control as Inference Framework

0 Intro to Reinforcement Learning (RL)
a0 RL and Control as Inference: The GM framework
o Connections to variational inference




% Paradigms of machine learning

e Supervised learning
Given: a collection of data D = {(x;, y;)}-1
Goal: learn a model that approximates P(y | x)

e Unsupervised learning

Given: a collection of data D = {(xq, X2, ..., Xg)i 1
Goal: learn a model that approximates P(xq, x,, ...

e Reinforcement learning

Given: an environment that an agent can perceive

and interact with

Goal: learn a controller (policy) that can maximize
the utility (reward) in the given environment

rxd)
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GMs allow us to efficiently
represent, manipulate, and
perform learning and inference
on these probabilistic models.

DL gives the tools for learning
expressive latent representations
that lead to more accurate
probabilistic models of the data.

AGENT ENVIRONMENT

-State s €S
Take action a € A

Getreward 7
-Newstate s € S



Why sequential decision making and RL?

Ultimately, we want to build autonomous intelligent machines that:

e Can perceive and interact with the world
e Exhibit purposeful goal-directed behavior

e | earn from interactions, adapt to changes, plan
and be able to maximize utility functions
(specified by humans or inferred from situations)

RL gives us a formal framework for building such autonomous agents.



/
{/ Some recent success stories of RL

AlphaGo (DeepMind, 2016) AlphaStar (DeepMind, 2019)

Learning to play games
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Robotics

FINGER PIVOTING SLIDING FINGER GAITING

Chebotar et al., 2018 OpenAl, 2018 9 g
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Markov Decision Processes (MDPs)

"l Agent |

Markov Decision Process (MDP): )

state reward action
. St Rz At
e Environment has a set of states § R (
S.. | Environment ]4—

\

e Agent is given a set of possible actions A

e Environment dynamics: transitions from state s; into a new state s;,1
according to the transition probability P(s;4+1|s¢, ag) after agent takes action ay

e Reward function: r(s,a) = E[ry44|S; = s, a; = a] provides scalar rewards to the
agent at each time step

e “Life” of an agent (or trajectory):

T = (51,04,7¢,S3, A9, 15, 53,03,13, ... )

s



';I Agent |

/
ﬁ Markov Decision Processes (MDPs) |-

)

What can we do with MDPs:

Environment ]4—

(1) Policy search: Find a policy m: § = A that outputs actions for each given

state such that the cumulative reward along the trajectory is maximized.

(2) Inverse RL: Given a set of optimal trajectories (e.g., generated by a human

expert), infer the corresponding MDP.

action



Returns and Episodes

Maximization of the return:

e Return (cumulative reward) starting step t: Gy = 1441 + 1440 + -+ 17

e |f T = o0, we can use the notion of discounted return:

Gy = Tep1 + VTeg2 + VoTeaz + o

0

_ k

= 2 V Tt+k+1
k=0

=141 T VG41

where 0 < y < 1 is called the discount rate



/
(/ Policies and Value Functions

e Value function of a state s:

Ve(s) =E,;|G: | st =s] =E,

e Value function of the state-action pair (s, a):

| k=0

Qr(s,a) :=E; |G| st = s,a; = al

T
k
=K, E Y Tt+k+1\8t237at:a

| k=0

T
k _
E Y Tt+k+1 | St = S




{/ Bellman Equation for V. (s)

e Bellman equation for the value function of a state s:

Vi(s) :=Ex [Ge | st =] =Er | ) 7 resnsr|se=s
| k=0 i

= Ex [ri41 +7Gig1 | 8¢ = ]
—ZTFCL’S ZPS!SCL (s,a) +vE, [Gt—|—1’5t—|—1:S/H

—Zﬂa]sZpS]sa (s,a) + Vi (s")]



(/ Bellman Equation for V. (s)

e Bellman equation for the value function of a state s:

ZW&]SZ}?S!SCL (s,a) + YV (s")]




/
f Example: Grid World and a Random Policy

e Getting off the grid results in -1 reward and no change in position.

e Any action in A and B result in +10 and +5 and move the agent to A" and
B’, respectively.

Al |B\ 3.3/8.8/4.4/5.3|15
\ +5 15/3.0/2.3[1.9/05
+10) B' <—I—> 0.1/0.7|0.7| 0.4|-0.4
/ -1.0-0.4/-0.4/-0.6-1.2

I Actions -1.9-1.3-1.2]-1.4]-2.0

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

17



{/ Bellman Equation for Q. (s, a)

e Bellman equation for the value function of the state-action pair (s, a):

Qr(s,a):

T

Ex |Gt | st =s,a; =a] =E, kaerH | s = s,a: = a

| k=0

r(s,a) + VEx |G | st = s,a¢ = a

(s,a) —I—*yZps]SCLZWCL]s o Gig1 | si41 =8, ai01 = d']

= T(S,CL) T Vzp(sl ’ S7a) ZW(CL’ ’ 3/)Q7r(8/7a/)

3



/
(/ Bellman Equation for Q. (s, a)

e Bellman equation for the value function of the state-action pair (s, a):

Qn(s,a) =7r(s,a) +7 ) p(s' [ s,a) ) 7w(a"|s)Qx(s,a")

g (s,a) < s,a

qr(s',a’) < ad



Optimal Policies and Value Functions

e Solving an RL task means finding an optimal policy that achieves high
reward in the long run.

e Policy m is better or equal to ' (m = ') if its expected return is greater or
equal to that of =’ for all states:
n>n V() =V (s)VseS

e Optimal value functions (Bellman optimality):

V.(s) := max V( maXZps | s,a) [r(s,a) +YVi(s")]

Q.(s,a) := maXQ7T s,a) Zp s'|s,a { s a)+fym8/LXQ*(s’,a’)}

a



(/ Optimal Policies and Value Functions

e Optimal value functions (Bellman optimality):
Vi(s) = max V( mapr s’ | 5,0) [r(s, a) +yVi(s")]

Q«(s,a) = max@7T s,a) Zp s'|s,a { s a)+’yme,1,XQ*(s’,a’)}

OO OO OO0 e o o e

Figure 3.4: Backup diagrams for v. and g.



/
{/ How to recover optimal policy and trajectories?

e \We can recover an optimal policy from the optimal Q. (s, a):

m(a|s) =19 (a = argmax Q*(s,a))

e [0 recover a set of optimal trajectories, just execute the optimal policy:

L * ok Kk Kk Kk %
7'*—(81,&1,T1,S2,a2,r2,..-)

St41 ~ P(St+1 | 8t,af = arg max Q+(s,a))



/
f Example: Grid World and an Optimal Policy
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Figure 3.5: Optimal solutions to the gridworld example.




/
{/ Recap

o Acont) e Value functions:
| Agent
gty - T
state reward i
S| |R thlon Vw(s) =K E Vth+k+1 | St = 8]
<« Rr+l ( . ] _k:()
S.. | Environment |« -

T
QW(Saa’) = E, ZWkTHkH | St = S,0¢ = CL]

| k=0
Initial state So ~ po(s)
Transition St11 ~ P(Sta1 | St,a¢)
Policy ar ~ m(as | st) e Recursive notion of optimality:
Reward re = r(S¢, ar) () § (g=) 53¢

max A
a 3/
/

OO OO O O¢ e o o e

Figure 3.4: Backup diagrams for v. and ¢ # ,g
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/
(/ MDP as a Graphical Model

controls

state dynamics

'| Agent |

reward
R,
Rt+l
St+l
<

)

7

\,

Environment ]4—

How do we define a distribution over rational/optimal trajectories?

action
A,



/
{/ MDP as a Graphical Model

¥

Initial state
Transition
Policy
Reward

S0 ~~ po(S)
St41 p(3t+1 \ Staat)
a¢ ~~ 7T(6Lt ‘ St)

ry = (8¢, ay)

Initial state
Transition
Policy
Reward

Optimality

s0 ~ po(s)

St+1 ~ P(Se+1 | ¢, a¢)
a; ~ m(as | S¢)
re = 1(S¢, at)

p<0t =1 ’ Styat): eXP(T(StaCLO)

27
L



% Why is this model interesting?

e Can solve control and planning problems using inference algorithms
e Allows to model suboptimal behavior (important for inverse RL)

e Provides and explanation for why stochastic behavior might be preferred
(from the exploration and transfer learning point of view)



What can we do with this graphical model?

Here is what we can do:
e Given a reward, determine a likely optimal trajectory
e Given a collection of optimal trajectories, infer the reward and priors

e Given areward, infer the optimal policy



/
{/ Distribution over the optimal trajectories

S (2
&) (&
) (£

O050

p(O¢ | s¢,a:) = exp(r(se, at))

T
p(7 | Orr) o< p(s1) Hp(at | se)p(St+1 | t,a)p(O | 8¢, a)
t=1



/
{/ Inferring the reward & prior that generate trajectories

T

p(T ‘ Ol:T76)7¢) X p(81) Hp(5t+1 ’ St,at)

t

1

The model reminds a featurized CRF.

- (

T

quﬁ(staat) + log pg(az | st)
t=1

)



/
{/ Optimal policy and planning via inference

e Unroll the dynamics and compute backward messages:

Bt(St,CLt) = p(ot:T \ Staat)
e Compute optimal policy:
p(a’t ‘ St Ot:T)

S (2
&) (&
) (£



(/ Backward messages

6 (8t7 a’t

?(OHLT | 5t—|—1)J —

~"

Bt+1(5t4+1)

— p(Ot T \ St at)

|
§>\Cf)\%\

p(Ot—I—lzT | St+1

S (2
&) (&
) (£

Probability that we can be optimal
at steps t through T given s; and a;

D Ot:Tast—H | St,at)d8t+1

p Ot+1zT \ St+1)p(3t+1 \ Staat)p(ot | Staat)dst—l—l

, @4 1)P(ag1 | St41)dags

575(8757 at) =

fort=T —1to1:

P(Ot | 8t;a) B, mp(sisn|sear) [Be41(St41)]
ﬂt(st) — Eatwp(at\st) [ﬁt(sta at)]




/
(/ How are these messages related to RL?

&)

&) (&
) (£
&) (&

let Vi(s¢) = log B¢(s¢)
let Qt(st7 at) — log Bt(sta at) V(St) — log/exp(Q(St, at) T lng(at|St))at

Deterministic dynamics: Q(s:, a¢) = r(s¢,a;) + V(S¢41)

Stochastic dynamics: Q(s¢,a;) = r(s¢,a¢) +10g Es, ., ~p(sii1si,a:) [€XP(V (S¢41))]

\ )
|

“optimistic” transition (not good)




Optimal policy

S (2
&) (&
) (£

By (St ; at)
Bt(St)

m(ag|s) =

T(ag|st) = exp(Q(st,ar) — Vi(st)) = exp(A¢(se, ar))

e (Derivation: exercise!)
e Natural interpretation: better actions are more probable + random tie breaking

e Approaches greedy policy as temperature decreases

s



Summary
(2 (= (@ (g
OO O
@) @ @ @

e Using auxiliary potentials and/or optimality variables, we reduced optimal
control to inference in a graphical model.

e “Solving MDP” becomes very similar to inference in HMM / MEMM / CRF.

e [he approach is quite similar to dynamic programming, value iterations, etc.

3



Vo
" PETUUM

& Carnegie Mellon University

Control via Variational Inference



/
f Which objective does inference optimize?

Bt (St, at)
Bt(st)

m(ag|s) =

m, = argmax [E [V, (s)]
m(ags;) = exp(Qi(se, ar) — Vi(se)) = exp(Ai(se, ar))

e Q: Is there a way to find an objective function by optimizing which we can
recover our inference-based policy?

e A: Yes! Let's take a look at the KL divergence between trajectory distributions.

s



(/ Which objective does inference optimize?
[the case of deterministic dynamics]

Optimal

p(T) = [P(Sl) Hp(st+1|staat)] €Xp (Z "’(St,at)>

_DKL(

3>

()llp(7))

= Erp(r)

T
log p(s1) + Z log p(st+1|st,at) + r(se,ar)) —

t=1

T
logp(s1) — Z (log p(sty1]s¢, at) + log m(ag|st))




/
(/ Which objective does inference optimize?

[the case of deterministic dynamics]

T
—Dx(B(7)||Pp(7)) = Ermp(r) ZT(St,at) — log m(ay[s:)
t=1

T
- Z E(s,,a,)~p(si,a0)) [r(s¢, a;) — log m(ag|sy)]
t=1

E

E(St,at)’\’ﬁ(st,at)) [r(st, at)] + Estfvﬁ(st) [H(m(a¢|st))]

t=1



% The problem of optimism in stochastic dynamics

Deterministic dynamics: Q(s:,a¢) = r(s¢,a;) + V(s¢41)

Stochastic dynamics: Q(s;,a:) = r(st,as) + 108 Es, . | wp(sisi|ss,a:) [€XP(V (St41))]

\ )
|

“optimistic” transition (not good)

Why did this happen?

e Dichotomy between what resulted in the high reward:
was it a good policy or we just got lucky with the stochastic dynamics? /

e The optimal policy: p(at ! St, Ot:T)
“given that you obtained high reward, what was your action probability?”

e The “optimal” transition probability: p(8t+1 | Sty At, Ot:T) 7& p(8t+1 ’ St, at)
"given that you obtained high reward, what was your transition probability?” x



Control via variational inference

“given that you obtained high reward, what was your action probability
given that your transition probability did not change?”

Let's find  ¢(S1.7,a1.7)
such that it approximates p(SlzT,CLl:T \ Ol:T)

while the dynamics stays fixed to  p(si11 | S¢, at)



/
(/ Control via variational inference

let q(s1.7,a1.7) = p(s1) Ht p(St+1]st, ar)q(ag|st)

p(s1.7,a1.7|O1.7)

p(s1) p(set1lse, ar)

q(a¢[st)
q(s1.T,ar.r) (a)) (ay) (a3)

P S P S: > EEEEER
N &Y




/
(/ Control via variational inference

S (2
&) (&
) (£

Optimal Produced by a policy
T T T

p(T) = [P(Sl) HP(St+1|St,at)] exp (Z ”'(St,at)> q(7) = q(s1) Hp(St+1|St,at)Q(at|St)
t=1 t=1 t=1

logp(O1.7) = 108//P(OLT,S1:T,31:T)d81:Tda1:T

S1:T7,a1:T
— log//p(OLT,Sl:T,al:T)ZESLT,al:T;dSLTdal:T



Control via variational inference

log p(O1.17) > Erng [logp S1)

> Freg

IIMﬂ

— logp(s1)

=1

(St at)“”q

- T
ZT‘ Staat logq(at \ St)

T

E log p(s¢a1 | St,a¢)
t—1

Zlogp Sti1 | St,ay)
t—1

r(se, ar)] + H(gas | s¢))

T
Z log p(O4 | s, at)

t=1

tilogqmt &l



% Optimal policy with respect to ELBO

let gq(s1.7,a1.7) = p(s1) [ [, p(se41[se, ar)q(aelst)

log p(O1.7) > Z E(s,.a,)~q (st,a) + H(g(ag|st))]
t
base case: solve for q(ar|sr):

Q(aTlsT) = argmax ESTNCI(ST) [EaTNQ(aT|sT)[T(ST’ aT)] T H(q(aT|ST))]
= argmax Fg . ~q(sp) [EaTNCI(aTlsT)[T(ST7 ar) — log Q(aT|ST)H
minimized when g(ar|st) x exp(r(st,ar))

_exp(r(st,ar))
dlarlsr) = o e = OXP(@sr.ar) ~V(sr)  V(sy) = log [ exp(@r.ar)dar

B nq(sr) [EaTNQ(aTlsT)[T(ST’aT) — log Q(aTlsT)” = Esrnq(sr) [EaTNq(aTIST)[V(ST)”



/
{/ Optimal policy with respect to ELBO

logp(Orr) > > Es, an)~q [1(St:a¢) + H(q(ar]s;))]

q(aT|sT) — fiii&i&ii’)ig;;a = eXp(Q(ST, aT) — V(ST))

ESTN(I(ST) [EaTNq(aT|ST)[T(ST’ aT) B log q(aT|ST)H - ESTNQ(ST) [EaTNQ(aTlsT)[V(ST)]]

Q(at|st) — arg max Estrvq(st) —Eatrvq(at|st) :T(Sh at) + ESt+1Np(St+1|St,at)[V(St—l—l)]] + H(q(atlst))]

= argmax FEg, q(s,) -Eatmq(at|st) Q(st,ar)] + H(Q(at|st))]

= argmax FEg, q(s,) -Eatwq(adst) Q(st,ar) — log Q(at’St)H

minimized when g(a|s;) o< exp(Q(s¢, at)) Qi(st,ar) = r(s¢,ar) + E[(Vig1(Se41)]

Vi(sy) = log/exp(Qt(st,at))dat f

reqular Bellman backup
q(at|sy) = exp(Q(s¢,ar) — V(sy)) not optimistic



/
{/ Summary

@ @ &
p(Sl;T, al:T‘OliT) @ @ @
S1 So 53 wREERE
q(s1.7,a1.T) = = .
S1 So 53 wREmERE

Vt(st) — 10g/eXP(Qt(St> at))dat Qi(st,ar) = r(se,ar) + E|(Vig1(se41)]
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