

Probabilistic Graphical Models

01010001 Ω

Case Study of Deep Generative Models: Text Generation

Lecture 15, March 4, 2020

Reading: see class homepage

• Generates natural language from input data or machine representations

• Generates natural language from input data or machine representations

• Spans a broad set of natural language processing (NLP) tasks:

<u>Task</u>	Input X	Output Y (Text)
Chatbot / Dialog System	Utterance	Response
Machine Translation	English	Chinese
Summarization	Document	Short paragraph
Description Generation	Structured data	Description
Captioning	Image/video	Description
Speech Recognition	Speech	Transcript

table courtesy: Neubig

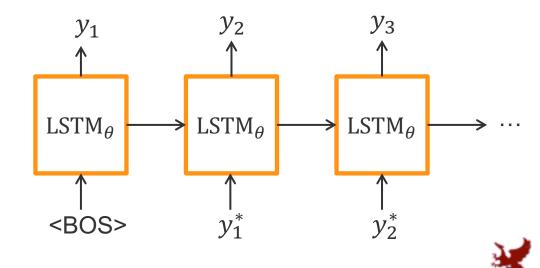
- Generating human-like, grammatical, and readable text
 - I.e., generating natural language
- Generating text that contains desired information inferred from inputs
 - Machine translation
 - Source sentence --> target sentence w/ the same meaning
 - Data description
 - Table --> data report describing the table
 - Attribute control
 - Sentiment: positive --> ``I like this restaurant''
 - Conversation control
 - Control conversation strategy and topic

- Generating human-like, grammatical, and readable text
 - I.e., generating natural language
- Generating text that contains desired information inferred from inputs
 - Machine translation
 - Source sentence --> target sentence w/ the same meaning
 - Data description
 - Table --> data report describing the table
 - Attribute control
 - Sentiment: positive --> ``I like this restaurant''
 - Conversation control
 - Control conversation strategy and topic

Common Model for Text Generation: Language Model

- Calculates the probability of a sentence:
 - Sentence: $\mathbf{y} = (y_1, y_2, \dots, y_T)$

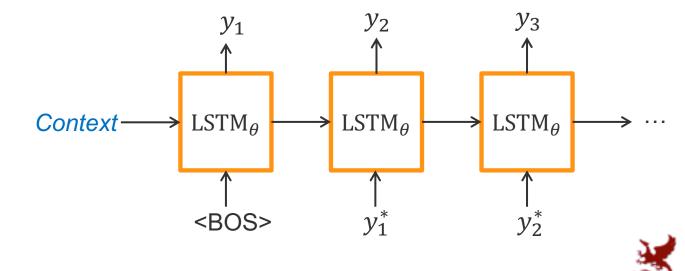
$$p_{\theta}(\boldsymbol{y}) = \prod_{t} p_{\theta}(y_t \mid \boldsymbol{y}_{1:t-1})$$



Common Model for Text Generation: Conditional Language Model

- Calculates the probability of a sentence:
 - Sentence: $\mathbf{y} = (y_1, y_2, \dots, y_T)$, Context: \mathbf{x}

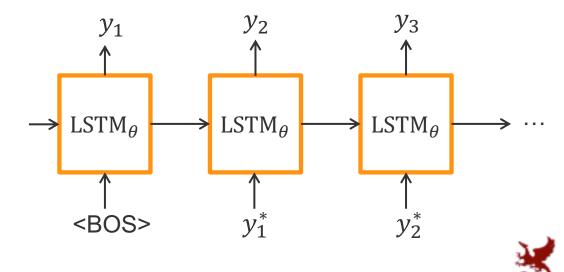
$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) = \prod_{t} p_{\theta}(y_t \mid \mathbf{y}_{1:t-1}, \mathbf{x})$$



Common Learning Algorithm: Maximum Likelihood Estimation (MLE)

- Training
 - Maximize data log-likelihood
 - Given ground-truth data $y^* = (y_1^*, y_2^* \dots, y_{T^*}^*)$

$$\mathcal{L}_{\text{MLE}}(\boldsymbol{\theta}) = \log p_{\boldsymbol{\theta}}(\boldsymbol{y}^* \mid \boldsymbol{x}) = \log \prod_{t} p_{\boldsymbol{\theta}}(\boldsymbol{y}^*_t \mid \boldsymbol{y}^*_{1:t-1}, \boldsymbol{x})$$



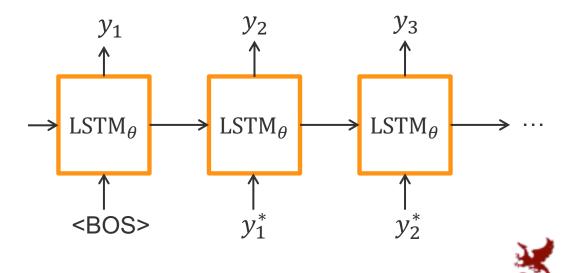
Common Learning Algorithm: Maximum Likelihood Estimation (MLE)

- Training
 - Maximize data log-likelihood
 - Given ground-truth data $\mathbf{y}^* = (y_1^*, y_2^* \dots, y_{T^*}^*)$

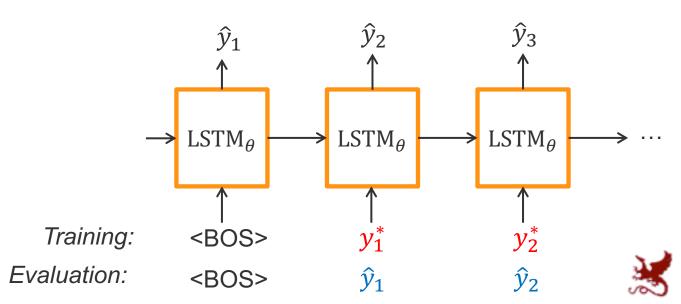
$$\mathcal{L}_{\text{MLE}}(\boldsymbol{\theta}) = \log p_{\boldsymbol{\theta}}(\boldsymbol{y}^* \mid \boldsymbol{x}) = \log \prod_{t} p_{\boldsymbol{\theta}}(\boldsymbol{y}^*_t \mid \boldsymbol{y}^*_{1:t-1}, \boldsymbol{x})$$

- Evaluation
 - Task-specific metrics
 - BLEU for machine translation
 - ROUGE for summarization

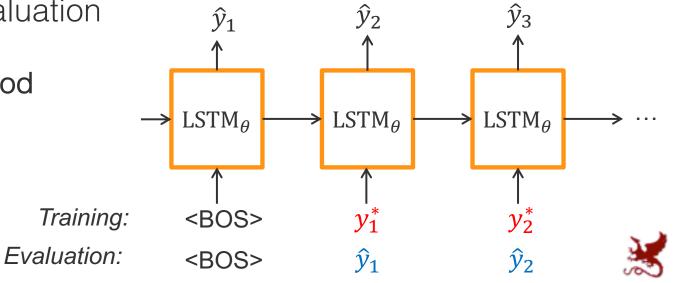
• • • • • •



- Exposure bias [Ranzato et al., 2015]
 - Training: predict next token given the previous ground-truth sequence
 - Evaluation: predict next token given the previous sequence that are generated by the model itself



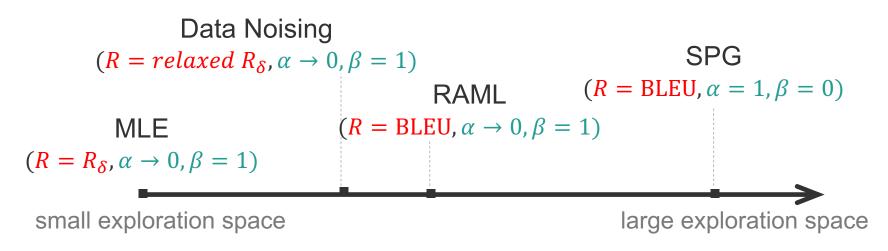
- Exposure bias [Ranzato et al., 2015]
 - Training: predict next token given the previous ground-truth sequence
 - Evaluation: predict next token given the previous sequence that are generated by the model itself
- Mismatch between training & evaluation criteria
 - Train to maximize data log-likelihood
 - Evaluate with, e.g., BLEU



• Reinforcement learning [e.g., Ranzato et al., 2015]

• Maximize expected reward under the model distribution $\max_{\theta} \mathbb{E}_{p_{\theta}(y)} [R(y, y^*)]$

- Reinforcement learning [e.g., Ranzato et al., 2015]
 - Maximize expected reward under the model distribution $\max_{\theta} \mathbb{E}_{p_{\theta}(y)} [R(y, y^{*})]$
 - Problems
 - Extremely large sequence space ($\sim 50000^{50}$)
 - High variance and poor exploration efficiency during training
- Recent work for more practical training
 - Reward Augmented Maximum Likelihood (RAML) [Norouzi et al., 16]
 - Add reward-aware perturbation to the MLE data examples
 - Softmax Policy Gradient (SPG) [Ding & Soricut, 17]
 - Use reward distribution for effective sampling and estimating policy gradient
 - Data noising [Xie et al., 17]
 - Add random noise to data



- Establish a unified perspective of the diverse learning algorithms
- All these algorithms are special instances of a generalized **entropy regularized policy optimization** (ERPO) framework
- The only difference is the choice of reward and the values of some hyperparameters
- The unified view inspires new, improved algorithms

[Tan, Hu, et al., 2018] Connecting the Dots Between MLE and RL for Sequence Generation

Generalized Entropy Regularized Policy Optimization (ERPO)

- Consider a sequence generation model $p_{\theta}(y \mid x)$
- Given a reward function $R(y|y^*) \in \mathbb{R}$, e.g., $BLEU(y, y^*)$
- Assume a variational distribution q(y|x)
- The generalized ERPO objective:

 $\mathcal{L}(q, \boldsymbol{\theta}) = \mathbb{E}_q[R(\boldsymbol{y}|\boldsymbol{y}^*)] - \alpha \operatorname{KL}(q(\boldsymbol{y}|\boldsymbol{x})|| p_{\boldsymbol{\theta}}(\boldsymbol{y}|\boldsymbol{x})) + \beta H(q)$

- Impose supervision R on q
- The KL divergence enforces model $p_{ heta}$ to stay close to q
- Additional entropy regularizer on q
- The objective is a generalization of, or closely related to, many popular RL algorithms
 - Relative entropy policy search [Peters et al., 10], Trust Region Policy Optimization [Schulman et al., 15], maximum entropy policy gradient [Ziebart., 10], and others [Haarnoja et al., 17, The et al., 17, etc]

[Tan, Hu, et al., 2018] Connecting the Dots Between MLE and RL for Sequence Generation

Generalized Entropy Regularized Policy Optimization (ERPO)

• The generalized ERPO objective:

 $\mathcal{L}(q, \boldsymbol{\theta}) = \mathbb{E}_q[R(\boldsymbol{y}|\boldsymbol{y}^*)] - \alpha \operatorname{KL}(q(\boldsymbol{y}|\boldsymbol{x})|| p_{\boldsymbol{\theta}}(\boldsymbol{y}|\boldsymbol{x})) + \beta H(q)$

• Solve with an EM-style procedure. At iteration n

• E-step
$$q^{n+1}(\boldsymbol{y}|\boldsymbol{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\boldsymbol{y}|\boldsymbol{x}) + R(\boldsymbol{y}|\boldsymbol{y}^*)}{\alpha + \beta}\right\}$$

• M-step $\boldsymbol{\theta}^{n+1} = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{q^{n+1}}[\log p_{\boldsymbol{\theta}}(\boldsymbol{y}|\boldsymbol{x})]$

• Some intuitive interpretations:

 $\circ \quad \alpha \to \infty$, then $q^{n+1} = p_{\theta}^n$ (i.e., minimal KL divergence)

- $\circ \quad \beta \to \infty$, then q^{n+1} is a uniform distribution (i.e., maximal entropy)
- M-step is to maximize the log-likelihood of samples from q^{n+1}

[Tan, Hu, et al., 2018] Connecting the Dots Between MLE and RL for Sequence Generation

• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

• M-step $\boldsymbol{\theta}^{n+1} = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{q^{n+1}}[\log p_{\boldsymbol{\theta}}(\boldsymbol{y}|\boldsymbol{x})]$

• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

• M-step $\theta^{n+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q^{n+1}}[\log p_{\theta}(y|x)]$

• Let
$$R = R_{\delta}(y|y^*) := \begin{cases} 1 & \text{if } y = y^* \\ -\infty & \text{otherwise} \end{cases}$$

 $\alpha \to 0, \beta = 1$

• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

• M-step $\theta^{n+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q^{n+1}}[\log p_{\theta}(y|x)]$

• Let
$$R = R_{\delta}(\mathbf{y}|\mathbf{y}^*) := \begin{cases} 1 & \text{if } \mathbf{y} = \mathbf{y}^* \\ -\infty & \text{otherwise} \end{cases}$$

 $\alpha \to 0, \beta = 1$

• Then we have

• E-step
$$q(\mathbf{y}|\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{y} = \mathbf{y}^* \\ 0 & \text{otherwise} \end{cases}$$

- ----> empirical data distribution
- M-step $\boldsymbol{\theta}^{n+1} = \operatorname{argmax}_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\boldsymbol{y}^* | \boldsymbol{x})$
- ----> maximum likelihood estimation

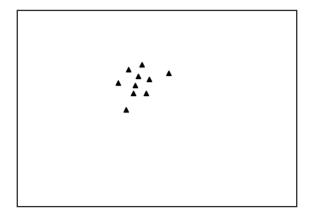
• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

• M-step $\theta^{n+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q^{n+1}}[\log p_{\theta}(y|x)]$

• Let
$$R = R_{\delta}(y|y^*) := \begin{cases} 1 & \text{if } y = y^* \\ -\infty & \text{otherwise} \end{cases}$$

 $\alpha \to 0, \beta = 1$

- MLE is a policy optimization with a $\delta\text{-function}$ reward
 - Make void any exploration beyond the training data, and thus the exposure bias
 - The regular shape of exploration space makes the implementation of the algorithm very simple and efficient



exploration space of MLE

• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

- M-step $\theta^{n+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q^{n+1}}[\log p_{\theta}(y|x)]$
- Let R: a common reward such as $BLEU(y, y^*)$

 $\alpha \rightarrow 0, \beta = 1$

[Norouzi et al.,16] Reward Augmented Maximum Likelihood

• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

- M-step $\theta^{n+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q^{n+1}}[\log p_{\theta}(\boldsymbol{y}|\boldsymbol{x})]$
- Let R: a common reward such as $BLEU(y, y^*)$

$$\alpha \rightarrow 0, \beta = 1$$

- Then we have
 - E-step $q(y|x) \propto \exp\{R(y, y^*)\}$ ---> exponentiated reward distribution
 - M-step $\max_{\theta} \mathbb{E}_q[\log p_{\theta}(\mathbf{y}|\mathbf{x})] \longrightarrow Reward augmented maximum likelihood (RAML)$

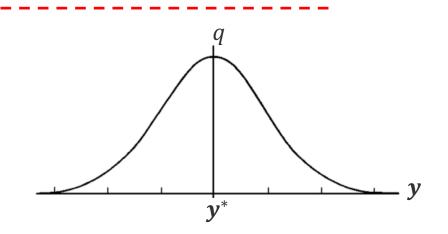
[Norouzi et al.,16] Reward Augmented Maximum Likelihood

• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

- M-step $\theta^{n+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q^{n+1}}[\log p_{\theta}(\boldsymbol{y}|\boldsymbol{x})]$
- Let R: a common reward such as BLEU(y, y*)

$$\alpha \rightarrow 0, \beta = 1$$

• Then we have



- E-step $q(y|x) \propto \exp\{R(y, y^*)\}$ ---> exponentiated reward distribution
- M-step $\max_{\theta} \mathbb{E}_q[\log p_{\theta}(\mathbf{y}|\mathbf{x})] \longrightarrow Reward augmented maximum likelihood (RAML)$

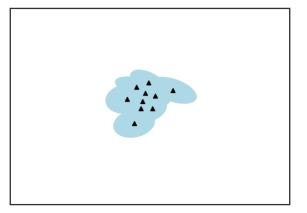
[Norouzi et al.,16] Reward Augmented Maximum Likelihood

• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

- M-step $\theta^{n+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q^{n+1}}[\log p_{\theta}(\boldsymbol{y}|\boldsymbol{x})]$
- Let R: a common reward such as BLEU(y, y*)

 $\alpha \rightarrow 0, \beta = 1$

- Compared to MLE, RAML uses a task dependent reward
 - More smooth than R_{δ}
 - Permit a larger exploration space surrounding the training data
 - $\circ \quad \alpha \rightarrow 0$ ignores the model distribution for exploration



exploration space of RAML

SPG as a Special Case of ERPO

• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

- M-step $\theta^{n+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q^{n+1}}[\log p_{\theta}(y|x)]$
- Let R: a common reward such as $BLEU(y, y^*)$

 $\alpha = 1, \beta = 0$

[Ding & Soricut, 17] Cold-Start Reinforcement Learning with Softmax Policy Gradient

SPG as a Special Case of ERPO

• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

- M-step $\theta^{n+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q^{n+1}}[\log p_{\theta}(y|x)]$
- Let R: a common reward such as $BLEU(y, y^*)$

 $\alpha = 1, \beta = 0$

- Then we have
 - E-step $q(\mathbf{y}|\mathbf{x}) \propto p_{\theta}(\mathbf{y}|\mathbf{x}) \exp\{R(\mathbf{y}, \mathbf{y}^*)\}$
 - M-step $\max_{\theta} \mathbb{E}_q[\log p_{\theta}(\mathbf{y}|\mathbf{x})]$

[Ding & Soricut, 17] Cold-Start Reinforcement Learning with Softmax Policy Gradient

----> Softmax Policy Gradient (SPG)

SPG as a Special Case of ERPO

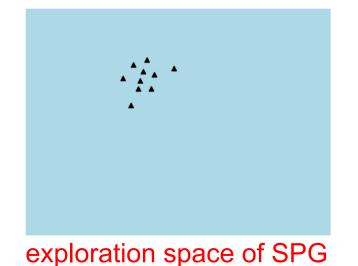
• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

- M-step $\theta^{n+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q^{n+1}}[\log p_{\theta}(\boldsymbol{y}|\boldsymbol{x})]$
- Let R: a common reward such as $BLEU(y, y^*)$

 $\alpha = 1, \beta = 0$

- SPG uses both the model distribution and the reward for exploration
 - Largest exploration space
 - Increased learning difficulty, need more tricks during training

[Ding & Soricut, 17] Cold-Start Reinforcement Learning with Softmax Policy Gradient



Data Noising as a Special Case of ERPO

• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

• M-step $\boldsymbol{\theta}^{n+1} = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{q^{n+1}}[\log p_{\boldsymbol{\theta}}(\boldsymbol{y}|\boldsymbol{x})]$

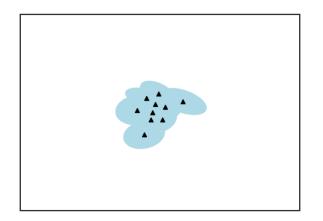
• Let $R: a \text{ locally relaxed variant of } R_{\delta}(y|y^*)$ $e.g., R'_{\delta}(y|y^*) := \begin{cases} 1 & \text{if diff}(y, y^*) = 1 \\ -\infty & \text{otherwise} \end{cases}$ \longrightarrow Randomly replace a single token with another uniformly picked token $\alpha \to 0, \beta = 1$

Data Noising as a Special Case of ERPO

• E-step
$$q^{n+1}(\mathbf{y}|\mathbf{x}) \propto \exp\left\{\frac{\alpha \log p_{\theta^n}(\mathbf{y}|\mathbf{x}) + R(\mathbf{y}|\mathbf{y}^*)}{\alpha + \beta}\right\}$$

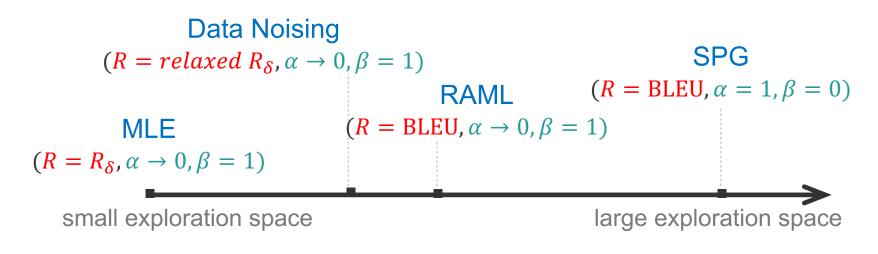
- M-step $\theta^{n+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q^{n+1}}[\log p_{\theta}(y|x)]$
- Let R: a locally relaxed variant of $R_{\delta}(y|y^*)$ e.g., $R'_{\delta}(y|y^*) := \begin{cases} 1 & \text{if diff}(y, y^*) = 1 \\ -\infty & \text{otherwise} \end{cases}$ $\alpha \to 0, \beta = 1$

Randomly replace a
 single token with another uniformly picked token



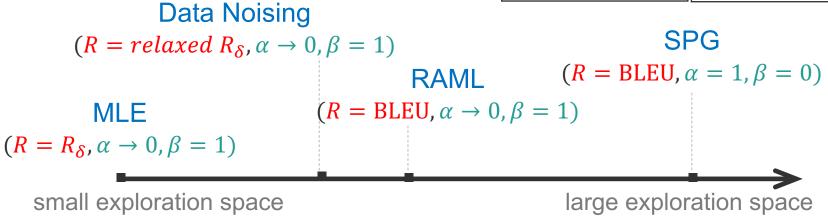
exploration space of data noising

- Data noising is similar to RAML
 - Data noising adds *random* noise, which is easy to implement
 - RAML adds *reward-aware* noise, which can be hard to implement

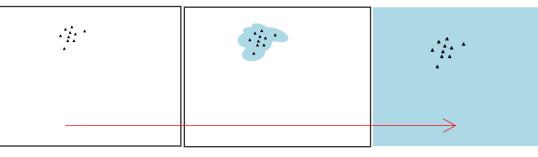


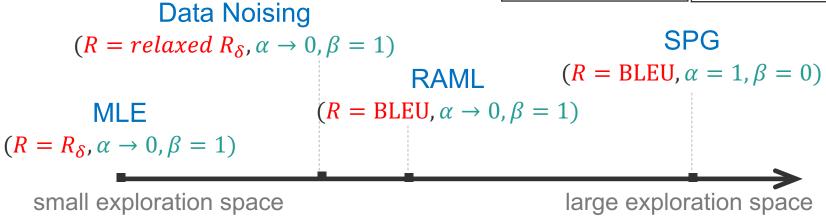
• Every algorithm corresponds to a point in the hyperparameter space





- Every algorithm corresponds to a point in the hyperparameter space
- From left to right:
 - Increasingly larger exploration space
 - Better test performance in theory
 - More difficult for training

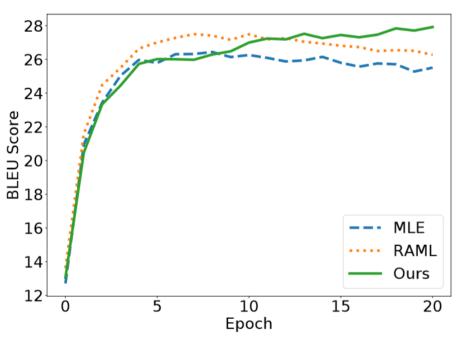




- Every algorithm corresponds to a point in the hyperparameter space
- From left to right:
 - Increasingly larger exploration space
 - Better test performance in theory
 - More difficult for training
- Idea: interpolating among the algorithms
 - Start from MLE hyperparameter values, gradually anneal to SPG hyperparameter values

• Machine translation

Model	BLEU
MLE	26.44 ± 0.18
RAML (Norouzi et al., 2016)	27.22 ± 0.14
SPG (Ding & Soricut, 2017)	26.62 ± 0.05
MIXER (Ranzato et al., 2015)	26.53 ± 0.11
Scheduled Sampling (Bengio et al., 2015)	26.76 ± 0.17
Ours	27.86 ± 0.10



• Text Summarization

Method	ROUGE-1	ROUGE-2	ROUGE-L
MLE	36.11 ± 0.21	16.39 ± 0.16	32.32 ± 0.19
RAML (Norouzi et al., 2016)	36.30 ± 0.04	16.69 ± 0.20	32.49 ± 0.17
SPG (Ding & Soricut, 2017)	36.48 ± 0.24	16.84 ± 0.26	32.79 ± 0.26
MIXER (Ranzato et al., 2015)	36.34 ± 0.23	16.61 ± 0.25	32.57 ± 0.15
Scheduled Sampling (Bengio et al., 2015)	36.59 ± 0.12	16.79 ± 0.22	32.77 ± 0.17
Ours	36.72 ± 0.29	16.99 ± 0.17	32.95 ± 0.33

- Generating human-like, grammatical, and readable text Exposure bias, criteria mismatch
 - Ο
 - A unified framework of sequence generation learning algorithms 0
 - MLE, RAML, SPG, Data Noising, Policy Gradient, ... Ο
- Generating text that contains desired information inferred from inputs
 - Machine translation 0
 - Source sentence --> target sentence w/ the same meaning
 - Data description
 - Table --> data report describing the table
 - Attribute control
 - Sentiment: positive --> ``I like this restaurant''
 - Modify sentiment from positive to negative
 - Conversation control
 - Control conversation strategy and topic

- Generating human-like, grammatical, and readable text
 Exposure bias, criteria mismatch

 - A unified framework of sequence generation learning algorithms 0
 - MLE, RAML, SPG, Data Noising, Policy Gradient, ... Ο
- Generating text that contains desired information inferred from inputs
 - Machine translation 0
 - Source sentence --> target sentence w/ the same meaning
 - Data description 0
 - Table --> data report describing the table
 - Attribute control 0
 - Sentiment: positive --> ``I like this restaurant''
 - Modify sentiment from positive to negative
 - Conversation control Ο
 - Control conversation strategy and topic

- Generating human-like, grammatical, and readable text
 Exposure bias, criteria mismatch

 - A unified framework of sequence generation learning algorithms
 - MLE, RAML, SPG, Data Noising, Policy Gradient, ... 0

 Generating text that contains desired information inferred from inputs 	#supervision data
 Machine translation Source sentence> target sentence w/ the same meaning 	10s of millions
 Data description Table> data report describing the table 	10s of 1000s
 Attribute control Sentiment: positive> ``I like this restaurant'' Modify sentiment from positive to negative 	
 Conversation control Control conversation strategy and topic 	0

Controlled generation in unsupervised settings

- Generating human-like, grammatical, and readable text
 Exposure bias, criteria mismatch

 - A unified framework of sequence generation learning algorithms
 - MLE, RAML, SPG, Data Noising, Policy Gradient, ... 0

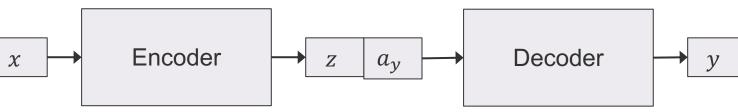
enerating text that contains desired information inferred from puts	#supervision data
Machine translation	10s of millions
Data description Table> data report describing the table	10s of 1000s
Attribute control Sentiment: positive> ``I like this restaurant'' Modify sentiment from positive to negative	
Conversation control Control conversation strategy and topic	0

- Sentence-level control
 - Text attribute transfer (style transfer) [Hu et al., 2017; Yang et al., 2018]
 - Text content manipulation [Wang, Hu et al., 2019]
- Conversation-level control
 - Target-guided Open-domain Conversation

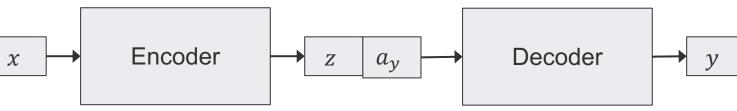
- Sentence-level control
 - Text attribute transfer (style transfer) [Hu et al., 2017; Yang et al., 2018]
 - Text content manipulation [Wang, Hu et al., 2019]
- Conversation-level control
 - Target-guided Open-domain Conversation

- Modify a given sentence to
 - Have desired attribute values
 - While keeping all other aspects unchanged
- Attribute: sentiment, tense, voice, gender, ...
- E.g., transfer sentiment from negative to positive:
 - ``It was super dry and had a weird taste to the entire slice .''
 - ``It was super fresh and had a delicious taste to the entire slice .''
- Applications:
 - Personalized article writing, conversation systems, authorship obfuscation

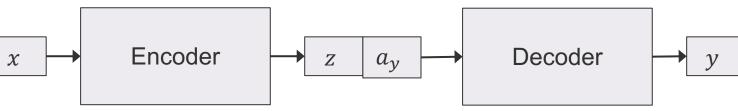
- Original sentence x, original attribute a_x
- Target sentence y, target attribute a_y
- Task: $(x, a_y) \rightarrow y$
 - **y** has the desired attribute a_y
 - y keeps all attribute-independent properties of x
- Usually, only have pairs of (x, a_x) , but no $((x, a_x), (y, a_y))$ for training
 - E.g., two sets of sentences: one with positive sentiment, the other with negative



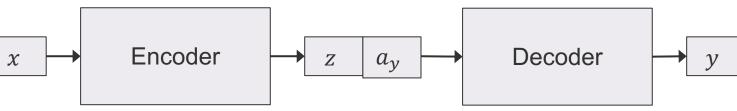
- **y** has the desired attribute a_y
- y keeps all attribute-independent properties of x
- Model $p_{\theta}(y|x, a_y)$



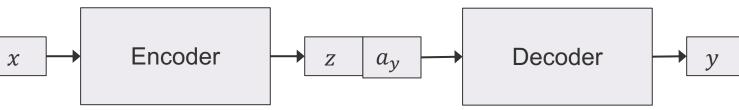
- **y** has the desired attribute a_y
- y keeps all attribute-independent properties of x
- Model $p_{\theta}(y|x, a_y)$
- Key intuition for learning:
 - Decompose the task into competitive sub-objectives
 - Use direct supervision for each of the sub-objectives



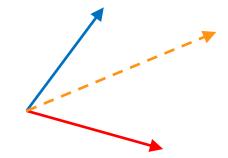
- **y** has the desired attribute a_y
- y keeps all attribute-independent properties of x
- Model $p_{\theta}(y|x, a_y)$
- Key intuition for learning:
 - Decompose the task into competitive sub-objectives
 - Use direct supervision for each of the sub-objectives
- Auto-encoding loss: $(x, a_x) \rightarrow x$



- **y** has the desired attribute a_y
- y keeps all attribute-independent properties of x
- Model $p_{\theta}(y|x, a_y)$
- Key intuition for learning:
 - Decompose the task into competitive sub-objectives
 - Use direct supervision for each of the sub-objectives
- Auto-encoding loss: $(x, a_x) \rightarrow x$
- Classification loss: $\hat{y} \sim p_{\theta}(y|x, a_y), f(\hat{y}) \rightarrow a_y$
 - \circ where *f* is a pre-trained attribute classifier



- **y** has the desired attribute a_y
- y keeps all attribute-independent properties of x
- Model $p_{\theta}(y|x, a_y)$
- Key intuition for learning:
 - Decompose the task into competitive sub-objectives
 - Use direct supervision for each of the sub-objectives
- Auto-encoding loss: $(x, a_x) \rightarrow x$
- Classification loss: $\hat{y} \sim p_{\theta}(y|x, a_y), f(\hat{y}) \rightarrow a_y$
 - \circ where *f* is a pre-trained attribute classifier
- The above two losses are competitive; minimize jointly to avoid collapse



- Performance on sentiment:
 - Accuracy: 92%
 - BLEU against input sentence: 54

- Performance on sentiment:
 - Accuracy: 92%
 - BLEU against input sentence: 54
- Problem:
 - Language quality is often not good
 - LM perplexity: 239.8

Original: if i could give them a zero star review i would ! **Output:** if i lite give them a sweetheart star review i would !

Original: uncle george is very friendly to each guest **Output:** uncle george is very lackluster to each guest

Original: the food is fresh and the environment is good **Output:** the food is **atrocious** and the environment is **atrocious**

- Performance on sentiment:
 - Accuracy: 92%
 - BLEU against input sentence: 54
- Problem:
 - Language quality is often not good
 - LM perplexity: 239.8
- Improvement:
 - Use an LM as a direct supervision!
 - $\hat{\boldsymbol{y}} \sim p_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{a}_{\boldsymbol{y}}), \max_{\theta} LM(\hat{\boldsymbol{y}})$
 - Accuracy: 91%
 - BLEU against input sentence: 57
 - LM perplexity: 60.9

Original: if i could give them a zero star review i would ! **Output:** if i lite give them a sweetheart star review i would !

Original: uncle george is very friendly to each guest **Output:** uncle george is very **lackluster** to each guest

Original: the food is fresh and the environment is good **Output:** the food is **atrocious** and the environment is **atrocious**

[Yang et al., 18] Unsupervised text style transfer using language models as discriminators

- Performance on sentiment:
 - Accuracy: 92%
 - BLEU against input sentence: 54
- Problem:
 - Language quality is often not good
 - LM perplexity: 239.8
- Improvement:
 - Use an LM as a direct supervision!
 - $\hat{\boldsymbol{y}} \sim p_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{a}_{\boldsymbol{y}}), \max_{\theta} LM(\hat{\boldsymbol{y}})$
 - Accuracy: 91%
 - BLEU against input sentence: 57
 - LM perplexity: 60.9

Original: if i could give them a zero star review i would !
Output: if i lite give them a sweetheart star review i would !
+ LM: if i can give them a great star review i would !

Original: uncle george is very friendly to each guest Output: uncle george is very lackluster to each guest + LM: uncle george is very rude to each guest

Original: the food is fresh and the environment is good
Output: the food is atrocious and the environment is atrocious
+ LM: the food is bland and the environment is bad .

[Yang et al., 18] Unsupervised text style transfer using language models as discriminators

- Sentence-level control
 - Text attribute transfer (style transfer) [Hu et al., 2017; Yang et al., 2018]
 - Text content manipulation [Wang, Hu et al., 2019]
- Conversation-level control
 - Target-guided Open-domain Conversation

Key idea:

- Decompose the task into competitive sub-objectives
- Use direct supervision for each of the sub-objectives

- Sentence-level control
 - Text attribute transfer (style transfer) [Hu et al., 2017; Yang et al., 2018]
 - Text content manipulation [Wang, Hu et al., 2019]
- Conversation-level control
 - Target-guided Open-domain Conversation

Key idea:

- Decompose the task into competitive sub-objectives
- Use direct supervision for each of the sub-objectives

- Generate a sentence to describe content in a given data record
- But language is rich with variation -- there are diverse possible ways of saying the same content (writing style):
 - word choice, expressions, transitions, tones, ...

Content Record	PLAYER LeBron_James	PT 32	RB 4	AS 7	PLAYER Kyrie_Irving	PT 20				
Reference Sentence	Jrue_Holiday led while Goran_Dra rebounds .		-	-						
Output	LeBron_James l 4 rebounds , whi					and				

Text Content Manipulation

- Generate a sentence to describe content in a given data record
- But language is rich with variation -- there are diverse possible ways of saying the same content (writing style):
 - word choice, expressions, transitions, tones, ...
- We want to control the **writing style**: use the writing style of a reference sentence

Content Record	PLAYER LeBron_James	PT 32	RB 4	AS 7	PLAYER Kyrie_Irving	PT 20				
Reference Sentence	Jrue_Holiday led while Goran_Dra rebounds .		-	-						
Output	LeBron_James l 4 rebounds , whi					and				

Content x	PLAYER Gerald_Henderson	PTS 17	FGM 6	FGA 13	FG3M 1	FG3A 2	FTM 4	FTA 4	AST 5		
Reference \mathbf{y}'	Kawhi_Leonard also 5 assists and 5 rebou		olid offe	nsive gar	ne , scorin	g 16 point	s (7 - 13	FG , 0 -	1 3Pt, 2	- 5 FT) a	nd adding
Rule-based	Gerald_Henderson also had a solid offensive game, scoring 17 points (6 - 13 FG, 1 - 2 3Pt, 4 - 4 FT) and adding 5 assists and 5 rebounds.										
AdvST	Gerald_Henderson also had a solid offensive game, scoring 13 points (13 - 13 FG, 2 - 2 3Pt, 4 - 4 FT) and adding 5 assists and 5 rebounds.										
Ours w/o Cover.	urs w/o Cover. Gerald_Henderson also had a solid offensive game, scoring 17 points (6 - 13 FG, 1 - 2 3Pt, 4 - 4 FT) and adding 5 assists and 5 rebounds.) and			
Ours	Gerald_Henderson a adding 5 assists .	lso had	a solid o	ffensive	game, scol	ring 17 po	ints (6 -	13 FG ,	1 - 2 3Pt	, 4 - 4 FT) and

Text Content Manipulation - Results

		Cor	Style		
	Model	Precision %	Recall%	BLEU	
1	AttnCopy-S2S	88.71±2.45	60.64±1.31	39.15±5.48	
	Rule-based	62.63	63.64	100	
2	MAST	$33.15 {\pm} 0.78$	$31.09 {\pm} 0.63$	95.29±2.53	
	AdvST	$66.51 {\pm} 1.08$	$56.03 {\pm} 0.56$	72.22±1.47	
3	Ours w/o Cover.	75.61±1.03	62.93±0.53	$75.09{\pm}2.17$	
	Ours	78.31 ± 0.94	65.64±0.47	$80.83{\pm}1.89$	

- Sentence-level control
 - Text attribute transfer (style transfer) [Hu et al., 2017; Yang et al., 2018]
 - Text content manipulation [Wang, Hu et al., 2019]
- Conversation-level control
 - Target-guided Open-domain Conversation

Key idea:

- Decompose the task into competitive sub-objectives
- Use direct supervision for each of the sub-objectives

- Sentence-level control
 - Text attribute transfer (style transfer) [Hu et al., 2017; Yang et al., 2018]
 - Text content manipulation [Wang, Hu et al., 2019]
- Conversation-level control
 - Target-guided Open-domain Conversation

Key idea:

- Decompose the task into competitive sub-objectives
- Use direct supervision for each of the sub-objectives

- Task-oriented dialog:
 - Address a specific task, e.g., booking a flight
 - Close domain
- Open-domain chit-chat:
 - Improve user engagement
 - Random conversation, hard to control
- Target-guided conversation:
 - Open-domain conversation
 - Controlled conversation strategy to reach a *desired topic* in the end of conversation
 - Applications:
 - Bridges task-oriented dialog and open-domain chit-chat
 - Conversational recommender system, education, psychotherapy

• Two goals:

- Starting from any topic, reach a desired topic in the end of conversation
- Natural conversation: smooth transition

Target: e-books

Agent : hi how are you doing Human : not so good . i am really tired Agent : oh i'm sorry to hear Human : i have a lot of work to do Agent : what kind was it ? Human : i am writing a chatbot program Agent : interesting . i read about coding from a book Human: really Agent : i prefer e-books over paperback book

• Two goals:

- Starting from any topic, reach a desired topic in the end of conversation
- Natural conversation: smooth transition

Target: e-books

Agent : hi how are you doingtiredsorryworkworkworkprogramcoding, booke-booksAgent : i prefer e-books over paperback book

• Two goals:

- Starting from any topic, reach a desired topic in the end of conversation
- Natural conversation: smooth transition

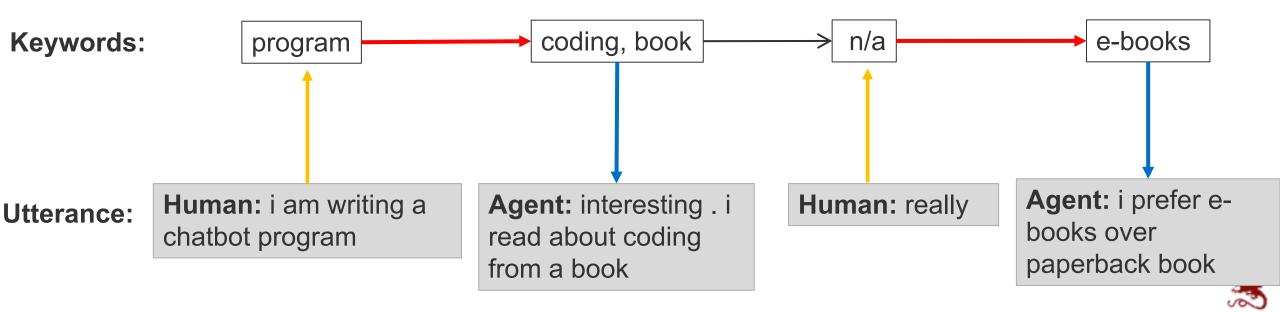
Target: e-books

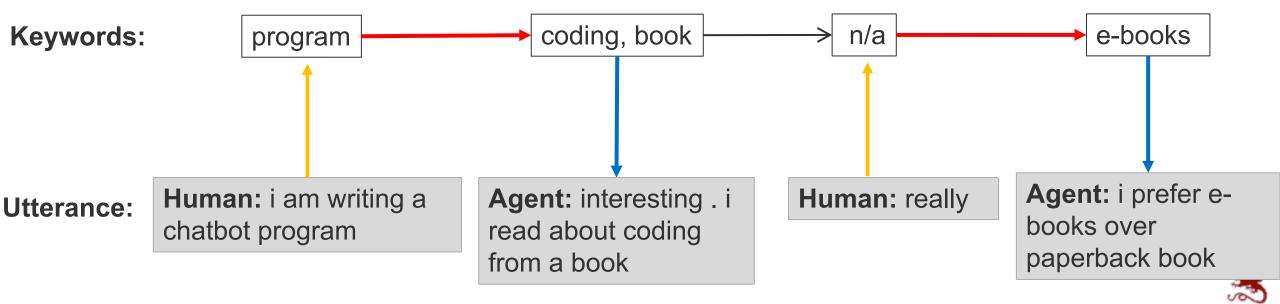
Agent : hi how are you doingObjecttiredHuman : not so good . i am really tiredsorryAgent : oh i'm sorry to hearworkHuman : i have a lot of work to doworkAgent : what kind was it ?programHuman : i am writing a chatbot programcoding, bookAgent : interesting . i read about coding from a book

e-books Agent : i prefer e-books over paperback book

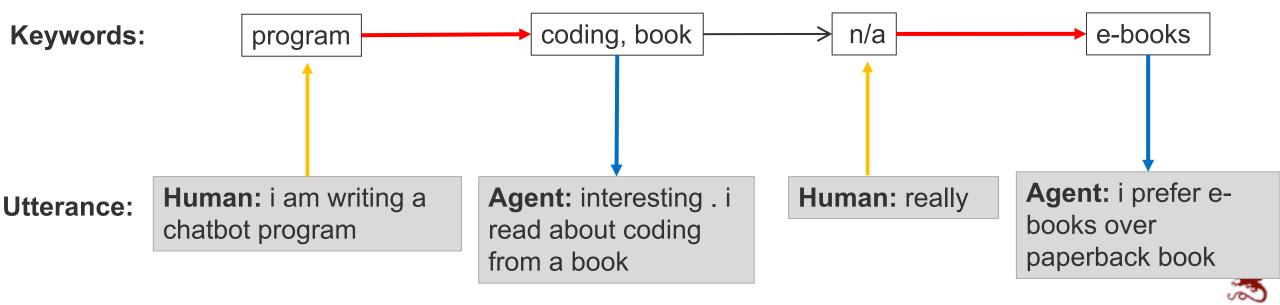
Challenge: No supervised data for the task

- **Solution:** Use competitive subobjectives and partial supervision
- Natural conversation: rich chit-chat data to learn smooth single-turn transition
- Reaching desired target: rulebased multi-turn planning

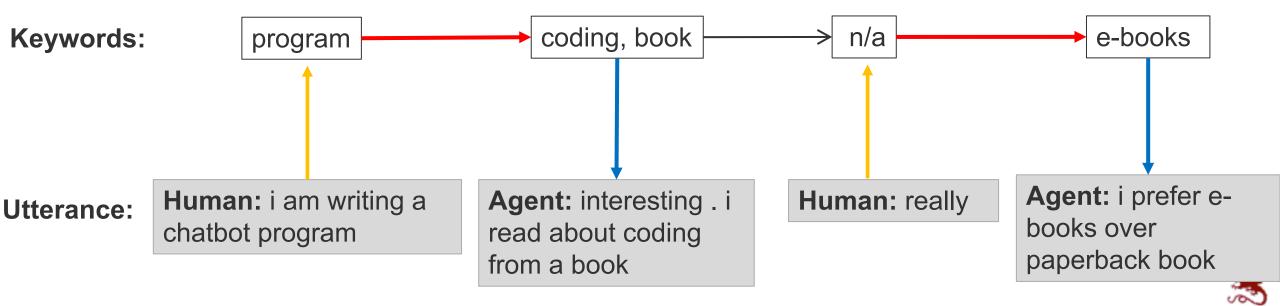




- - keyword conditional response retrieval



- ---- keyword conditional response retrieval
- → learned kernel-based topic transition + target-guided rule:
 - (1) transit to keywords that are close in the word embedding space smooth
 - (2) next keywords must get closer to the target keyword target-guided
 - Tune relative weight of (1) and (2) to control aggressiveness



Target: dance

Agent : hi how is it going with you Human : fine . I'm playing sports Agent : i play basketball . u play ? Human : yeah i also like basketball . Agent : you like rap music ? i listen to a lot of rap music Human : no i like classic music Agent : its a taylor swift song Human : taylor swift is a great singer Agent : sing to me , what are you going to sing Human : i know nothing about singing Agent : oh i think i can dance lol

Target: listen

Agent : hi ! how are you ? i am very exciting about my new job ! Human : fine . what is your new job ? Agent : that sounds exciting . Human : i like read books Agent : what kind of books do you read ? Human : i read comics Agent : i do not have tv Human : watch anime is fun Agent : what position d you play ? Human : i play a lot of sports Agent : oh really ? what kind of music . i listen to classical

- Sentence-level control
 - Text attribute transfer (style transfer) [Hu et al., 2017; Yang et al., 2018]
 - Text content manipulation [Wang, Hu et al., 2019]
- Conversation-level control
 - Target-guided Open-domain Conversation

Key idea:

- Decompose the task into competitive sub-objectives
- Use direct supervision for each of the sub-objectives

- Generating human-like, grammatical, and readable text
 - I.e., generating natural language
- Generating text that contains desired information inferred from inputs
 - Machine translation
 - Source sentence --> target sentence w/ the same meaning
 - Data description
 - Table --> data report describing the table
 - Attribute control
 - Sentiment: positive --> ``I like this restaurant''
 - Conversation control
 - Control conversation strategy and topic

