

Probabilistic Graphical Models

01010001 Ω

Deep Generative Models - II

Eric Xing Lecture 13, February 26, 2020

Reading: see class homepage

- Generative Adversarial Networks (GANs)
 - GANs Progress
 - Vanilla GAN, Wasserstein GAN, Progressive GAN, BigGAN
- Normalizing Flow (NF)
 - Basic Concepts
 - GLOW
- Integrating Domain Knowledge into Deep Learning

- Generative Adversarial Networks (GANs)
 - GANs Progress
 - Vanilla GAN, Wasserstein GAN, Progressive GAN, BigGAN
- Normalizing Flow (NF)
 - Basic Concepts
 - GLOW
- Integrating Domain Knowledge into Deep Learning

Figure courtesy: Ian Goodfellow

Recap: Generative Adversarial Nets (GANs)

- Generative model $\mathbf{x} = G_{\theta}(\mathbf{z}), \ \mathbf{z} \sim p(\mathbf{z})$
 - Map noise variable *z* to data space *x*
 - Define an implicit distribution over \mathbf{x} : $p_{g_{\theta}}(\mathbf{x})$
 - a stochastic process to simulate data x
 - Intractable to evaluate likelihood
- Discriminator $D_{\phi}(\mathbf{x})$
 - Output the probability that x came from the data rather than the generator

Recap: Generative Adversarial Nets (GANs)

- Learning
 - A minimax game between the generator and the discriminator
 - Train *D* to maximize the probability of assigning the correct label to both training examples and generated samples
 - Train G to fool the discriminator

$$\max_{D} \mathcal{L}_{D} = \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})} \left[\log D(\boldsymbol{x}) \right] + \mathbb{E}_{\boldsymbol{x} \sim G(\boldsymbol{z}), \boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log(1 - D(\boldsymbol{x})) \right]$$
$$\min_{G} \mathcal{L}_{G} = \mathbb{E}_{\boldsymbol{x} \sim G(\boldsymbol{z}), \boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log(1 - D(\boldsymbol{x})) \right].$$

- [Goodfellow et al., 2014] $\min_{\theta} JSD(P_{data} || P_{g_{\theta}})$
- [Hu et al., 2017] $\min_{\theta} \operatorname{KL}(P_{\theta} || Q)$

• If our data are on a low-dimensional manifold of a high dimensional space, the model's manifold and the true data manifold can have a negligible intersection in practice

Wasserstein GAN (WGAN)

- If our data are on a low-dimensional manifold of a high dimensional space, the model's manifold and the true data manifold can have a negligible intersection in practice
- KL divergence is undefined or infinite
- The loss function and gradients may not be continuous and well behaved

Wasserstein GAN (WGAN)

- If our data are on a low-dimensional manifold of a high dimensional space, the model's manifold and the true data manifold can have a negligible intersection in practice
- KL divergence is undefined or infinite
- The loss function and gradients may not be continuous and well behaved
- The Wasserstein Distance is well defined
 - Earth Mover's Distance
 - Minimum transportation cost for making one pile of dirt in the shape of one probability distribution to the shape of the other distribution

Wasserstein GAN (WGAN)

• Objective

$$W(p_{data}, p_g) = \frac{1}{K} \sup_{||D||_L \le K} \mathbb{E}_{x \sim p_{data}} [D(x)] - \mathbb{E}_{x \sim p_g} [D(x)]$$

- $||D||_L \leq K$: K- Lipschitz continuous
- Use gradient-clipping to ensure *D* has the Lipschitz continuity

×

11

© Eric Xing @ CMU, 2005-2020

[Karras et al., 2018]

[Karras et al., 2018]

[Brock et al., 2018]

• GANs benefit dramatically from scaling

[Brock et al., 2018]

- GANs benefit dramatically from scaling
- 2x 4x more parameters
- 8x larger batch size
- Simple architecture changes that improve scalability

© Eric Xing @ CMU, 2005-2020

- GANs benefit dramatically from scaling
- 2x 4x more parameters
- 8x larger batch size
- Simple architecture changes that improve scalability

GANs benefit dramatically from scaling

[Brock et al., 2018]

- Generative Adversarial Networks (GANs)
 - GANs Progress
 - Vanilla GAN, Wasserstein GAN, Progressive GAN, BigGAN
- Normalizing Flow (NF)
 - Basic Concepts
 - GLOW
- Integrating Domain Knowledge into Deep Learning

$$\begin{aligned} \mathbf{z} &\sim p(\mathbf{z}) \\ \mathbf{x} &= f(\mathbf{z}) \end{aligned}$$

inference: $\mathbf{z} = f^{-1}(\mathbf{x})$

Transformation function f

---→ • Invertible

- - - → •

Transformation function f

Invertible

inference: $\mathbf{z} = f^{-1}(\mathbf{x})$ density: $p(\mathbf{x}) = p(\mathbf{z}) \left| \det \frac{d\mathbf{z}}{d\mathbf{x}} \right|$ $= p(f^{-1}(\mathbf{x})) \left| \det \frac{df^{-1}}{d\mathbf{x}} \right|$

$$p(f^{-1}(\mathbf{x})) \left| \det \frac{df}{dx} \right|$$

$$\det \frac{df^{-1}}{dx}$$
 -- Jacobian determinant

inference: $\mathbf{z} = f^{-1}(\mathbf{x})$ density: $p(\mathbf{x}) = p(\mathbf{z}) \left| \det \frac{d\mathbf{z}}{d\mathbf{x}} \right|$ $= p(f^{-1}(\mathbf{x})) \left| \det \frac{df^{-1}}{d\mathbf{x}} \right|$

det
$$\frac{df^{-1}}{dx}$$
 -- Jacobian determinant

Transformation function f

---> • Invertible

→ Jacobian determinant easy to compute e.g., choose df^{-1}/dx to be a triangular matrix

Normalizing Flow (NF)

 Transforms a simple distribution into a complex one by applying a sequence of transformation functions

Transformation function f_i

inference: $\mathbf{z}_i = f_i^{-1}(\mathbf{z}_{i-1})$ ----> Invertible density: $p(\mathbf{z}_i) = p(\mathbf{z}_{i-1}) \left| \det \frac{d\mathbf{z}_{i-1}}{d\mathbf{z}_i} \right|$ ----> Jacobian determinant easy to compute

e.g., choose df_i^{-1}/dz_i to be a triangular matrix

Normalizing Flow (NF)

 Transforms a simple distribution into a complex one by applying a sequence of transformation functions

Transformation function f_i

inference: $\mathbf{z}_i = f_i^{-1}(\mathbf{z}_{i-1})$ ----> Invertible density: $p(\mathbf{z}_i) = p(\mathbf{z}_{i-1}) \left| \det \frac{d\mathbf{z}_{i-1}}{d\mathbf{z}_i} \right|$ ----> Jacobian determinant easy to compute

e.g., choose df_i^{-1}/dz_i to be a triangular matrix

training: maximizes data log-likelihood

$$\log p(\mathbf{x}) = \log p(\mathbf{z}_0) + \sum_{i=1}^{K} \log \left| \det \frac{d\mathbf{z}_{i-1}}{d\mathbf{z}_i} \right|$$

• [Kingma and Dhariwal., 2018]

One step of flow in the Glow model

• [Kingma and Dhariwal., 2018]

One step of flow in the Glow model

- Generative Adversarial Networks (GANs)
 - GANs Progress
 - Vanilla GAN, Wasserstein GAN, Progressive GAN, BigGAN
- Normalizing Flow (NF)
 - Basic Concepts
 - GLOW
- Integrating Domain Knowledge into Deep Learning

• Heavily rely on massive labeled data

- Heavily rely on massive labeled data
- Uninterpretable

- Heavily rely on massive labeled data
- Uninterpretable
- Hard to encode human intention and domain knowledge

- Learn from **concrete** examples (as DNNs do)
- Learn from abstract knowledge (definitions, logic rules, etc) [Minksy 1980; Lake et al., 2015]

- Learn from concrete examples (as DNNs do)
- Learn from abstract knowledge (definitions, logic rules, etc) [Minksy 1980; Lake et al., 2015]

Past tense of verb

regular verbs --d/-ed

© Eric Xing @ CMU, 2005-2020

https://www.technologyreview.com/s/544606/can-this-man-make-aimore-human

. . .

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
 - Conditional model, $p_{\theta}(\mathbf{x} | inputs)$
 - Generative model, e.g., *x* is an image
 - Discriminative model, e.g., *x* is a sentence label

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function $f_{\phi}(\mathbf{x}) \in \mathbb{R}$
 - Higher f_{ϕ} value, better **x** w.r.t. the knowledge

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function $f_{\phi}(\mathbf{x}) \in \mathbb{R}$
 - Higher f_{ϕ} value, better \boldsymbol{x} w.r.t. the knowledge

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function $f_{\phi}(\mathbf{x}) \in \mathbb{R}$
 - Higher f_{ϕ} value, better **x** w.r.t. the knowledge

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function $f_{\phi}(\mathbf{x}) \in \mathbb{R}$
 - Higher f_{ϕ} value, better **x** w.r.t. the knowledge
- Sentiment classification
 - "This was a terrific movie, but the director could have done better"
- Logical Rules:
 - Sentence S with structure A-but-B => sentiment of *B* dominates

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function $f_{\phi}(x) \in \mathbb{R}$
 - Higher f_{ϕ} value, better **x** w.r.t. the knowledge
- One way to impose the constraint is to maximize: $\mathbb{E}_{p_{\theta}}[f_{\phi}(x)]$

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function $f_{\phi}(\mathbf{x}) \in \mathbb{R}$
 - Higher f_{ϕ} value, better **x** w.r.t. the knowledge
- One way to impose the constraint is to maximize: $\mathbb{E}_{p_{\theta}}[f_{\phi}(x)]$
- Objective:

$$\min_{\theta} \mathcal{L}(\theta) - \alpha \mathbb{E}_{p_{\theta}}[f_{\phi}(x)]$$
Regular objective (e.g., ross-entropy loss, etc.)
Regularization: imposing constraints (difficult to compute)

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function $f_{\phi}(\mathbf{x}) \in \mathbb{R}$

$$\min_{\theta} \mathcal{L}(\boldsymbol{\theta}) - \alpha \mathbb{E}_{p_{\theta}}[f_{\phi}(\boldsymbol{x})]$$

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function $f_{\phi}(\mathbf{x}) \in \mathbb{R}$

$$\min_{\theta} \mathcal{L}(\theta) - \alpha \left[\mathbb{E}_{p_{\theta}} [f_{\phi}(\mathbf{x})] \right]$$
$$\mathcal{L}(\theta, q) = \mathrm{KL}(q(\mathbf{x}) || p_{\theta}(\mathbf{x})) - \lambda \mathbb{E}_{q} [f_{\phi}(\mathbf{x})]$$

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function $f_{\phi}(\mathbf{x}) \in \mathbb{R}$

$$\min_{\theta} \mathcal{L}(\theta) - \alpha \mathbb{E}_{p_{\theta}}[f_{\phi}(\mathbf{x})]$$
$$\mathcal{L}(\theta, q) = \mathrm{KL}(q(\mathbf{x}) || p_{\theta}(\mathbf{x})) - \lambda \mathbb{E}_{q}[f_{\phi}(\mathbf{x})]$$

Posterior Regularization [Ganchev et al., 2010]

- Introduce variational distribution q
 - Impose constraint on q
 - \circ Encourage q to stay close to p

- Consider a statistical model $\mathbf{x} \sim p_{\theta}(\mathbf{x})$
- Consider a constraint function $f_{\phi}(\mathbf{x}) \in \mathbb{R}$

$$\min_{\theta} \mathcal{L}(\theta) - \alpha \mathbb{E}_{p_{\theta}}[f_{\phi}(\mathbf{x})]$$
$$\mathcal{L}(\theta, q) = \mathrm{KL}(q(\mathbf{x}) || p_{\theta}(\mathbf{x})) - \lambda \mathbb{E}_{q}[f_{\phi}(\mathbf{x})]$$

Posterior Regularization [Ganchev et al., 2010]

- Introduce variational distribution q
 - Impose constraint on q
 - \circ Encourage q to stay close to p
- Objective

$$\min_{\theta,q} \mathcal{L}(\boldsymbol{\theta}) + \alpha \mathcal{L}(\boldsymbol{\theta},q)$$

 $\min_{\theta,q} \mathcal{L}(\boldsymbol{\theta}) + \alpha \mathcal{L}(\boldsymbol{\theta},q)$ $\mathcal{L}(\boldsymbol{\theta},q) = \mathrm{KL}(q(\boldsymbol{x})||p_{\theta}(\boldsymbol{x})) - \lambda \mathbb{E}_{q}[f_{\phi}(\boldsymbol{x})]$

 $\min_{\theta,q} \mathcal{L}(\boldsymbol{\theta}) + \alpha \mathcal{L}(\boldsymbol{\theta},q)$ $\mathcal{L}(\boldsymbol{\theta},q) = \mathrm{KL}(q(\boldsymbol{x})|| p_{\theta}(\boldsymbol{x})) - \lambda \mathbb{E}_{q}[f_{\phi}(\boldsymbol{x})]$

• EM algorithm for solving the problem

• E-step

$$q^*(\boldsymbol{x}) = p_{\theta}(\boldsymbol{x}) \exp\{\lambda f_{\phi}(\boldsymbol{x})\}/Z$$

 $\min_{\theta,q} \mathcal{L}(\boldsymbol{\theta}) + \alpha \mathcal{L}(\boldsymbol{\theta},q)$ $\mathcal{L}(\boldsymbol{\theta},q) = \mathrm{KL}(q(\boldsymbol{x})||p_{\theta}(\boldsymbol{x})) - \lambda \mathbb{E}_{q}[f_{\phi}(\boldsymbol{x})]$

• EM algorithm for solving the problem

• E-step

$$q^{*}(\boldsymbol{x}) = p_{\theta}(\boldsymbol{x}) \exp\{\lambda f_{\phi}(\boldsymbol{x})\}/Z$$

Higher value -- higher probability
under q - "soft constraint"

 $\min_{\theta,q} \mathcal{L}(\boldsymbol{\theta}) + \alpha \mathcal{L}(\boldsymbol{\theta},q)$ $\mathcal{L}(\boldsymbol{\theta},q) = \mathrm{KL}(q(\boldsymbol{x}) || p_{\theta}(\boldsymbol{x})) - \lambda \mathbb{E}_{q}[f_{\phi}(\boldsymbol{x})]$

- EM algorithm for solving the problem
 - E-step

$$q^*(\boldsymbol{x}) = p_{\theta}(\boldsymbol{x}) \exp\{\lambda f_{\phi}(\boldsymbol{x})\}/Z$$

• M-step

Higher value -- higher probability under q – "soft constraint"

$$\min_{\theta} \mathcal{L}(\theta) - \mathbb{E}_{q^*}[\log p_{\theta}(\boldsymbol{x})]$$

• Consider a supervised learning: $p_{\theta}(y|\mathbf{x})$

[Hu et al., 2016]

- Consider a supervised learning: $p_{\theta}(y|\mathbf{x})$
- Input-Target space (X, Y)

05-2020

[Hu et al., 2016]

- Consider a supervised learning: $p_{\theta}(y|x)$
- Input-Target space (X, Y)
- First-order logic rules: (r, λ)
 - $r(X, Y) \in [0, 1]$, could be soft
 - $\circ~\lambda$ is the confidence level of the rule

- Consider a supervised learning: $p_{\theta}(y|x)$
- Input-Target space (X, Y)
- First-order logic rules: (r, λ)
 - $r(X, Y) \in [0, 1]$, could be soft
 - $\circ~\lambda$ is the confidence level of the rule
- Given *l* rules:

• E-step:
$$q^*(y|\mathbf{x}) = p_{\theta}(y|\mathbf{x}) \exp\left\{\sum_l \lambda_l r_l(y, \mathbf{x})\right\}/Z$$

• M-step:

 $\min_{\theta} \mathcal{L}(\theta) - \mathbb{E}_{q^*}[\log p_{\theta}(y|\boldsymbol{x})]$

- Consider a supervised learning: $p_{\theta}(y|x)$
- Input-Target space (X, Y)
- First-order logic rules: (r, λ)
 - $r(X, Y) \in [0, 1]$, could be soft
 - $\circ~\lambda$ is the confidence level of the rule
- Given *l* rules:

• E-step:
$$q^*(y|\mathbf{x}) = p_{\theta}(y|\mathbf{x}) \exp\left\{\sum_l \lambda_l r_l(y,\mathbf{x})\right\}/Z$$

 $\min_{\theta} \mathcal{L}(\theta) - \mathbb{E}_{q^*}[\log p_{\theta}(y|\boldsymbol{x})]$

• M-step:

Knowledge distillation [Hinton et al., 2015; Bucilu et al., 2006]

[Hu et al., 2016]

Student

[Hinton et al., 2015; Bucilu et al., 2006]

[Hinton et al., 2015; Bucilu et al., 2006]

Student

Knowledge Distillation

[Hinton et al., 2015; Bucilu et al., 2006]

Match soft predictions of the teacher network and student network

 $p_{\theta}(y|\mathbf{x})$

Student

 $\min_{\theta} \mathcal{L}(\boldsymbol{\theta}) - \mathbb{E}_{q^*}[\log p_{\theta}(\boldsymbol{y}|\boldsymbol{x})]$

- Neural network $p_{\theta}(y|\mathbf{x})$
- Train to imitate the outputs of the rule-regularized teacher network

Rule Knowledge Distillation

 $\min_{\theta} \left[\mathcal{L}(\boldsymbol{\theta}) - \mathbb{E}_{q^*}[\log p_{\theta}(\boldsymbol{y}|\boldsymbol{x})] \right]$

- Neural network $p_{\theta}(y|\mathbf{x})$
- Train to imitate the outputs of the rule-regularized teacher network
- At iteration *t*:

$$\boldsymbol{\theta}^{(t+1)} = \arg\min_{\boldsymbol{\theta}\in\Theta} \frac{1}{N} \sum_{n=1}^{N} \qquad \qquad \boldsymbol{\ell}(\boldsymbol{y}_n, \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\boldsymbol{x}_n))$$

 $\min_{\theta} \left[\mathcal{L}(\theta) - \mathbb{E}_{q^*}[\log p_{\theta}(y|\boldsymbol{x})] \right]$

- Neural network $p_{\theta}(y|\mathbf{x})$
- Train to imitate the outputs of the rule-regularized teacher network
- At iteration *t*:

[Hu et al., 2016]

 $\min_{\theta} \left[\mathcal{L}(\theta) - \left[\mathbb{E}_{q^*}[\log p_{\theta}(y|\boldsymbol{x})] \right] \right]$

- Neural network $p_{\theta}(y|\mathbf{x})$
- Train to imitate the outputs of the rule-regularized teacher network
- At iteration *t*:

[Hu et al., 2016]

Rule Knowledge Distillation

- Neural network $p_{\theta}(y|\mathbf{x})$
- At each iteration
 - Construct a teacher network with "soft constraint"
 - Train DNN to emulate the teacher network

© Eric Xing @ CMU, 2005-2020

$$q^*(y|\mathbf{x}) = p_{\theta}(y|\mathbf{x}) \exp\left\{\sum_l \lambda_l r_l(y, \mathbf{x})\right\} / Z$$

• Learn the confidence value λ_l for each logical rule [Hu et al., 2016b]

$$q^*(y|\mathbf{x}) = p_{\theta}(y|\mathbf{x}) \exp\left\{\sum_l \lambda_l r_l(y, \mathbf{x})\right\} / Z$$

• Learn the confidence value λ_l for each logical rule [Hu et al., 2016b]

$$q^*(\boldsymbol{x}) = p_{\theta}(\boldsymbol{x}) \exp\{\lambda f_{\phi}(\boldsymbol{x})\}/Z$$

- More generally, optimize parameters of the constraint $f_{\phi}(x)$ [Hu et al., 2018]
 - Treat $f_{\phi}(\mathbf{x})$ as an extrinsic reward function
 - Use MaxEnt Inverse Reinforcement Learning to learn the "reward"

Pose-conditional Human Image Generation

Pose-conditional Human Image Generation

Samples generated by the models

	Method	SSIM	Human
1	Ma et al. [38]	0.614	
2	Pumarola et al. [44]	0.747	
3	Ma et al. [37]	0.762	
4	Base model	0.676	0.03
5	With fixed constraint	0.679	0.12
6	With learned constraint	0.727	0.77

Quantitative and Human Evaluation

- Generative Adversarial Networks (GANs)
 - Wasserstein GAN: new learning objectives
 - Progressive GAN: new training schedule
 - BigGAN: scaling up GAN models
- Normalizing Flow (NF)
 - Chained transformation functions
 - Exact latent inference, density evaluation, sampling
- Integrating Domain Knowledge into Deep Learning
 - Domain knowledge as constraint
 - Learning rules / constraints

