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% GAN Progress on Face Generation




; Recap: Generative Adversarial Nets (GANSs)

o (Generative model x = Gg(z), z ~ p(2)
o Map noise variable z to data space x
o Define an implicit distribution over x: pg, (x)
a stochastic process to simulate data x
Intractable to evaluate likelihood
e Discriminator Dy (x)
o Output the probability that x came from the data rather than the generator

1(Real)

O(fake)

- 1(real)

D

: (discriminator

real image

— Discriminator training
— Generator training

- G
(generator)

Z : N(0,I)

fake image



/
{/ Recap: Generative Adversarial Nets (GANSs)

e Learning
o A minimax game between the generator and the discriminator

o Train D to maximize the probability of assigning the correct label to both
training examples and generated samples

o Train G to fool the discriminator

maxp ED = Ewdiata(iL') [log D(iI})] + IEEar;rvG(z),zrvp(z) [log(l — D(CL‘))]
ming Lg = E:L'NG(z),ZNp(z) [log(l - D(CL‘))] y

1(Real)

« [Goodfellow et al., 2014] D 0
. (discriminator (fake)
ming ]SD( Paata ” ng ) il [P

 [Huetal., 2017]
ming KL( Pg || Q) 2|

2 N(0,1)

— Discriminator training
— Generator training

fake image



% Wasserstein GAN (WGAN)

e If our data are on a low-dimensional manifold of a high dimensional
space, the model’'s manifold and the true data manifold can have a
negligible intersection in practice

[Arjovsky et aI ., 201 7] © Eric Xing @ CMU, 2005-2020 7
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{/ Wasserstein GAN (WGAN)

e |f our data are on a low-dimensional manifold of a high dimensional
space, the model’'s manifold and the true data manifold can have a

negligible intersection in practice
o KL divergence is undefined or infinite
e Theloss function and gradients may not be continuous and well behaved

e [he Wasserstein Distance is well defined

o Earth Mover’s Distance

o Minimum transportation cost for making one pile
of dirt in the shape of one probability distribution
to the shape of the other distribution

[Arjovsky et al., 2017]



% Wasserstein GAN (WGAN)

o Objective

1

W(pdata: pg) = K ||l§|l|lp<K Ex~pdata ID(x)] — Ex~pg |D(x)]
L_

* ||D|l; < K : K- Lipschitz continuous
« Use gradient-clipping to ensure D has the Lipschitz continuity

Without gradient clipping With gradient clipping




WGAN vs Vanilla GAN
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% Progressive GAN
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4 Progressive GAN
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4 Progressive GAN

G Latent Latent
. . 4x4 *
Low resolution images
add in @ 5
additional
Iayers .  Reals ﬂ. i Reals
v N
High resolution images
| T

[Karras et al., 2018]
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% BigGAN

[Brock et al., 2018]
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% BigGAN

o GANSs benefit dramatically from scaling

o 22X —4X more parameters

o 8X larger batch size

o Simple architecture changes that improve scalability

[Brock et al_, 2018] © Eric Xing @ CMU, 2005-2020 18 ‘g



[Brock et al., 2018]
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; Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a

seqguence of transformation functions

7

/7 \ Vd \

/ \ / \
/ \ / \
! \ ! \
| 1 | 1
\ I \ I

\ \

N ,’ k. //
\\\ ’, \\\ ’,

&) po(zo) Z; ~ pz(Zz)

f1(2o) fi(#i—1) fit1(2:)
()0 () - (=)




% Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
seguence of transformation functions

Planar o Radial
K=2 K=10 K=2 K=10
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[Rezende & Mohamed, 2015]
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f Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
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% Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
seqguence of transformation functions

z ~p(z)
x = f(2) Transformation function f
inference: z=f"1(x) = ____. >+ |nvertible

q tdz‘
© dx

density: p(x) = p(2)

= p(f @) |det -
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-- Jacobian determinant



; Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
seqguence of transformation functions

z ~p(z)
x = f(2) Transformation function f
inference: z=f"1(x) = ____. >+ |nvertible

density:  p(x) = ()dtdz‘
ensity:  p(x) = p(2) |det ——

————— >« Jacobian determinant easy to compute

af 1 e.g., choose df ~!/dx to be a triangular matrix

= p(f 1 (x)) |det =

af~1

det ™

-- Jacobian determinant

© Eric Xing @ CMU, 2005-2020 27 g
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% Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
seqguence of transformation functions

zy ~ p(2)
X =2g = Jx o Jx-1°° J1(Zo) Transformation function f;
inference: z; = f*(z;—y) =000 —---- >+ |nvertible

dz;_
density: p(zi) — p(Zi—1) —

det
© dZi

----- >« Jacobian determinant easy to compute
e.g., choose df;~*/dz; to be a triangular matrix

© Eric Xing @ CMU, 2005-2020 28 g
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% Normalizing Flow (NF)

e Transforms a simple distribution into a complex one by applying a
seqguence of transformation functions

zy ~ p(2)
X =2g = Jx o Jx-1°° J1(Zo) Transformation function f;
inference: z; = f*(z;—y) =000 —---- >+ |nvertible

dz;_
density: p(zi) = P(Zi—1) dlz_l
l

det

————— >« Jacobian determinant easy to compute

e.g., choose df;~*/dz; to be a triangular matrix
training: maximizes data log-likelihood

K dz;_4
log p(x) = logp(z,) + z log ‘det
i=1 dz;

© Eric Xing @ CMU, 2005-2020 29 g
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7 arow

o [Kingma and Dhariwal., 2018]

A

affine coupling layer

?

invertible 1x1 conv

?

actnorm

T
|

One step of flow in the Glow model

© Eric Xing @ CMU, 2005-2020 30 ‘g



% GLOW

e [Kingma and Dhariwal., 2018]

A

affine coupling layer

f

invertible 1x1 conv

f

actnorm

T
|

One step of flow in the Glow model
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; Deep Learning

o Heavily rely on massive labeled data

e Uninterpretable

e Hard to encode human intention and domain knowledge



/
f How Humans Learn

e Learn from concrete examples (as DNNs do)
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2015]



% How Humans Learn

e Learn from concrete examples (as DNNs do)

o Learn from abstract knowledge (definitions, logic rules, etC) minksy 1980; Lake et al.,

2015]

Past tense of verb

Examples: Rule:

add —> added regular verbs —d/-ed
accept —> accepted V. S.

ignore —> ignored

end ——> ended
block —— blocked
love ——> loved

https://www.technologyreview.com/s/544606/can-this-man-make-aimore-human



/
(/ Integrating Domain Knowledge into Deep Learning

o Consider a statistical model x ~ pg(x)

o Conditional model, pg (x| inputs)
o @Generative model, e.g., x is an image

o Discriminative model, e.g., x is a sentence label
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(/ Integrating Domain Knowledge into Deep Learning

o Consider a statistical model x ~ pg(x)

« Consider a constraint function f;(x) € R
o Higher f4 value, better x w.r.t. the knowledge

target true

pose target
Generative

—— model pg —

source generated

image image



/
(/ Integrating Domain Knowledge into Deep Learning

o Consider a statistical model x ~ pg(x)

« Consider a constraint function f;(x) € R

o Higher f4 value, better x w.r.t. the knowledge
Constraint

Learnable
module ¢

target true
pose target

Human | .
art Structured |
P consistency
. arser ) '

Generative P |

—— model pg — -1

e
source generated

Im Gge [m age b *: ‘:51-" b‘ D Y E r_iC_Xi: @ ylu_ l005-2020



/
f Integrating Domain Knowledge into Deep Learning

o Consider a statistical model x ~ pg(x)

« Consider a constraint function f;(x) € R
o Higher f4 value, better x w.r.t. the knowledge

o Sentiment classification
o “This was a terrific movie, but the director could have done better”

e Logical Rules:
o Sentence S with structure A-but-B => sentiment of B dominates



/
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Learning with Constraints

o Consider a statistical model x ~ pg(x)

« Consider a constraint function f;(x) € R
o Higher f4 value, better x w.r.t. the knowledge

e One way to impose the constraint is to maximize: Ep, [fg(x)]
o Objective:

ming L(H) —a IEPG [fd) (x)]

/ N

Regular objective (e.g., Regularization:
cross-entropy loss, etc.) Imposing constraints
(difficult to compute)
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ﬁ Learning with Constraints

o Consider a statistical model x ~ pg(x)
« Consider a constraint function f;(x) € R

ming L(H) —a IEPG [fd) (x)]



Learning with Constraints

o Consider a statistical model x ~ pg(x)
« Consider a constraint function f;(x) € R

ming L(0) — aiIEpe[f¢ (x)]j

______ ho
r
L(0,q) =KL(q(x)|| po(x)) — A Eq

|
[fo ()]



% Learning with Constraints

o Consider a statistical model x ~ pg(x)
« Consider a constraint function f;(x) € R

ming L(0) — ai:IEpg [fCP (X)]’.

______ 17"
( \ Posterior Regularization
L(0,q) =KL(g(x)|| pa(x)) — 1 Eq|f(x)] [Ganchev et al., 2010]

e Introduce variational distribution q
o |Impose constraint on q
o Encourage q to stay close to p



% Learning with Constraints

o Consider a statistical model x ~ pg(x)
« Consider a constraint function f;(x) € R

ming L(0) — aiIEpe[f¢ (x)]’.

______ 17"
( \ Posterior Regularization
L(0,q) =KL(g(x)|| pa(x)) — 1 Eq|f(x)] [Ganchev et al., 2010]

e Introduce variational distribution q
o |Impose constraint on q
o Encourage q to stay close to p

o Objective
ming , £(0) + a L(0,q)
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ming , L(0) + a L(0,q)
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/
{/ Learning with Constraints

ming , L(0) + a L(0,q)
£(8,q) =KL(q(x)|| pg(x)) — A Eg|f5(x)]

o EM algorithm for solving the problem

o E-step
q*(x) = pa(x) exp{ Afy(x) }/Z

o M-step \ Higher value -- higher probability

under g — “soft constraint”
ming £(6) — Eg+[log pg(x)]
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o Consider a supervised learning: pg (v|x)

[Hu et al., 2016]
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/
f Logical Rule Constraints

o Consider a supervised learning: pg (v|x)
e INnput-Target space (X,Y)
e First-order logic rules: (r, 1)

o r(X,Y) €[0,1], could be soft
o A s the confidence level of the rule

e Given lrules:
o Estepr g7 (y]x) = pe (¥|x) eXp{zlm(y,x)}/Z
]

o M-step:
ming £(0) — Eg+[log pg(y[x)]

[Hu et al., 2016]



% Logical Rule Constraints

o Consider a supervised learning: pg (v|x)
e INnput-Target space (X,Y)
e First-order logic rules: (r, 1)

o r(X,Y) €[0,1], could be soft
o A s the confidence level of the rule

e Given lrules:
o Estepr g7 (y]x) = pe (¥|x) eXp{zlm(y,x)}/Z
]

o M-step:
ming £(0) — Eg+[log pg(y[x)]
T Knowledge distillation [Hinton et

[Hu et al., 2016] al_, 2015; BUCilu et al-’ 2OO%TicXing@CMU,2005-2020 59 %
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{/ Knowledge Distillation

Student

[Hinton et al., 2015: Bucilu et al., 2006] osrexm @ oS 0 g



/
(/ Knowledge Distillation

'V

27

: i’\'v'r
</

Teacher
(Ensemble)
[Hinton et al., 2015; Bucilu et al., 2006]

Student

© Eric Xing @ CMU, 2005-2020
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/
{/ Knowledge Distillation
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Teacher
(Ensemble)
[Hinton et al., 2015; Bucilu et al., 2006]

Match soft predictions of the teacher
network and student network

Student

© Eric Xing @ CMU, 2005-2020
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/
f Rule Knowledge Distillation

ming L(0) — E - [log pg (y|x)]

o Neural network pg (y|x)
e Train to imitate the outputs of the rule-regularized teacher network

[Hu et al., 201 6] © Eric Xing @ CMU, 2005-2020 63



/
{/ Rule Knowledge Distillation

o Neural network pg (y|x)
e T[rain to imitate the outputs of the rule-regularized teacher network

e At iteration t:

true hard label soft prediction of pg(y|x)
(t41) 1l \ /
0 — arg grél(gl N z_:l g(yna 0.9(33”))

[HU et al., 201 6] © Eric Xing @ CMU, 2005-2020 64



% Rule Knowledge Distillation

t v o [
mingiL(0) — Eq+[log pg(y|x)] !

_____ N o o o o o o o e e e e e e o o

o Neural network pg (y|x)
e [rain to imitate the outputs of the rule-regularized teacher network

e At iteration t:

true hard label soft prediction of pg (y|x)
(t41) 1l \ /
0 = al“glgélélﬁ Z::l U(Yn, o0(Tn))
6(87(;), g9 (mn)),

———__ soft prediction of the

teacher network

q*(ylx) = Do (ylx) exp { Zcﬁl;:{wu(z)of;zg)}“/z Lg
l a@cmu,

[Hu et al., 2016]



% Rule Knowledge Distillation

t v o [
mingiL(0) — Eq+[log pg(y|x)] !

_____ N o o o o o o o e e e e e e o o

o Neural network pg (y|x)
e [rain to imitate the outputs of the rule-regularized teacher network

o At iteration t:
true hard label soft prediction of pg (y|x)

1 < N -~

(t+1) _ o _
0 — arglgrélél N Z(l T)(Yn, 0(Tr))

n=1

—l_ 7'('6(8?(;) 9 O (mn)),
/ ———__ soft prediction of the

: teacher network
balancing parameter

q*(ylx) = Do (ylx) exp { chl@z:{wu(z)of;zg)}“/z Lg
l a@cmu,

[Hu et al., 2016]



; Rule Knowledge Distillation

e Neural network pg (y|x)

e At each iteration

o Construct a teacher network with “soft constraint”
o Train DNN to emulate the teacher network

teacher network construction rule knowledge distillation

e [y

. —®
y Po(¥lx)

__x:n,‘ffpfojectiog, s A, )
(ooa ¥ —t—
back
leacher propagation student
q(|x) "l pe (¥x)
logic rules

el L e
: ! )
. unlabeled data g ﬁ)eled daﬁ © Eric Xing @ CMU, 20052020 67 g




/
f Learning Rules / Constraints

q"(y|x) = pe(y|x) exp { z An(y, x)}/Z
l

o Learn the confidence value A4; for each logical rule [Hu et al., 2016b]



/
f Learning Rules / Constraints

q"(y|x) = pg(y|x) exp { 2 An(y, x)}/Z
l
o Learn the confidence value A4; for each logical rule [Hu et al., 2016b]
q*(x) = pg(x) exp{ Afp(x) }/Z

« More generally, optimize parameters of the constraint f,(x) [Hu et al., 2018]
o Treat fy(x) as an extrinsic reward function
o Use MaxEnt Inverse Reinforcement Learning to learn the “reward”

© Eric Xing @ CMU, 2005-2020 69 g
L
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(/ Pose-conditional Human Image Generation

Constraint
. Learnable |
target true v " module ¢ :
pose target ‘
— |
Bl l « l
.. i | i
| Human | |
N | art Structured |
| P consistency !
. arser : '
Generative P |
—— model pg — ]
—
source generated
image jmage LE . Y

[H u et aI .y 20 1 8] © Eric Xing @ CMU, 2005-2020



(/ Pose-conditional Human Image Generation

Learned Fixed Base
source image target pose target image constraint constraint model
3 | Method SSIM  Human
- 1 Maetal. [38] 0.614 —
2 Pumarola et al. [44] 0.747 —
3 Maetal. [37] 0.762 —
4  Base model 0.676 0.03
: 5  With fixed constraint 0.679 0.12
= 6  With learned constraint  0.727  0.77
Samples generated by the models Quantitative and Human Evaluation

[H u et aI .y 20 1 8] © Eric Xing @ CMU, 2005-2020 71 [g



% Takeaways

o Generative Adversarial Networks (GANS)
o Wasserstein GAN: new learning objectives

o Progressive GAN: new training schedule 2014
o BIgGAN: scaling up GAN models

FFFFFF

o Normglizing Flow (NF) | Eamnrqﬂr "N

o Chained transformation functions - ‘ ::-* :
o Exact latent inference, density evaluation, sampling \ -  —_ Of

e Integrating Domain Knowledge into Deep Learning e e =,
o Domain knowledge as constraint |

I
—|; A P Stru‘.ctured
" " ) parser consl‘stency
- Learning rules / constraints ﬁ come | ﬁ i n
ssssss generated |
- image image y L.
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