
Probabilistic Graphical Models

Deep Generative Models - II

Eric Xing
Lecture 13, February 26, 2020

© Eric Xing @ CMU, 2005-2020 1
Reading: see class homepage

Outline

● Generative Adversarial Networks (GANs)
◯ GANs Progress
◯ Vanilla GAN, Wasserstein GAN, Progressive GAN, BigGAN

● Normalizing Flow (NF)
◯ Basic Concepts
◯ GLOW

● Integrating Domain Knowledge into Deep Learning

© Eric Xing @ CMU, 2005-2020 2

Outline

● Generative Adversarial Networks (GANs)
◯ GANs Progress
◯ Vanilla GAN, Wasserstein GAN, Progressive GAN, BigGAN

● Normalizing Flow (NF)
◯ Basic Concepts
◯ GLOW

● Integrating Domain Knowledge into Deep Learning

© Eric Xing @ CMU, 2005-2020 3

GAN Progress on Face Generation

© Eric Xing @ CMU, 2005-2020 4

Figure courtesy: Ian Goodfellow

Recap: Generative Adversarial Nets (GANs)

● Generative model ! = #$ % , % ∼ ((%)
◯ Map noise variable % to data space !
◯ Define an implicit distribution over !: (,-(!)

§ a stochastic process to simulate data !
§ Intractable to evaluate likelihood

● Discriminator ./ !
◯ Output the probability that ! came from the data rather than the generator

© Eric Xing @ CMU, 2005-2020 5

Figure courtesy: Kim

Recap: Generative Adversarial Nets (GANs)

● Learning
◯ A minimax game between the generator and the discriminator
◯ Train ! to maximize the probability of assigning the correct label to both

training examples and generated samples
◯ Train " to fool the discriminator

© Eric Xing @ CMU, 2005-2020 6

GAN plays the role of z1 as above. The space S0 is now implicit and we directly sample real image
x from data distribution pdata(x). The distribution in Eq.(1) is thus rewritten as:

p(x|z, y) =
⇢
pdata(x) y = 0

pg(x|z) y = 1,
(5)

where pg(x|z) = G(z) is the generative distribution. Note that pdata(x) is the empirical data
distribution which is free of parameters. The discriminator is defined in the same way as above, i.e.,
D(x) = p(y = 0|x). Then the objective of GAN is precisely defined in Eq.(2). To make this clearer,
we again transform the objective into its conventional form:

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = E
x⇠pdata(x) [log(1�D(x))] + E

x⇠G(z),z⇠p(z) [logD(x)]

= E
x⇠G(z),z⇠p(z) [logD(x)] .

(6)

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

minG LG = E
x⇠G(z),z⇠p(z) [log(1�D(x))] .

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = E
x⇠G(z),z⇠p(z) [logD(x)] .

Note that for learning the generator we are using the adapted objective, i.e., maximizing
E
x⇠G(z),z⇠p(z) [logD(x)], as is usually used in practice (Goodfellow et al., 2014), rather than

minimizing E
x⇠G(z),z⇠p(z) [log(1�D(x))].

KL Divergence Interpretation
Now we take a closer look into Eq.(2). Assume uniform prior distribution p(y) where p(y = 0) =

p(y = 1) = 0.5. For optimizing p(x|z, y), we have
Theorem 1. Let p✓(x|z, y) be the conditional distribution in Eq.(1) parameterized with ✓. Denote

p✓0(x|z) = Ep(y)[p✓0(x|z, y)] with fixed parameter ✓0. Denote q0(x|z, y) / q(1� y|x)p✓0(x|z).
Therefore,

Ep(z,y)

⇥
�r✓Ep✓(x|z,y) [log q(1� y|x)] |✓=✓0

⇤
=

r✓Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� JSD (p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0]
(7)

Proof.

Ep(z,y)

⇥
�Ep✓(x|z,y) [log q(1� y|x)]

⇤
=

Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� KL(p✓(x|z, y)kp✓0(x|z))] ,
(8)

where
Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] =

Ep(z)

p(y = 0)KL

✓
p✓(x|z, y = 0)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆
+

p(y = 1)KL
✓
p✓(x|z, y = 1)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆�
.

(9)

Taking derivatives w.r.t ✓ at ✓0 we get
r✓Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] |✓=✓0

= Ep(z)

1

2

Z

x

r✓p✓(x|z, y = 0)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

+

1

2

Z

x

r✓p✓(x|z, y = 1)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

�
|✓=✓0

= Ep(z) [r✓JSD(p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0] .

(10)

Taking derivatives of the both sides of Eq.(8) at w.r.t ✓ at ✓0 and plugging the last equation of Eq.(10),
we obtain our desired result.

2

Figure courtesy: Kim

• [Goodfellow et al., 2014]
min& JSD(+,-.- || +01)

• [Hu et al., 2017]
min& KL(+& || 5)

Wasserstein GAN (WGAN)

● If our data are on a low-dimensional manifold of a high dimensional
space, the model’s manifold and the true data manifold can have a
negligible intersection in practice

© Eric Xing @ CMU, 2005-2020 7[Arjovsky et al., 2017] Slide adapted from bhiksha

Wasserstein GAN (WGAN)

● If our data are on a low-dimensional manifold of a high dimensional
space, the model’s manifold and the true data manifold can have a
negligible intersection in practice

● KL divergence is undefined or infinite
● The loss function and gradients may not be continuous and well behaved

© Eric Xing @ CMU, 2005-2020 8[Arjovsky et al., 2017] Slide adapted from bhiksha

Wasserstein GAN (WGAN)

● If our data are on a low-dimensional manifold of a high dimensional
space, the model’s manifold and the true data manifold can have a
negligible intersection in practice

● KL divergence is undefined or infinite
● The loss function and gradients may not be continuous and well behaved
● The Wasserstein Distance is well defined
◯ Earth Mover’s Distance
◯ Minimum transportation cost for making one pile

of dirt in the shape of one probability distribution
to the shape of the other distribution

© Eric Xing @ CMU, 2005-2020 9[Arjovsky et al., 2017] Slide adapted from bhiksha

Wasserstein GAN (WGAN)

● Objective

© Eric Xing @ CMU, 2005-2020 10

! "#$%$, "' = 1
* sup

||/||012
E4∼67898 : ; − E4∼6=[:(;)]

• ||:||B ≤ * : K- Lipschitz continuous
• Use gradient-clipping to ensure : has the Lipschitz continuity

WGAN vs Vanilla GAN

© Eric Xing @ CMU, 2005-2020 11

Progressive GAN

© Eric Xing @ CMU, 2005-2020 12

Low resolution images

[Karras et al., 2018]

Progressive GAN

© Eric Xing @ CMU, 2005-2020 13

Low resolution images

add in
additional

layers

[Karras et al., 2018]

Progressive GAN

© Eric Xing @ CMU, 2005-2020 14

Low resolution images

add in
additional

layers

High resolution images

[Karras et al., 2018]

BigGAN

© Eric Xing @ CMU, 2005-2020 15[Brock et al., 2018]

BigGAN

● GANs benefit dramatically from scaling

© Eric Xing @ CMU, 2005-2020 16[Brock et al., 2018]

BigGAN

● GANs benefit dramatically from scaling
● 2x – 4x more parameters
● 8x larger batch size
● Simple architecture changes that improve scalability

© Eric Xing @ CMU, 2005-2020 17[Brock et al., 2018]

BigGAN

● GANs benefit dramatically from scaling
● 2x – 4x more parameters
● 8x larger batch size
● Simple architecture changes that improve scalability

© Eric Xing @ CMU, 2005-2020 18[Brock et al., 2018]

BigGAN

● GANs benefit dramatically from scaling
● 2x – 4x more parameters
● 8x larger batch size
● Simple architecture changes that improve scalability

© Eric Xing @ CMU, 2005-2020 19[Brock et al., 2018]

Outline

● Generative Adversarial Networks (GANs)
◯ GANs Progress
◯ Vanilla GAN, Wasserstein GAN, Progressive GAN, BigGAN

● Normalizing Flow (NF)
◯ Basic Concepts
◯ GLOW

● Integrating Domain Knowledge into Deep Learning

© Eric Xing @ CMU, 2005-2020 20

Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

© Eric Xing @ CMU, 2005-2020 21

Figure courtesy: Lilian Weng

Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

© Eric Xing @ CMU, 2005-2020 22

Figure courtesy: Lilian Weng

Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

© Eric Xing @ CMU, 2005-2020 23[Rezende & Mohamed, 2015]

Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

© Eric Xing @ CMU, 2005-2020 24

! ∼ # !
$ = &(!)

Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

© Eric Xing @ CMU, 2005-2020 25

! ∼ # !
$ = &(!)

! = &)* $
Transformation function &
• Invertibleinference:

Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

© Eric Xing @ CMU, 2005-2020 26

! ∼ # !
$ = &(!)

! = &)* $
$ = # ! det .!.$

= #(&)*($)) det /0
12

/$

det /0
12

/$ -- Jacobian determinant

Transformation function &
• Invertibleinference:

density:

Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

© Eric Xing @ CMU, 2005-2020 27

! ∼ # !
$ = &(!)

! = &)* $
$ = # ! det .!.$

= #(&)*($)) det /0
12

/$

det /0
12

/$ -- Jacobian determinant

Transformation function &
• Invertible

• Jacobian determinant easy to compute
e.g., choose .&)*/.$ to be a triangular matrix

inference:

density:

Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

© Eric Xing @ CMU, 2005-2020 28

!" ∼ $!"
% = !' = (' ∘ ('*+ ∘ ⋯∘ (+(!")

!/ = (/*+ !/*+
$!/ = $!/*+ det 3!/*+3!4

Transformation function (/
• Invertible

• Jacobian determinant easy to compute
e.g., choose 3(/*+/3!/ to be a triangular matrix

inference:

density:

Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a
sequence of transformation functions

© Eric Xing @ CMU, 2005-2020 29

!" ∼ $!"
% = !' = (' ∘ ('*+ ∘ ⋯∘ (+(!")

!/ = (/*+ !/*+
$!/ = $!/*+ det 3!/*+3!4

Transformation function (/
• Invertible

• Jacobian determinant easy to compute
e.g., choose 3(/*+/3!/ to be a triangular matrix

inference:

density:

log $ % = log $!" +:
/;+

'
log det 3!/*+3!4

training: maximizes data log-likelihood

GLOW

● [Kingma and Dhariwal., 2018]

© Eric Xing @ CMU, 2005-2020 30

One step of flow in the Glow model

GLOW

● [Kingma and Dhariwal., 2018]

© Eric Xing @ CMU, 2005-2020 31

One step of flow in the Glow model

Outline

● Generative Adversarial Networks (GANs)
◯ GANs Progress
◯ Vanilla GAN, Wasserstein GAN, Progressive GAN, BigGAN

● Normalizing Flow (NF)
◯ Basic Concepts
◯ GLOW

● Integrating Domain Knowledge into Deep Learning

© Eric Xing @ CMU, 2005-2020 34

Deep Learning

● Heavily rely on massive labeled data

© Eric Xing @ CMU, 2005-2020 35

Deep Learning

● Heavily rely on massive labeled data

● Uninterpretable

© Eric Xing @ CMU, 2005-2020 36

Deep Learning

● Heavily rely on massive labeled data

● Uninterpretable

● Hard to encode human intention and domain knowledge

© Eric Xing @ CMU, 2005-2020 37

How Humans Learn

● Learn from concrete examples (as DNNs do)

● Learn from abstract knowledge (definitions, logic rules, etc) [Minksy 1980; Lake et al.,
2015]

© Eric Xing @ CMU, 2005-2020 38

Rule:
regular verbs –d/-ed

Examples:
add
accept
ignore
end
block
love
…

V.S.
added
accepted
ignored
ended
blocked
loved

How Humans Learn

● Learn from concrete examples (as DNNs do)

● Learn from abstract knowledge (definitions, logic rules, etc) [Minksy 1980; Lake et al.,
2015]

© Eric Xing @ CMU, 2005-2020 39
https://www.technologyreview.com/s/544606/can-this-man-make-aimore-human

Rule:
regular verbs –d/-ed

Examples:
add
accept
ignore
end
block
love
…

V.S.
added
accepted
ignored
ended
blocked
loved

Past tense of verb

Integrating Domain Knowledge into Deep Learning

● Consider a statistical model ! ∼ #$!
◯ Conditional model, #$!| &'#()*
◯ Generative model, e.g., ! is an image

◯ Discriminative model, e.g., + is a sentence label

© Eric Xing @ CMU, 2005-2020 40

Integrating Domain Knowledge into Deep Learning

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '(! ∈ ℝ
◯ Higher '(value, better ! w.r.t. the knowledge

© Eric Xing @ CMU, 2005-2020 41

Integrating Domain Knowledge into Deep Learning

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '(! ∈ ℝ
◯ Higher '(value, better ! w.r.t. the knowledge

© Eric Xing @ CMU, 2005-2020 42

source
image

Generative
model #$

generated
image

Structured
consistency

Constraint

target
pose

true
target

Integrating Domain Knowledge into Deep Learning

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '(! ∈ ℝ
◯ Higher '(value, better ! w.r.t. the knowledge

© Eric Xing @ CMU, 2005-2020 43

source
image

Generative
model #$

generated
image

Structured
consistency

Human
part

parser

Learnable
module +

Constraint

target
pose

true
target

Integrating Domain Knowledge into Deep Learning

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '(! ∈ ℝ
◯ Higher '(value, better ! w.r.t. the knowledge

● Sentiment classification
◯ “This was a terrific movie, but the director could have done better”

● Logical Rules:
◯ Sentence S with structure A-but-B => sentiment of B dominates

© Eric Xing @ CMU, 2005-2020 44

Learning with Constraints

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '(! ∈ ℝ
◯ Higher '(value, better ! w.r.t. the knowledge

● One way to impose the constraint is to maximize: +,-['((!)]

© Eric Xing @ CMU, 2005-2020 45

Learning with Constraints

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '(! ∈ ℝ
◯ Higher '(value, better ! w.r.t. the knowledge

● One way to impose the constraint is to maximize: +,-['((!)]
● Objective:

© Eric Xing @ CMU, 2005-2020 46

min$ ℒ 4 − 6 +,- '(!

Regular objective (e.g.,
cross-entropy loss, etc.)

Regularization:
imposing constraints
(difficult to compute)

Learning with Constraints

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '(! ∈ ℝ

© Eric Xing @ CMU, 2005-2020 47

min$ ℒ / − 1 234 '(!

Learning with Constraints

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '(! ∈ ℝ

© Eric Xing @ CMU, 2005-2020 48

min$ ℒ / − 1 234 '(!

Slide courtesy: Ruslan Salakhutdinov

ℒ /, 6 =KL 6(!)|| #$(!) − ; 2< '((!)

Learning with Constraints

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '(! ∈ ℝ

● Introduce variational distribution +
◯ Impose constraint on +
◯ Encourage + to stay close to #

© Eric Xing @ CMU, 2005-2020 49

min$ ℒ 0 − 2 345 '(!

ℒ 0, + =KL +(!)|| #$(!) − ; 3< '((!)
Posterior Regularization
[Ganchev et al., 2010]

Learning with Constraints

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '(! ∈ ℝ

● Introduce variational distribution +
◯ Impose constraint on +
◯ Encourage + to stay close to #

● Objective

© Eric Xing @ CMU, 2005-2020 50

min$ ℒ 0 − 2 345 '(!

ℒ 0, + =KL +(!)|| #$(!) − ; 3< '((!)

min$,< ℒ 0 + 2 ℒ 0, +

Posterior Regularization
[Ganchev et al., 2010]

Learning with Constraints

● EM algorithm for solving the problem

◯ E-step

◯ M-step

© Eric Xing @ CMU, 2005-2020 51

min$,& ℒ (+ * ℒ (, +
ℒ (, + =KL +(0)|| 3$(0) − 5 6& 78(0)

+∗ 0 = 3$ 0 exp 578 0 />

min$ ℒ (− 6&∗ log 3$(0)

Higher value -- higher probability
under + – “soft constraint”

Learning with Constraints

● EM algorithm for solving the problem

◯ E-step

◯ M-step

© Eric Xing @ CMU, 2005-2020 52

min$,& ℒ (+ * ℒ (, +
ℒ (, + =KL +(0)|| 3$(0) − 5 6& 78(0)

+∗ 0 = 3$ 0 exp 578 0 />

min$ ℒ (− 6&∗ log 3$(0)

Higher value -- higher probability
under + – “soft constraint”

Learning with Constraints

● EM algorithm for solving the problem

◯ E-step

© Eric Xing @ CMU, 2005-2020 53

min$,& ℒ (+ * ℒ (, +
ℒ (, + =KL +(0)|| 3$(0) − 5 6& 78(0)

+∗ 0 = 3$ 0 exp 578 0 />
Higher value -- higher probability
under + – “soft constraint”

Learning with Constraints

● EM algorithm for solving the problem

◯ E-step

◯ M-step

© Eric Xing @ CMU, 2005-2020 54

min$,& ℒ (+ * ℒ (, +
ℒ (, + =KL +(0)|| 3$(0) − 5 6& 78(0)

+∗ 0 = 3$ 0 exp 578 0 />

min$ ℒ (− 6&∗ log 3$(0)

Higher value -- higher probability
under + – “soft constraint”

Logical Rule Constraints

● Consider a supervised learning: !"($|&)
● Input-Target space ((, *)
● First-order logic rules: (+, ,)
◯ + (, * ∈ [0, 1], could be soft
◯ , is the confidence level of the rule

● Given 2 rules:

◯ E-step:

◯ M-step:

© Eric Xing @ CMU, 2005-2020 55

3∗ $|& = !" $|& exp 9
:
,:+: $, & /<

min" ℒ A − CD∗ log !"($|&)
Knowledge distillation [Hinton et
al., 2015; Bucilu et al., 2006][Hu et al., 2016]

Logical Rule Constraints

● Consider a supervised learning: !"($|&)
● Input-Target space ((, *)
● First-order logic rules: (+, ,)
◯ + (, * ∈ [0, 1], could be soft
◯ , is the confidence level of the rule

● Given 2 rules:

◯ E-step:

◯ M-step:

© Eric Xing @ CMU, 2005-2020 56

3∗ $|& = !" $|& exp 9
:
,:+: $, & /<

min" ℒ A − CD∗ log !"($|&)
Knowledge distillation [Hinton et
al., 2015; Bucilu et al., 2006][Hu et al., 2016]

Logical Rule Constraints

● Consider a supervised learning: !"($|&)
● Input-Target space ((, *)
● First-order logic rules: (+, ,)
◯ + (, * ∈ [0, 1], could be soft
◯ , is the confidence level of the rule

● Given 2 rules:

◯ E-step:

◯ M-step:

© Eric Xing @ CMU, 2005-2020 57

3∗ $|& = !" $|& exp 9
:
,:+: $, & /<

min" ℒ A − CD∗ log !"($|&)
Knowledge distillation [Hinton et
al., 2015; Bucilu et al., 2006][Hu et al., 2016]

Logical Rule Constraints

● Consider a supervised learning: !"($|&)
● Input-Target space ((, *)
● First-order logic rules: (+, ,)
◯ + (, * ∈ [0, 1], could be soft
◯ , is the confidence level of the rule

● Given 2 rules:

◯ E-step:

◯ M-step:

© Eric Xing @ CMU, 2005-2020 58[Hu et al., 2016]

3∗ $|& = !" $|& exp 9
:
,:+: $, & /<

min" ℒ A − CD∗ log !"($|&)

Logical Rule Constraints

● Consider a supervised learning: !"($|&)
● Input-Target space ((, *)
● First-order logic rules: (+, ,)
◯ + (, * ∈ [0, 1], could be soft
◯ , is the confidence level of the rule

● Given 2 rules:

◯ E-step:

◯ M-step:

© Eric Xing @ CMU, 2005-2020 59[Hu et al., 2016]

3∗ $|& = !" $|& exp 9
:
,:+: $, & /<

min" ℒ A − CD∗ log !"($|&)
Knowledge distillation [Hinton et
al., 2015; Bucilu et al., 2006]

Knowledge Distillation

60

Teacher
(Ensemble)

Student

!∗ # $% &|#

[Hinton et al., 2015; Bucilu et al., 2006]

Match soft predictions of the teacher
network and student network

© Eric Xing @ CMU, 2005-2020

Knowledge Distillation

61

Teacher
(Ensemble)

Student

! "|$ %& "|$

[Hinton et al., 2015; Bucilu et al., 2006]

Match soft predictions of the teacher
network and student network

© Eric Xing @ CMU, 2005-2020

Knowledge Distillation

62

Teacher
(Ensemble)

Student

!" #|%

[Hinton et al., 2015; Bucilu et al., 2006]

Match soft predictions of the teacher
network and student network & #|%

© Eric Xing @ CMU, 2005-2020

Rule Knowledge Distillation

63

min$ ℒ & − ()∗ log .$(0|2)

63[Hu et al., 2016]

● Neural network .$(0|2)
● Train to imitate the outputs of the rule-regularized teacher network

© Eric Xing @ CMU, 2005-2020

Rule Knowledge Distillation

● Neural network !"($|&)
● Train to imitate the outputs of the rule-regularized teacher network
● At iteration ':

64

min" ℒ , − ./∗ log !"($|&)

64

soft prediction of !"($|5)true hard label

[Hu et al., 2016] © Eric Xing @ CMU, 2005-2020

Rule Knowledge Distillation

● Neural network !"($|&)
● Train to imitate the outputs of the rule-regularized teacher network
● At iteration ':

65

min" ℒ , − ./∗ log !"($|&)

65

soft prediction of !"($|5)true hard label

soft prediction of the
teacher network

6∗ $|& = !" $|& exp ;
<
=<>< $, & /A

[Hu et al., 2016] © Eric Xing @ CMU, 2005-2020

Rule Knowledge Distillation

● Neural network !"($|&)
● Train to imitate the outputs of the rule-regularized teacher network
● At iteration ':

66

min" ℒ , − ./∗ log !"($|&)

66

soft prediction of !"($|5)true hard label

soft prediction of the
teacher network

6∗ $|& = !" $|& exp ;
<
=<>< $, & /A

balancing parameter
[Hu et al., 2016] © Eric Xing @ CMU, 2005-2020

Rule Knowledge Distillation

● Neural network !"($|&)
● At each iteration
◯ Construct a teacher network with “soft constraint”
◯ Train DNN to emulate the teacher network

© Eric Xing @ CMU, 2005-2020 67

Learning Rules / Constraints

● Learn the confidence value !" for each logical rule [Hu et al., 2016b]

© Eric Xing @ CMU, 2005-2020 68

#∗ %|' =)* %|' exp .
"
!"/" %, ' /2

Slide adapted from Ruslan Salakhutdinov

Learning Rules / Constraints

● Learn the confidence value !" for each logical rule [Hu et al., 2016b]

● More generally, optimize parameters of the constraint #$(&) [Hu et al., 2018]
◯ Treat #$ & as an extrinsic reward function
◯ Use MaxEnt Inverse Reinforcement Learning to learn the “reward”

© Eric Xing @ CMU, 2005-2020 69

(∗ *|& = -. *|& exp 2
"
!"3" *, & /6

(∗ & = -. & exp !#$ & /6

Slide adapted from Ruslan Salakhutdinov

Pose-conditional Human Image Generation

© Eric Xing @ CMU, 2005-2020 70

source
image

Generative
model !"

generated
image

Structured
consistency

Human
part

parser

Learnable
module #

Constraint

target
pose

true
target

[Hu et al., 2018]

Pose-conditional Human Image Generation

© Eric Xing @ CMU, 2005-2020 71

5 Experiments

We demonstrate the applications and effectiveness of the algorithm in two tasks related to image and
text generation [24], respectively.

Method SSIM Human
1 Ma et al. [38] 0.614 —
2 Pumarola et al. [44] 0.747 —
3 Ma et al. [37] 0.762 —

4 Base model 0.676 0.03
5 With fixed constraint 0.679 0.12

6 With learned constraint 0.727 0.77

Table 2: Results of image generation on Structural
Similarity (SSIM) [52] between generated and true
images, and human survey where the full model
yields better generations than the base models (Rows
5-6) on 77% test cases. See the text for more results
and discussion.

Figure 2: Training losses of the three mod-
els. The model with learned constraint con-
verges smoothly as base models.

�

���

���

���

��

source	image target	pose target	image
Learned	
constraint

Base	
model

Fixed	
constraint

Figure 3: Samples generated by the models in Table 2. The model with learned human part constraint
generates correct poses and preserves human body structure much better.

5.1 Pose Conditional Person Image Generation

Given a person image and a new body pose, the goal is to generate an image of the same person under
the new pose (Figure 1, left). The task is challenging due to body self-occlusions and many cloth
and shape ambiguities. Complete end-to-end generative networks have previously failed [37] and
existing work designed specialized generative processes or network architectures [37, 44, 38]. We
show that with an added body part consistency constraint, a plain end-to-end generative model can
also be trained to produce highly competitive results, significantly improving over base models that
do not incorporate the problem structure.

Setup. We follow the previous work [37] and obtain from DeepFashion [35] a set of triples (source
image, pose keypoints, target image) as supervision data. The base generative model p

�

is an implicit
model that transforms the input source and pose directly to the pixels of generated image (and
hence defines a Dirac-delta distribution). We use the residual block architecture [51] widely-used in
image generation for the generative model. The base model is trained to minimize the L1 distance
loss between the real and generated pixel values, as well as to confuse a binary discriminator that
distinguishes between the generation and the true target image.

Knowledge constraint. Neither the pixel-wise distance nor the binary discriminator loss encode
any task structures. We introduce a structured consistency constraint f

�

that encourages each of the
body parts (e.g., head, legs) of the generated image to match the respective part of the true image.
Specifically, the constraint f

�

includes a human parsing module that classifies each pixel of a person
image into possible body parts. The constraint then evaluates cross entropies of the per-pixel part

7

Samples generated by the models

[Hu et al., 2018]

5 Experiments

We demonstrate the applications and effectiveness of the algorithm in two tasks related to image and
text generation [24], respectively.

Method SSIM Human
1 Ma et al. [38] 0.614 —
2 Pumarola et al. [44] 0.747 —
3 Ma et al. [37] 0.762 —

4 Base model 0.676 0.03
5 With fixed constraint 0.679 0.12

6 With learned constraint 0.727 0.77

Table 2: Results of image generation on Structural
Similarity (SSIM) [52] between generated and true
images, and human survey where the full model
yields better generations than the base models (Rows
5-6) on 77% test cases. See the text for more results
and discussion.

Figure 2: Training losses of the three mod-
els. The model with learned constraint con-
verges smoothly as base models.

Figure 3: Samples generated by the models in Table 2. The model with learned human part constraint
generates correct poses and preserves human body structure much better.

5.1 Pose Conditional Person Image Generation

Given a person image and a new body pose, the goal is to generate an image of the same person under
the new pose (Figure 1, left). The task is challenging due to body self-occlusions and many cloth
and shape ambiguities. Complete end-to-end generative networks have previously failed [37] and
existing work designed specialized generative processes or network architectures [37, 44, 38]. We
show that with an added body part consistency constraint, a plain end-to-end generative model can
also be trained to produce highly competitive results, significantly improving over base models that
do not incorporate the problem structure.

Setup. We follow the previous work [37] and obtain from DeepFashion [35] a set of triples (source
image, pose keypoints, target image) as supervision data. The base generative model p

�

is an implicit
model that transforms the input source and pose directly to the pixels of generated image (and
hence defines a Dirac-delta distribution). We use the residual block architecture [51] widely-used in
image generation for the generative model. The base model is trained to minimize the L1 distance
loss between the real and generated pixel values, as well as to confuse a binary discriminator that
distinguishes between the generation and the true target image.

Knowledge constraint. Neither the pixel-wise distance nor the binary discriminator loss encode
any task structures. We introduce a structured consistency constraint f

�

that encourages each of the
body parts (e.g., head, legs) of the generated image to match the respective part of the true image.
Specifically, the constraint f

�

includes a human parsing module that classifies each pixel of a person
image into possible body parts. The constraint then evaluates cross entropies of the per-pixel part

7

Quantitative and Human Evaluation

Takeaways

● Generative Adversarial Networks (GANs)
◯ Wasserstein GAN: new learning objectives
◯ Progressive GAN: new training schedule
◯ BigGAN: scaling up GAN models

● Normalizing Flow (NF)
◯ Chained transformation functions
◯ Exact latent inference, density evaluation, sampling

● Integrating Domain Knowledge into Deep Learning
◯ Domain knowledge as constraint
◯ Learning rules / constraints

© Eric Xing @ CMU, 2005-2020 72

Structured	
consistency

Constraint !"

source	
image

target	
pose

Generative
model #$

true
target

generated	
image

Human	
part	
parser

Learnable	
module	%

“ meant	to d

not	to	 .”

“It	was meant	to	dazzle
not	to	make	it .”

“It	was	meant	to	dazzle	
not	to	make	sense .”

Generative
model #$

true target:

generated:
Infilling	content

matching

Learnable	
module	%

Constraint !"template:

