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GAN Progress on Face Generation
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Figure courtesy: Ian Goodfellow



Recap: Generative Adversarial Nets (GANs)

● Generative model ! = #$ % , % ∼ ((%)
◯ Map noise variable % to data space !
◯ Define an implicit distribution over !: (,-(!)

§ a stochastic process to simulate data !
§ Intractable to evaluate likelihood

● Discriminator ./ !
◯ Output the probability that ! came from the data rather than the generator
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Recap: Generative Adversarial Nets (GANs)

● Learning
◯ A minimax game between the generator and the discriminator
◯ Train ! to maximize the probability of assigning the correct label to both 

training examples and generated samples
◯ Train " to fool the discriminator
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GAN plays the role of z1 as above. The space S0 is now implicit and we directly sample real image
x from data distribution pdata(x). The distribution in Eq.(1) is thus rewritten as:

p(x|z, y) =
⇢
pdata(x) y = 0

pg(x|z) y = 1,
(5)

where pg(x|z) = G(z) is the generative distribution. Note that pdata(x) is the empirical data
distribution which is free of parameters. The discriminator is defined in the same way as above, i.e.,
D(x) = p(y = 0|x). Then the objective of GAN is precisely defined in Eq.(2). To make this clearer,
we again transform the objective into its conventional form:

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = E
x⇠pdata(x) [log(1�D(x))] + E

x⇠G(z),z⇠p(z) [logD(x)]

= E
x⇠G(z),z⇠p(z) [logD(x)] .

(6)

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

minG LG = E
x⇠G(z),z⇠p(z) [log(1�D(x))] .

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = E
x⇠G(z),z⇠p(z) [logD(x)] .

Note that for learning the generator we are using the adapted objective, i.e., maximizing
E
x⇠G(z),z⇠p(z) [logD(x)], as is usually used in practice (Goodfellow et al., 2014), rather than

minimizing E
x⇠G(z),z⇠p(z) [log(1�D(x))].

KL Divergence Interpretation
Now we take a closer look into Eq.(2). Assume uniform prior distribution p(y) where p(y = 0) =

p(y = 1) = 0.5. For optimizing p(x|z, y), we have
Theorem 1. Let p✓(x|z, y) be the conditional distribution in Eq.(1) parameterized with ✓. Denote

p✓0(x|z) = Ep(y)[p✓0(x|z, y)] with fixed parameter ✓0. Denote q0(x|z, y) / q(1� y|x)p✓0(x|z).
Therefore,

Ep(z,y)

⇥
�r✓Ep✓(x|z,y) [log q(1� y|x)] |✓=✓0

⇤
=

r✓Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� JSD (p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0 ]
(7)

Proof.

Ep(z,y)

⇥
�Ep✓(x|z,y) [log q(1� y|x)]

⇤
=

Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� KL(p✓(x|z, y)kp✓0(x|z))] ,
(8)

where
Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] =

Ep(z)


p(y = 0)KL

✓
p✓(x|z, y = 0)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆
+

p(y = 1)KL
✓
p✓(x|z, y = 1)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆�
.

(9)

Taking derivatives w.r.t ✓ at ✓0 we get
r✓Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] |✓=✓0

= Ep(z)


1

2

Z

x

r✓p✓(x|z, y = 0)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

+

1

2

Z

x

r✓p✓(x|z, y = 1)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

�
|✓=✓0

= Ep(z) [r✓JSD(p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0 ] .

(10)

Taking derivatives of the both sides of Eq.(8) at w.r.t ✓ at ✓0 and plugging the last equation of Eq.(10),
we obtain our desired result.
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Figure courtesy: Kim

• [Goodfellow et al., 2014]
min& JSD( +,-.- || +01 )

• [Hu et al., 2017]
min& KL( +& || 5)



Wasserstein GAN (WGAN)

● If our data are on a low-dimensional manifold of a high dimensional 
space, the model’s manifold and the true data manifold can have a 
negligible intersection in practice 

© Eric Xing @ CMU, 2005-2020 7[Arjovsky et al., 2017] Slide adapted from bhiksha



Wasserstein GAN (WGAN)

● If our data are on a low-dimensional manifold of a high dimensional 
space, the model’s manifold and the true data manifold can have a 
negligible intersection in practice 

● KL divergence is undefined or infinite
● The loss function and gradients may not be continuous and well behaved 

© Eric Xing @ CMU, 2005-2020 8[Arjovsky et al., 2017] Slide adapted from bhiksha



Wasserstein GAN (WGAN)

● If our data are on a low-dimensional manifold of a high dimensional 
space, the model’s manifold and the true data manifold can have a 
negligible intersection in practice 

● KL divergence is undefined or infinite
● The loss function and gradients may not be continuous and well behaved 
● The Wasserstein Distance is well defined
◯ Earth Mover’s Distance
◯ Minimum transportation cost for making one pile 

of dirt in the shape of one probability distribution 
to the shape of the other distribution
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Wasserstein GAN (WGAN)

● Objective
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! "#$%$, "' = 1
* sup

||/||012
E4∼67898 : ; − E4∼6=[:(;)]

• ||:||B ≤ * : K- Lipschitz continuous
• Use gradient-clipping to ensure : has the Lipschitz continuity



WGAN vs Vanilla GAN
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Progressive GAN
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Low resolution images

[Karras et al., 2018]



Progressive GAN
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Low resolution images

add in 
additional 

layers

[Karras et al., 2018]



Progressive GAN
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Low resolution images

add in 
additional 

layers

High resolution images

[Karras et al., 2018]



BigGAN
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BigGAN

● GANs benefit dramatically from scaling
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Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a 
sequence of transformation functions
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Figure courtesy: Lilian Weng
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Normalizing Flow (NF)
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Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a 
sequence of transformation functions
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!" ∼ $ !"
% = !' = (' ∘ ('*+ ∘ ⋯∘ (+(!")

!/ = (/*+ !/*+
$ !/ = $ !/*+ det 3!/*+3!4

Transformation function (/
• Invertible

• Jacobian determinant easy to compute
e.g., choose 3(/*+/3!/ to be a triangular matrix

inference:

density:



Normalizing Flow (NF)

● Transforms a simple distribution into a complex one by applying a 
sequence of transformation functions

© Eric Xing @ CMU, 2005-2020 29

!" ∼ $ !"
% = !' = (' ∘ ('*+ ∘ ⋯∘ (+(!")

!/ = (/*+ !/*+
$ !/ = $ !/*+ det 3!/*+3!4

Transformation function (/
• Invertible

• Jacobian determinant easy to compute
e.g., choose 3(/*+/3!/ to be a triangular matrix

inference:

density:

log $ % = log $ !" +:
/;+

'
log det 3!/*+3!4

training: maximizes data log-likelihood



GLOW

● [Kingma and Dhariwal., 2018]
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One step of flow in the Glow model
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One step of flow in the Glow model
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Deep Learning

● Heavily rely on massive labeled data
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Deep Learning

● Heavily rely on massive labeled data

● Uninterpretable
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Deep Learning

● Heavily rely on massive labeled data

● Uninterpretable

● Hard to encode human intention and domain knowledge
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How Humans Learn

● Learn from concrete examples (as DNNs do)

● Learn from abstract knowledge (definitions, logic rules, etc) [Minksy 1980; Lake et al., 
2015]
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Rule:
regular verbs –d/-ed

Examples:
add
accept
ignore
end
block         
love       
…

V.S.
added
accepted
ignored
ended
blocked
loved



How Humans Learn

● Learn from concrete examples (as DNNs do)

● Learn from abstract knowledge (definitions, logic rules, etc) [Minksy 1980; Lake et al., 
2015]
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https://www.technologyreview.com/s/544606/can-this-man-make-aimore-human

Rule:
regular verbs –d/-ed

Examples:
add
accept
ignore
end
block         
love       
…

V.S.
added
accepted
ignored
ended
blocked
loved

Past tense of verb



Integrating Domain Knowledge into Deep Learning

● Consider a statistical model ! ∼ #$ !
◯ Conditional model, #$ !| &'#()*
◯ Generative model, e.g., ! is an image

◯ Discriminative model, e.g., + is a sentence label
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Integrating Domain Knowledge into Deep Learning

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '( ! ∈ ℝ
◯ Higher '( value, better ! w.r.t. the knowledge
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Integrating Domain Knowledge into Deep Learning

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '( ! ∈ ℝ
◯ Higher '( value, better ! w.r.t. the knowledge

● Sentiment classification
◯ “This was a terrific movie, but the director could have done better”

● Logical Rules:
◯ Sentence S with structure A-but-B  => sentiment of B dominates 
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Learning with Constraints

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '( ! ∈ ℝ
◯ Higher '( value, better ! w.r.t. the knowledge

● One way to impose the constraint is to maximize: +,-['((!)]
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Learning with Constraints

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '( ! ∈ ℝ
◯ Higher '( value, better ! w.r.t. the knowledge

● One way to impose the constraint is to maximize: +,-['((!)]
● Objective:
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min$ ℒ 4 − 6 +,- '( !

Regular objective (e.g., 
cross-entropy loss, etc.)

Regularization: 
imposing constraints
(difficult to compute)



Learning with Constraints
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Learning with Constraints

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '( ! ∈ ℝ
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min$ ℒ / − 1 234 '( !

Slide courtesy: Ruslan Salakhutdinov

ℒ /, 6 =KL 6(!)|| #$(!) − ; 2< '((!)



Learning with Constraints

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '( ! ∈ ℝ

● Introduce variational distribution +
◯ Impose constraint on +
◯ Encourage + to stay close to #
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Posterior Regularization 
[Ganchev et al., 2010]



Learning with Constraints

● Consider a statistical model ! ∼ #$(!)
● Consider a constraint function '( ! ∈ ℝ

● Introduce variational distribution +
◯ Impose constraint on +
◯ Encourage + to stay close to #

● Objective
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min$ ℒ 0 − 2 345 '( !
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min$,< ℒ 0 + 2 ℒ 0, +

Posterior Regularization 
[Ganchev et al., 2010]



Learning with Constraints

● EM algorithm for solving the problem

◯ E-step

◯ M-step
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min$ ℒ ( − 6&∗ log 3$(0)

Higher value -- higher probability 
under + – “soft constraint”
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Learning with Constraints

● EM algorithm for solving the problem

◯ E-step

◯ M-step
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Logical Rule Constraints 

● Consider a supervised learning: !"($|&)
● Input-Target space ((, *)
● First-order logic rules: (+, ,)
◯ + (, * ∈ [0, 1], could be soft
◯ , is the confidence level of the rule 

● Given 2 rules:

◯ E-step:

◯ M-step:
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3∗ $|& = !" $|& exp 9
:
,:+: $, & /<

min" ℒ A − CD∗ log !"($|&)
Knowledge distillation [Hinton et 
al., 2015; Bucilu et al., 2006][Hu et al., 2016]
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● First-order logic rules: (+, ,)
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◯ E-step:
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Knowledge Distillation

60

Teacher 
(Ensemble)

Student

!∗ # $% &|#

[Hinton et al., 2015; Bucilu et al., 2006]

Match soft predictions of the teacher 
network and student network 
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Knowledge Distillation

61

Teacher 
(Ensemble)

Student

! "|$ %& "|$

[Hinton et al., 2015; Bucilu et al., 2006]

Match soft predictions of the teacher 
network and student network 
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Knowledge Distillation

62

Teacher 
(Ensemble)

Student

!" #|%

[Hinton et al., 2015; Bucilu et al., 2006]

Match soft predictions of the teacher 
network and student network & #|%
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Rule Knowledge Distillation

63

min$ ℒ & − ()∗ log .$(0|2)

63[Hu et al., 2016]

● Neural network .$(0|2)
● Train to imitate the outputs of the rule-regularized teacher network
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Rule Knowledge Distillation

● Neural network !"($|&)
● Train to imitate the outputs of the rule-regularized teacher network
● At iteration ':

64

min" ℒ , − ./∗ log !"($|&)

64

soft prediction of !"($|5)true hard label

[Hu et al., 2016] © Eric Xing @ CMU, 2005-2020
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Rule Knowledge Distillation

● Neural network !"($|&)
● Train to imitate the outputs of the rule-regularized teacher network
● At iteration ':

66

min" ℒ , − ./∗ log !"($|&)

66

soft prediction of !"($|5)true hard label

soft prediction of the 
teacher network

6∗ $|& = !" $|& exp ;
<
=<>< $, & /A

balancing parameter
[Hu et al., 2016] © Eric Xing @ CMU, 2005-2020



Rule Knowledge Distillation

● Neural network !"($|&)
● At each iteration
◯ Construct a teacher network with “soft constraint”
◯ Train DNN to emulate the teacher network
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Learning Rules / Constraints

● Learn the confidence value !" for each logical rule [Hu et al., 2016b] 
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#∗ %|' = )* %|' exp .
"
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Slide adapted from Ruslan Salakhutdinov



Learning Rules / Constraints

● Learn the confidence value !" for each logical rule [Hu et al., 2016b] 

● More generally, optimize parameters of the constraint #$(&) [Hu et al., 2018]
◯ Treat #$ & as an extrinsic reward function
◯ Use MaxEnt Inverse Reinforcement Learning to learn the “reward”
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(∗ *|& = -. *|& exp 2
"
!"3" *, & /6

(∗ & = -. & exp !#$ & /6

Slide adapted from Ruslan Salakhutdinov



Pose-conditional Human Image Generation
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[Hu et al., 2018]



Pose-conditional Human Image Generation
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5 Experiments

We demonstrate the applications and effectiveness of the algorithm in two tasks related to image and
text generation [24], respectively.

Method SSIM Human
1 Ma et al. [38] 0.614 —
2 Pumarola et al. [44] 0.747 —
3 Ma et al. [37] 0.762 —

4 Base model 0.676 0.03
5 With fixed constraint 0.679 0.12

6 With learned constraint 0.727 0.77

Table 2: Results of image generation on Structural
Similarity (SSIM) [52] between generated and true
images, and human survey where the full model
yields better generations than the base models (Rows
5-6) on 77% test cases. See the text for more results
and discussion.

Figure 2: Training losses of the three mod-
els. The model with learned constraint con-
verges smoothly as base models.
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Figure 3: Samples generated by the models in Table 2. The model with learned human part constraint
generates correct poses and preserves human body structure much better.

5.1 Pose Conditional Person Image Generation

Given a person image and a new body pose, the goal is to generate an image of the same person under
the new pose (Figure 1, left). The task is challenging due to body self-occlusions and many cloth
and shape ambiguities. Complete end-to-end generative networks have previously failed [37] and
existing work designed specialized generative processes or network architectures [37, 44, 38]. We
show that with an added body part consistency constraint, a plain end-to-end generative model can
also be trained to produce highly competitive results, significantly improving over base models that
do not incorporate the problem structure.

Setup. We follow the previous work [37] and obtain from DeepFashion [35] a set of triples (source
image, pose keypoints, target image) as supervision data. The base generative model p

�

is an implicit
model that transforms the input source and pose directly to the pixels of generated image (and
hence defines a Dirac-delta distribution). We use the residual block architecture [51] widely-used in
image generation for the generative model. The base model is trained to minimize the L1 distance
loss between the real and generated pixel values, as well as to confuse a binary discriminator that
distinguishes between the generation and the true target image.

Knowledge constraint. Neither the pixel-wise distance nor the binary discriminator loss encode
any task structures. We introduce a structured consistency constraint f

�

that encourages each of the
body parts (e.g., head, legs) of the generated image to match the respective part of the true image.
Specifically, the constraint f

�

includes a human parsing module that classifies each pixel of a person
image into possible body parts. The constraint then evaluates cross entropies of the per-pixel part
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Quantitative and Human Evaluation



Takeaways

● Generative Adversarial Networks (GANs)
◯ Wasserstein GAN: new learning objectives
◯ Progressive GAN: new training schedule
◯ BigGAN: scaling up GAN models

● Normalizing Flow (NF)
◯ Chained transformation functions
◯ Exact latent inference, density evaluation, sampling

● Integrating Domain Knowledge into Deep Learning
◯ Domain knowledge as constraint
◯ Learning rules / constraints
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