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Random walk in MCMC
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Might reject a lot of samples



Random walk in MCMC
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If variance of Q is small then next sample might 
be very correlated to the previous one



MCMC: Recap

q Random walk can have poor acceptance rate
q The samples can have high correlation between themselves reducing 

the effective sample size
q Can we have a better proposal

q Using gradient information
q Using approximation of the given probability distribution
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Hamiltonian Monte Carlo 

q Hamiltonian Dynamics (1959)
q Deterministic System

q Hybrid Monte Carlo (1987)
q United MCMC and molecular Dynamics

q Statistical Application (1993)
q Inference in Neural Networks
q Improves acceptance rate
q Uncorrelated Samples
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Target distribution:

H(x,p)= E(x)+ K(p)
The Hamiltonian:

-̇ = . .̇ = −01(-)0- 2(.) = .T./2

PH(x,p)= "#6 7 #8(9)

:;

Auxiliary distribution:



Hamiltonian Dynamics

q Position vector !, Momentum vector "
q Kinetic Energy # "
q Potential Energy $ !
q Define % ", ! = # " + $ !
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Hamiltonian Dynamics

q Position vector !, Momentum vector "
q Kinetic Energy # "
q Potential Energy $ !
q Define % ", ! = # " + $ !
q Hamiltonian Dynamics

q Can help getting gradient of U
over x to draw next sample!  

© Eric Xing @ CMU, 2005-2020 7

)!*
)+ =

,%
,"*

)"*
)+ = − ,%,!*

Alternative notation 



Hamiltonian Dynamics: Example

q Kinetic Energy ! " = |%|&
'

q Potential Energy ( ) = *&
'

q So

q And 
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How to compute updates: Euler’s Method
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A divergent series!



How to compute updates: Leapfrog Method

q The updates looks like
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A shear transformation  → volume preserving 



Leapfrog Vs Euler
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MCMC from Hamiltonian Dynamics

q Let q be variable of interest (e.g., latent parameters of a model)
q Define: 

q where

q "($) denotes the prior, and &(($|() denotes the data likelihood

q Key Idea: Use Hamiltonian dynamics to propose next step.
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Negative Log 
probability



MCMC from Hamiltonian Dynamics

q Given !" (starting state)
q Draw # ∼ % 0,1
q Use ) steps of leapfrog to propose next state
q Accept / reject based on change in Hamiltonian

Each iteration of the HMC algorithm has two steps. The first changes only the 
momentum; the second may change both position and momentum. Both steps leave the 
canonical joint distribution of (q, p) invariant, and hence their combination also leaves 
this distribution invariant.
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MCMC from Hamiltonian Dynamics
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MCMC from Hamiltonian Dynamics
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MCMC from Hamiltonian Dynamics
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MCMC from Hamiltonian Dynamics
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MCMC from Hamiltonian Dynamics
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MCMC from Hamiltonian Dynamics

q Detailed balance satisfied
q Ergodic
q canonical distribution invariant
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2D Gaussian Example
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2D Gaussian Example
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100D Gaussian Example
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Acceptance Rate

q 2D example HMC : 91% Random Walk: 63%

q 100D example HMC: 87% Random Walk: 25%
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Langevin Dynamics
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Leapfrog
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One leepfrog step only, all at once:



Stochastic Langevin Dynamics

q For large datasets hard to compute the whole gradient
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Stochastic Gradient Langevin Dynamics

q For large datasets hard to compute the whole gradient
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Calculate using subset of data



Stochastic Gradient Langevin Dynamics: Bayesian Models

q Posterior

q SGLD update:
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Stochastic Gradient Langevin Dynamics

q High variance in stochastic gradient

q Take help from the optimization community  
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Conclusion

q HMC can improve acceptance rate and give better mixing
q Stochastic variants can be used to improve performance in large dataset 

scenarios
q HMC may not be used for discrete variable
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Supplementary

Variational MCMC

Sequential Monte Carlo
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Towards better proposal

q ! "#$% "&'() determines when the chain converges

q Idea: Variational approximation of P(X) be the proposal distribution
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Variational Inference: Recap

q Interested in posterior of parameters ! " #
q Using Jensen’s Inequality

q Choose $ % & where & is the variational parameter
q Replace ' # " with '(#|", +) where + is another set of variational 

parameters
q Using this we can easily obtain un-normalized bound for posterior
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Variational MCMC

q Idea: Variational approximation of P(X) be the proposal distribution

q ! "#$% "&'() = +,-.(0|2, 4, 5)

q Issues:
q Low acceptance in high dimensions
q Works well if +,-. is close to P
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Variational MCMC

q Design the proposal in blocks to take care of correlated variables

q Use a mixture of random walk and variational approximation as a 
proposal distribution

q Now can use stochastic variational methods in estimating !"#$(&|(, *, +)
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Variational MCMC

© Eric Xing @ CMU, 2005-2020

35



Conclusion

q Adapting proposal distribution can be helpful in
q Increasing mixing
q Decreasing time to convergence
q Increasing acceptance rate
q Getting uncorrelated information
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Recall: weighted resampling

q Sampling importance resampling (SIR):
1. Draw N samples from Q: X1 … XN

2. Construct weights: w1 … wN ,

3. Sub-sample x from {X1 … XN} w.p. (w1 … wN)
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Sequential MC: Sketch of Particle Filters

q The starting point

q Thus p(Xt|Y1:t) is represented by

q A sequential weighted resampler
q Time update

q Measurement update
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PF for switching SSM

q Recall that the belief state has O(2t) Gaussian modes
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PF for switching SSM

q Key idea: if you knew the discrete states, you can apply the right Kalman filter at each 
time step.

q So for each old particle m, sample
from the prior, apply 

the KF (using parameters for St
m) 

to the old belief state
to get an approximation to

q Useful for online tracking, 
fault diagnosis, etc. 
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