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Fig. 3.5 Generic illustration of M for a discrete random variable with |X m| finite. In this
case, the set M is a convex polytope, corresponding to the convex hull of {φ(x) | x ∈ X m}.
By the Minkowski–Weyl theorem, this polytope can also be written as the intersection
of a finite number of half-spaces, each of the form {µ ∈ Rd | ⟨aj , µ⟩ ≥ bj} for some pair
(aj , bj) ∈ Rd × R.

Example 3.8 (Ising Mean Parameters). Continuing from Exam-
ple 3.1, the sufficient statistics for the Ising model are the singleton
functions (xs, s ∈ V ) and the pairwise functions (xsxt, (s, t) ∈ E). The
vector of sufficient statistics takes the form:

φ(x) :=
(
xs,s ∈ V ; xsxt, (s, t) ∈ E

)
∈ R|V |+|E|. (3.30)

The associated mean parameters correspond to particular marginal
probabilities, associated with nodes and edges of the graph G as

µs = Ep[Xs] = P[Xs = 1] for all s ∈ V , and (3.31a)

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s, t) ∈ E. (3.31b)

Consequently, the mean parameter vector µ ∈ R|V |+|E| consists of
marginal probabilities over singletons (µs), and pairwise marginals
over variable pairs on graph edges (µst). The set M consists of the
convex hull of {φ(x),x ∈ {0,1}m}, where φ is given in Equation (3.30).
In probabilistic terms, the set M corresponds to the set of all
singleton and pairwise marginal probabilities that can be realized
by some distribution over (X1, . . . ,Xm) ∈ {0,1}m. In the polyhedral
combinatorics literature, this set is known as the correlation polytope,
or the cut polytope [69, 187].
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Quick Recap on Topic Models

q Topic models are models for collections of documents.

q Word order is ignored, and documents are modeled as a mixture over 
topics.

q We can do variational inference to approximate the posterior over latent 
variables in these models.
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Quick Recap on Topic Models – Variational Inference

q Coordinate ascent

3

1: Initialize variational topics q(Ø
k

), k = 1, ...,K .
2: repeat
3: for each document d 2 {1,2, ...,D} do
4: Initialize variational topic assigments q(z

dn

), n = 1, ...,N

5: repeat
6: Update variational topic proportions q(µ

d

)
7: Update variational topic assigments q(z

dn

), n = 1, ...,N

8: until Change of q(µ
d

) is small enough
9: end for

10: Update variational topics q(Ø
k

), k = 1, ...,K .
11: until Lower bound L(q) converges
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Drawback of Coordinate Ascent 

q Let’s use ! " #) ≜ !(") to indicate the variational topics. 
q The previous algorithm can be summarized in a high level, 

q What if we have millions of documents? This could be very slow.

4

Drawback of coordinate ascent

© Eric Xing @ CMU, 2005-2015 33

z Let’s use                               to indicate the variational topics.
z The previous algorithm can be summarized in a high level,

z What if we have millions of documents? This could be very slow.
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The Lower Bound in a Different Form

q Some algebra shows the lower bound is (verify yourself)

q This can be simplified as
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The One-parameter Lower Bound

q Let us maximize the objective w.r.t. to parameter !":$ first

q Let 

q The gradient of ℒ(') has the following form, 

q This allows us to stochastic gradient algorithms to estimate '
q Once ' is estimated, each !) can be estimated online if needed. 
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Natural Gradient

q But remember our parameter describes a distribution

q Gradient !ℒ($)!$ is usually not the steepest direction
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Natural Gradient

q For distributions, natural gradient is the steepest direction 
q Since our model is conditional conjugate, variational distribution is also in 

exponential family,

q The Riemannian metric describes the local curvature, 

q The natural gradient is as follows (please verify) 

q Setting ! " = 0 gives the traditional mean-field update.
8
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Stochastic Variational Inference using Natural Inference 
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Black-box Variational Inference (BBVI)

q We have derived variational inference specific for LDA

q There are innumerable conjugate/non-conjugate models

q Can we have a solution that does not entail model-specific work?
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Black-box Variational Inference (BBVI)

q Easily use variational inference with any model 

q Perform inference with massive data 

q No mathematical work beyond specifying the model 
11

Black Box Variational Inference (BBVI)
Black box variational inference
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(Courtesy: Blei et al., 2018)
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Black-box Variational Inference (BBVI)

q Sample from !(. ) (or a related distribution) 

q Form noisy gradients (without model-specific computation) 

q Use stochastic optimization 
12
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Black-box Variational Inference (BBVI)

q BBVI with the score gradient [Ranganath et al.,14]

q BBVI with the reparameterization gradient (more in lecture.12)
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BBVI with the score gradient 

q Probabilistic model: ! -- observed variable, " -- latent variable
q Variational distribution #("|&)
q ELBO:

q Gradient w.r.t. & (using the log-derivative trick)

q Compute noisy unbiased gradients of the ELBO with Monte Carlo 
samples from the variational distribution

14

Black Box Variational Inference

expectation of an easy-to-implement function f of the
latent and observed variables, where the expectation
is taken with respect to the variational distribution;
and we optimize that objective by sampling from the
variational distribution, evaluating the function f , and
forming the corresponding Monte Carlo estimate of
the gradient. We then use these noisy gradients in
a stochastic optimization algorithm to optimize the
variational parameters.

From the practitioner’s perspective, this method re-
quires only that he or she write functions to evaluate
the model log-likelihood. The remaining calculations
(properties of the variational distribution and evalu-
ating the Monte Carlo estimate) are easily put into a
library to share across models, which means our method
can be quickly applied to new modeling settings.

We will show that reducing the variance of the gradient
estimator is essential to the fast convergence of our
algorithm. We develop several strategies for controlling
the variance. The first is based on Rao-Blackwellization
(Casella and Robert, 1996), which exploits the factor-
ization of the variational distribution. The second is
based on control variates (Ross, 2002; Paisley et al.,
2012), using the gradient of the log probability of the
variational distribution. We emphasize that these vari-
ance reduction methods preserve our goal of black box
inference because they do not require computations
specific to the model.

Finally, we show how to use recent innovations in vari-
ational inference and stochastic optimization to scale
up and speed up our algorithm. First, we use adaptive
learning rates (Duchi et al., 2011) to set the step size
in the stochastic optimization. Second, we develop
generic stochastic variational inference (Ho↵man et al.,
2013), where we additionally subsample from the data
to more cheaply compute noisy gradients. This inno-
vates on the algorithm of Ho↵man et al. (2013), which
requires closed form coordinate updates to compute
noisy natural gradients.

We demonstrate our method in two ways. First, we
compare our method against Metropolis-Hastings-in-
Gibbs (Bishop, 2006), a sampling based technique that
requires similar e↵ort on the part of the practitioner.
We find our method reaches better predictive likeli-
hoods much faster than sampling methods. Second, we
use our method to quickly build and evaluate several
models of longitudinal patient data. This demonstrates
the ease with which we can now consider models gen-
erally outside the realm of variational methods.

Related work. There have been several lines of work
that use sampling methods to approximate gradients
in variational inference. Wingate and Weber (2013)

have independently considered a similar procedure to
ours, where the gradient is construed as an expectation
and the KL is optimized with stochastic optimization.
They too include a term to reduce the variance, but
do not describe how to set it. We further innovate
on their approach with Rao-Blackwellization, speci-
fied control variates, adaptive learning rates, and data
subsampling. Salimans and Knowles (2012) provide a
framework based on stochastic linear regression. Un-
like our approach, their method does not generalize
to arbitrary approximating families and requires the
inversion of a large matrix that becomes impractical in
high dimensional settings. Kingma and Welling (2013)
provide an alternative method for variational inference
through a reparameterization of the variational distri-
butions. In contrast to our approach, their algorithm is
limited to only continuous latent variables. Carbonetto
et al. (2009) present a stochastic optimization scheme
for moment estimation based on the specific form of
the variational objective when both the model and
the approximating family are in the same exponential
family. This di↵ers from our more general modeling
setting where latent variables may be outside of the
exponential family. Finally, Paisley et al. (2012) use
Monte Carlo gradients for di�cult terms in the varia-
tional objective and also use control variates to reduce
variance. However, theirs is not a black-box method.
Both the objective function and control variates they
propose require model-specific derivations.

2 Black Box Variational Inference

Variational inference transforms the problem of approx-
imating a conditional distribution into an optimization
problem (Jordan et al., 1999; Bishop, 2006; Wainwright
and Jordan, 2008). The idea is to posit a simple family
of distributions over the latent variables and find the
member of the family that is closest in KL divergence
to the conditional distribution.

In a probabilistic model, let x be observations, z be
latent variables, and � the free parameters of a varia-
tional distribution q.z j�/. Our goal is to approximate
p.z j x/ with the free parameter �. In variational infer-
ence we optimize the Evidence Lower BOund (ELBO),

L.�/ , E
q�.z/

Œlogp.x; z/ � log q.z/ç: (1)

Maximizing the ELBO is equivalent to minimizing the
KL divergence (Jordan et al., 1999; Bishop, 2006). Intu-
itively, the first term rewards variational distributions
that place high mass on configurations of the latent
variables that also explain the observations; the second
term rewards variational distributions that are entropic,
i.e., that maximize uncertainty by spreading their mass
on many configurations.

Rajesh Ranganath, Sean Gerrish, David M. Blei

Practitioners derive variational algorithms to maximize
the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
coordinate-ascent updates are available for condition-
ally conjugate exponential family models (Ghahramani
and Beal, 2001), where the distribution of each latent
variable given its Markov blanket falls in the same fam-
ily as the prior, for a small set of variational families.
However, these updates require analytic computation
of various expectations for each new model, a problem
which is exacerbated when the variational family falls
outside this small set. This leads to tedious bookkeep-
ing and overhead for developing new models.

The expectation in Eq. 1 is with respect to a known
distribution whose parameter – � – is known. We
will therefore use stochastic optimization to maximize
the ELBO. In stochastic optimization, we maximize a
function using noisy estimates of its gradient (Robbins
and Monro, 1951; Kushner and Yin, 1997; Bottou and
LeCun, 2004). We will form the derivative of the objec-
tive as an expectation with respect to the variational
approximation and then sample from the variational
approximation to get noisy but unbiased gradients,
which we use to update our parameters. For each sam-
ple, our noisy gradient requires evaluating the possibly
unnormalized joint distribution of the observed and
sampled variables, the variational distribution, and the
gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
the variational distribution and sampling method can
be derived once for each type of variational distribution
and reused for many models and applications.

Stochastic optimization. Let us now review
stochastic optimization. Let f .x/ be a function to
be maximized and h

t

.x/ be the realization of a ran-
dom variable H.x/ whose expectation is the gradient of
f .x/. Finally, let ⇢

t

be a nonnegative scalar. Stochastic
optimization updates x at the tth iteration with

x
tC1

 x
t

C ⇢
t

h
t

.x
t

/:

This converges to a maximum of f .x/ when ⇢
t

, the
learning rate, follows the Robbins-Monro conditions,

P1
tD1

⇢
t

D 1P1
tD1

⇢2

t

< 1:

Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can

Algorithm 1 Black Box Variational Inference

Input: data x, joint distribution p, mean field vari-
ational family q.
Initialize � randomly, t D 1.
repeat
// Draw S samples from q

for s D 1 to S do
zŒsç ⇠ q

end for
⇢ = tth value of a Robbins Monro sequence
� = �C ⇢ 1

S

P
S

sD1

r
�

log q.zŒsç j�/.logp.x; zŒsç/�
log q.zŒsç j�//

t D t C 1

until change of � is less than 0.01.

be computed from samples from the variational poste-
rior. To do this, we write the gradient of the ELBO
(Eq. 1) as an expectation with respect to the variational
distribution,

r
�

L D E
q

Œr
�

log q.zj�/.logp.x; z/ � log q.zj�//ç:

(2)

The derivation of Eq. 2 can be found in the appendix.
Note that in statistics the gradient r

�

log q.zj�/ of the
log of a probability distribution is called the score func-
tion (Cox and Hinkley, 1979). The joint p.x; z/ can be
replaced by its unnormalized version (see the appendix
for details). For subsequent sections, any appearance
of p.x; z/ may be replaced by an unnormalized version.

With this equation in hand, we compute noisy unbiased
gradients of the ELBO with Monte Carlo samples from
the variational distribution,

r
�

L ⇡ 1

S

SX
sD1

r
�

log q.z
s

j�/.logp.x; z
s

/ � log q.z
s

j�//;

where z
s

⇠ q.zj�/:

(3)

With Eq. 3, we can use stochastic optimization to
optimize the ELBO.

The basic algorithm is summarized in Algorithm 1. We
note that the score function and sampling algorithms
depend only on the variational distribution, not the
underlying model. Thus we can build up a collection of
these functions for various variational approximations
and reuse them in a package for a broad class of mod-
els. Further we did not make any assumptions about
the form of the model, only that the practitioner can
compute the log of the joint p.x; z

s

/. This algorithm
significantly reduces the e↵ort needed to implement
variational inference in a wide variety of models.

Score function
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Practitioners derive variational algorithms to maximize
the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
coordinate-ascent updates are available for condition-
ally conjugate exponential family models (Ghahramani
and Beal, 2001), where the distribution of each latent
variable given its Markov blanket falls in the same fam-
ily as the prior, for a small set of variational families.
However, these updates require analytic computation
of various expectations for each new model, a problem
which is exacerbated when the variational family falls
outside this small set. This leads to tedious bookkeep-
ing and overhead for developing new models.

The expectation in Eq. 1 is with respect to a known
distribution whose parameter – � – is known. We
will therefore use stochastic optimization to maximize
the ELBO. In stochastic optimization, we maximize a
function using noisy estimates of its gradient (Robbins
and Monro, 1951; Kushner and Yin, 1997; Bottou and
LeCun, 2004). We will form the derivative of the objec-
tive as an expectation with respect to the variational
approximation and then sample from the variational
approximation to get noisy but unbiased gradients,
which we use to update our parameters. For each sam-
ple, our noisy gradient requires evaluating the possibly
unnormalized joint distribution of the observed and
sampled variables, the variational distribution, and the
gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
the variational distribution and sampling method can
be derived once for each type of variational distribution
and reused for many models and applications.

Stochastic optimization. Let us now review
stochastic optimization. Let f .x/ be a function to
be maximized and h

t
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Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can

Algorithm 1 Black Box Variational Inference

Input: data x, joint distribution p, mean field vari-
ational family q.
Initialize � randomly, t D 1.
repeat
// Draw S samples from q

for s D 1 to S do
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be computed from samples from the variational poste-
rior. To do this, we write the gradient of the ELBO
(Eq. 1) as an expectation with respect to the variational
distribution,

r
�

L D E
q

Œr
�

log q.zj�/.logp.x; z/ � log q.zj�//ç:

(2)

The derivation of Eq. 2 can be found in the appendix.
Note that in statistics the gradient r

�

log q.zj�/ of the
log of a probability distribution is called the score func-
tion (Cox and Hinkley, 1979). The joint p.x; z/ can be
replaced by its unnormalized version (see the appendix
for details). For subsequent sections, any appearance
of p.x; z/ may be replaced by an unnormalized version.

With this equation in hand, we compute noisy unbiased
gradients of the ELBO with Monte Carlo samples from
the variational distribution,
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With Eq. 3, we can use stochastic optimization to
optimize the ELBO.

The basic algorithm is summarized in Algorithm 1. We
note that the score function and sampling algorithms
depend only on the variational distribution, not the
underlying model. Thus we can build up a collection of
these functions for various variational approximations
and reuse them in a package for a broad class of mod-
els. Further we did not make any assumptions about
the form of the model, only that the practitioner can
compute the log of the joint p.x; z

s

/. This algorithm
significantly reduces the e↵ort needed to implement
variational inference in a wide variety of models.
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BBVI with the score gradient 

q Probabilistic model: ! -- observed variable, " -- latent variable
q Variational distribution #("|&)
q ELBO:

q Gradient w.r.t. & (using the log-derivative trick)

q Compute noisy unbiased gradients of the ELBO with Monte Carlo 
samples from the variational distribution
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Black Box Variational Inference

expectation of an easy-to-implement function f of the
latent and observed variables, where the expectation
is taken with respect to the variational distribution;
and we optimize that objective by sampling from the
variational distribution, evaluating the function f , and
forming the corresponding Monte Carlo estimate of
the gradient. We then use these noisy gradients in
a stochastic optimization algorithm to optimize the
variational parameters.

From the practitioner’s perspective, this method re-
quires only that he or she write functions to evaluate
the model log-likelihood. The remaining calculations
(properties of the variational distribution and evalu-
ating the Monte Carlo estimate) are easily put into a
library to share across models, which means our method
can be quickly applied to new modeling settings.

We will show that reducing the variance of the gradient
estimator is essential to the fast convergence of our
algorithm. We develop several strategies for controlling
the variance. The first is based on Rao-Blackwellization
(Casella and Robert, 1996), which exploits the factor-
ization of the variational distribution. The second is
based on control variates (Ross, 2002; Paisley et al.,
2012), using the gradient of the log probability of the
variational distribution. We emphasize that these vari-
ance reduction methods preserve our goal of black box
inference because they do not require computations
specific to the model.

Finally, we show how to use recent innovations in vari-
ational inference and stochastic optimization to scale
up and speed up our algorithm. First, we use adaptive
learning rates (Duchi et al., 2011) to set the step size
in the stochastic optimization. Second, we develop
generic stochastic variational inference (Ho↵man et al.,
2013), where we additionally subsample from the data
to more cheaply compute noisy gradients. This inno-
vates on the algorithm of Ho↵man et al. (2013), which
requires closed form coordinate updates to compute
noisy natural gradients.

We demonstrate our method in two ways. First, we
compare our method against Metropolis-Hastings-in-
Gibbs (Bishop, 2006), a sampling based technique that
requires similar e↵ort on the part of the practitioner.
We find our method reaches better predictive likeli-
hoods much faster than sampling methods. Second, we
use our method to quickly build and evaluate several
models of longitudinal patient data. This demonstrates
the ease with which we can now consider models gen-
erally outside the realm of variational methods.

Related work. There have been several lines of work
that use sampling methods to approximate gradients
in variational inference. Wingate and Weber (2013)

have independently considered a similar procedure to
ours, where the gradient is construed as an expectation
and the KL is optimized with stochastic optimization.
They too include a term to reduce the variance, but
do not describe how to set it. We further innovate
on their approach with Rao-Blackwellization, speci-
fied control variates, adaptive learning rates, and data
subsampling. Salimans and Knowles (2012) provide a
framework based on stochastic linear regression. Un-
like our approach, their method does not generalize
to arbitrary approximating families and requires the
inversion of a large matrix that becomes impractical in
high dimensional settings. Kingma and Welling (2013)
provide an alternative method for variational inference
through a reparameterization of the variational distri-
butions. In contrast to our approach, their algorithm is
limited to only continuous latent variables. Carbonetto
et al. (2009) present a stochastic optimization scheme
for moment estimation based on the specific form of
the variational objective when both the model and
the approximating family are in the same exponential
family. This di↵ers from our more general modeling
setting where latent variables may be outside of the
exponential family. Finally, Paisley et al. (2012) use
Monte Carlo gradients for di�cult terms in the varia-
tional objective and also use control variates to reduce
variance. However, theirs is not a black-box method.
Both the objective function and control variates they
propose require model-specific derivations.

2 Black Box Variational Inference

Variational inference transforms the problem of approx-
imating a conditional distribution into an optimization
problem (Jordan et al., 1999; Bishop, 2006; Wainwright
and Jordan, 2008). The idea is to posit a simple family
of distributions over the latent variables and find the
member of the family that is closest in KL divergence
to the conditional distribution.

In a probabilistic model, let x be observations, z be
latent variables, and � the free parameters of a varia-
tional distribution q.z j�/. Our goal is to approximate
p.z j x/ with the free parameter �. In variational infer-
ence we optimize the Evidence Lower BOund (ELBO),

L.�/ , E
q�.z/

Œlogp.x; z/ � log q.z/ç: (1)

Maximizing the ELBO is equivalent to minimizing the
KL divergence (Jordan et al., 1999; Bishop, 2006). Intu-
itively, the first term rewards variational distributions
that place high mass on configurations of the latent
variables that also explain the observations; the second
term rewards variational distributions that are entropic,
i.e., that maximize uncertainty by spreading their mass
on many configurations.
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Practitioners derive variational algorithms to maximize
the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
coordinate-ascent updates are available for condition-
ally conjugate exponential family models (Ghahramani
and Beal, 2001), where the distribution of each latent
variable given its Markov blanket falls in the same fam-
ily as the prior, for a small set of variational families.
However, these updates require analytic computation
of various expectations for each new model, a problem
which is exacerbated when the variational family falls
outside this small set. This leads to tedious bookkeep-
ing and overhead for developing new models.

The expectation in Eq. 1 is with respect to a known
distribution whose parameter – � – is known. We
will therefore use stochastic optimization to maximize
the ELBO. In stochastic optimization, we maximize a
function using noisy estimates of its gradient (Robbins
and Monro, 1951; Kushner and Yin, 1997; Bottou and
LeCun, 2004). We will form the derivative of the objec-
tive as an expectation with respect to the variational
approximation and then sample from the variational
approximation to get noisy but unbiased gradients,
which we use to update our parameters. For each sam-
ple, our noisy gradient requires evaluating the possibly
unnormalized joint distribution of the observed and
sampled variables, the variational distribution, and the
gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
the variational distribution and sampling method can
be derived once for each type of variational distribution
and reused for many models and applications.

Stochastic optimization. Let us now review
stochastic optimization. Let f .x/ be a function to
be maximized and h

t

.x/ be the realization of a ran-
dom variable H.x/ whose expectation is the gradient of
f .x/. Finally, let ⇢

t

be a nonnegative scalar. Stochastic
optimization updates x at the tth iteration with

x
tC1

 x
t

C ⇢
t

h
t

.x
t

/:

This converges to a maximum of f .x/ when ⇢
t

, the
learning rate, follows the Robbins-Monro conditions,

P1
tD1

⇢
t

D 1P1
tD1

⇢2

t

< 1:

Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can

Algorithm 1 Black Box Variational Inference

Input: data x, joint distribution p, mean field vari-
ational family q.
Initialize � randomly, t D 1.
repeat
// Draw S samples from q

for s D 1 to S do
zŒsç ⇠ q

end for
⇢ = tth value of a Robbins Monro sequence
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be computed from samples from the variational poste-
rior. To do this, we write the gradient of the ELBO
(Eq. 1) as an expectation with respect to the variational
distribution,
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The derivation of Eq. 2 can be found in the appendix.
Note that in statistics the gradient r
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log q.zj�/ of the
log of a probability distribution is called the score func-
tion (Cox and Hinkley, 1979). The joint p.x; z/ can be
replaced by its unnormalized version (see the appendix
for details). For subsequent sections, any appearance
of p.x; z/ may be replaced by an unnormalized version.

With this equation in hand, we compute noisy unbiased
gradients of the ELBO with Monte Carlo samples from
the variational distribution,

r
�

L ⇡ 1

S

SX
sD1

r
�

log q.z
s

j�/.logp.x; z
s

/ � log q.z
s

j�//;

where z
s

⇠ q.zj�/:

(3)

With Eq. 3, we can use stochastic optimization to
optimize the ELBO.

The basic algorithm is summarized in Algorithm 1. We
note that the score function and sampling algorithms
depend only on the variational distribution, not the
underlying model. Thus we can build up a collection of
these functions for various variational approximations
and reuse them in a package for a broad class of mod-
els. Further we did not make any assumptions about
the form of the model, only that the practitioner can
compute the log of the joint p.x; z

s

/. This algorithm
significantly reduces the e↵ort needed to implement
variational inference in a wide variety of models.
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Practitioners derive variational algorithms to maximize
the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
coordinate-ascent updates are available for condition-
ally conjugate exponential family models (Ghahramani
and Beal, 2001), where the distribution of each latent
variable given its Markov blanket falls in the same fam-
ily as the prior, for a small set of variational families.
However, these updates require analytic computation
of various expectations for each new model, a problem
which is exacerbated when the variational family falls
outside this small set. This leads to tedious bookkeep-
ing and overhead for developing new models.

The expectation in Eq. 1 is with respect to a known
distribution whose parameter – � – is known. We
will therefore use stochastic optimization to maximize
the ELBO. In stochastic optimization, we maximize a
function using noisy estimates of its gradient (Robbins
and Monro, 1951; Kushner and Yin, 1997; Bottou and
LeCun, 2004). We will form the derivative of the objec-
tive as an expectation with respect to the variational
approximation and then sample from the variational
approximation to get noisy but unbiased gradients,
which we use to update our parameters. For each sam-
ple, our noisy gradient requires evaluating the possibly
unnormalized joint distribution of the observed and
sampled variables, the variational distribution, and the
gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
the variational distribution and sampling method can
be derived once for each type of variational distribution
and reused for many models and applications.

Stochastic optimization. Let us now review
stochastic optimization. Let f .x/ be a function to
be maximized and h

t

.x/ be the realization of a ran-
dom variable H.x/ whose expectation is the gradient of
f .x/. Finally, let ⇢

t

be a nonnegative scalar. Stochastic
optimization updates x at the tth iteration with
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Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can

Algorithm 1 Black Box Variational Inference

Input: data x, joint distribution p, mean field vari-
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be computed from samples from the variational poste-
rior. To do this, we write the gradient of the ELBO
(Eq. 1) as an expectation with respect to the variational
distribution,
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The derivation of Eq. 2 can be found in the appendix.
Note that in statistics the gradient r
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log q.zj�/ of the
log of a probability distribution is called the score func-
tion (Cox and Hinkley, 1979). The joint p.x; z/ can be
replaced by its unnormalized version (see the appendix
for details). For subsequent sections, any appearance
of p.x; z/ may be replaced by an unnormalized version.

With this equation in hand, we compute noisy unbiased
gradients of the ELBO with Monte Carlo samples from
the variational distribution,
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With Eq. 3, we can use stochastic optimization to
optimize the ELBO.

The basic algorithm is summarized in Algorithm 1. We
note that the score function and sampling algorithms
depend only on the variational distribution, not the
underlying model. Thus we can build up a collection of
these functions for various variational approximations
and reuse them in a package for a broad class of mod-
els. Further we did not make any assumptions about
the form of the model, only that the practitioner can
compute the log of the joint p.x; z

s

/. This algorithm
significantly reduces the e↵ort needed to implement
variational inference in a wide variety of models.
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BBVI with the score gradient 

q Gradient w.r.t. ! (using the log-derivative trick)

q Compute noisy unbiased gradients of the ELBO with Monte Carlo 
samples from the variational distribution

q Control the variance of the gradient
q Rao-Blackwellization, control variates, importance sampling, ... 

q Adaptive learning rates [Duchi+ 2011; Tieleman and Hinton 2012] 
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Practitioners derive variational algorithms to maximize
the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
coordinate-ascent updates are available for condition-
ally conjugate exponential family models (Ghahramani
and Beal, 2001), where the distribution of each latent
variable given its Markov blanket falls in the same fam-
ily as the prior, for a small set of variational families.
However, these updates require analytic computation
of various expectations for each new model, a problem
which is exacerbated when the variational family falls
outside this small set. This leads to tedious bookkeep-
ing and overhead for developing new models.

The expectation in Eq. 1 is with respect to a known
distribution whose parameter – � – is known. We
will therefore use stochastic optimization to maximize
the ELBO. In stochastic optimization, we maximize a
function using noisy estimates of its gradient (Robbins
and Monro, 1951; Kushner and Yin, 1997; Bottou and
LeCun, 2004). We will form the derivative of the objec-
tive as an expectation with respect to the variational
approximation and then sample from the variational
approximation to get noisy but unbiased gradients,
which we use to update our parameters. For each sam-
ple, our noisy gradient requires evaluating the possibly
unnormalized joint distribution of the observed and
sampled variables, the variational distribution, and the
gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
the variational distribution and sampling method can
be derived once for each type of variational distribution
and reused for many models and applications.

Stochastic optimization. Let us now review
stochastic optimization. Let f .x/ be a function to
be maximized and h

t

.x/ be the realization of a ran-
dom variable H.x/ whose expectation is the gradient of
f .x/. Finally, let ⇢

t

be a nonnegative scalar. Stochastic
optimization updates x at the tth iteration with
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, the
learning rate, follows the Robbins-Monro conditions,
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Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can

Algorithm 1 Black Box Variational Inference

Input: data x, joint distribution p, mean field vari-
ational family q.
Initialize � randomly, t D 1.
repeat
// Draw S samples from q

for s D 1 to S do
zŒsç ⇠ q

end for
⇢ = tth value of a Robbins Monro sequence
� = �C ⇢ 1
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be computed from samples from the variational poste-
rior. To do this, we write the gradient of the ELBO
(Eq. 1) as an expectation with respect to the variational
distribution,
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The derivation of Eq. 2 can be found in the appendix.
Note that in statistics the gradient r

�

log q.zj�/ of the
log of a probability distribution is called the score func-
tion (Cox and Hinkley, 1979). The joint p.x; z/ can be
replaced by its unnormalized version (see the appendix
for details). For subsequent sections, any appearance
of p.x; z/ may be replaced by an unnormalized version.

With this equation in hand, we compute noisy unbiased
gradients of the ELBO with Monte Carlo samples from
the variational distribution,
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With Eq. 3, we can use stochastic optimization to
optimize the ELBO.

The basic algorithm is summarized in Algorithm 1. We
note that the score function and sampling algorithms
depend only on the variational distribution, not the
underlying model. Thus we can build up a collection of
these functions for various variational approximations
and reuse them in a package for a broad class of mod-
els. Further we did not make any assumptions about
the form of the model, only that the practitioner can
compute the log of the joint p.x; z

s

/. This algorithm
significantly reduces the e↵ort needed to implement
variational inference in a wide variety of models.

Rajesh Ranganath, Sean Gerrish, David M. Blei

Practitioners derive variational algorithms to maximize
the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
coordinate-ascent updates are available for condition-
ally conjugate exponential family models (Ghahramani
and Beal, 2001), where the distribution of each latent
variable given its Markov blanket falls in the same fam-
ily as the prior, for a small set of variational families.
However, these updates require analytic computation
of various expectations for each new model, a problem
which is exacerbated when the variational family falls
outside this small set. This leads to tedious bookkeep-
ing and overhead for developing new models.

The expectation in Eq. 1 is with respect to a known
distribution whose parameter – � – is known. We
will therefore use stochastic optimization to maximize
the ELBO. In stochastic optimization, we maximize a
function using noisy estimates of its gradient (Robbins
and Monro, 1951; Kushner and Yin, 1997; Bottou and
LeCun, 2004). We will form the derivative of the objec-
tive as an expectation with respect to the variational
approximation and then sample from the variational
approximation to get noisy but unbiased gradients,
which we use to update our parameters. For each sam-
ple, our noisy gradient requires evaluating the possibly
unnormalized joint distribution of the observed and
sampled variables, the variational distribution, and the
gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
the variational distribution and sampling method can
be derived once for each type of variational distribution
and reused for many models and applications.

Stochastic optimization. Let us now review
stochastic optimization. Let f .x/ be a function to
be maximized and h
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.x/ be the realization of a ran-
dom variable H.x/ whose expectation is the gradient of
f .x/. Finally, let ⇢
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optimization updates x at the tth iteration with
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Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can

Algorithm 1 Black Box Variational Inference

Input: data x, joint distribution p, mean field vari-
ational family q.
Initialize � randomly, t D 1.
repeat
// Draw S samples from q
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end for
⇢ = tth value of a Robbins Monro sequence
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be computed from samples from the variational poste-
rior. To do this, we write the gradient of the ELBO
(Eq. 1) as an expectation with respect to the variational
distribution,
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The derivation of Eq. 2 can be found in the appendix.
Note that in statistics the gradient r
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log q.zj�/ of the
log of a probability distribution is called the score func-
tion (Cox and Hinkley, 1979). The joint p.x; z/ can be
replaced by its unnormalized version (see the appendix
for details). For subsequent sections, any appearance
of p.x; z/ may be replaced by an unnormalized version.

With this equation in hand, we compute noisy unbiased
gradients of the ELBO with Monte Carlo samples from
the variational distribution,
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With Eq. 3, we can use stochastic optimization to
optimize the ELBO.

The basic algorithm is summarized in Algorithm 1. We
note that the score function and sampling algorithms
depend only on the variational distribution, not the
underlying model. Thus we can build up a collection of
these functions for various variational approximations
and reuse them in a package for a broad class of mod-
els. Further we did not make any assumptions about
the form of the model, only that the practitioner can
compute the log of the joint p.x; z

s

/. This algorithm
significantly reduces the e↵ort needed to implement
variational inference in a wide variety of models.

(Courtesy: Blei et al., 2018)
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BBVI with the reparameterized gradient

q ELBO:
q Assume that we can express the variational distribution with a 

transformation

q E.g.,  

q Also assume log $(&, () and log *(() are differentiable with respect to z 
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Black Box Variational Inference

expectation of an easy-to-implement function f of the
latent and observed variables, where the expectation
is taken with respect to the variational distribution;
and we optimize that objective by sampling from the
variational distribution, evaluating the function f , and
forming the corresponding Monte Carlo estimate of
the gradient. We then use these noisy gradients in
a stochastic optimization algorithm to optimize the
variational parameters.

From the practitioner’s perspective, this method re-
quires only that he or she write functions to evaluate
the model log-likelihood. The remaining calculations
(properties of the variational distribution and evalu-
ating the Monte Carlo estimate) are easily put into a
library to share across models, which means our method
can be quickly applied to new modeling settings.

We will show that reducing the variance of the gradient
estimator is essential to the fast convergence of our
algorithm. We develop several strategies for controlling
the variance. The first is based on Rao-Blackwellization
(Casella and Robert, 1996), which exploits the factor-
ization of the variational distribution. The second is
based on control variates (Ross, 2002; Paisley et al.,
2012), using the gradient of the log probability of the
variational distribution. We emphasize that these vari-
ance reduction methods preserve our goal of black box
inference because they do not require computations
specific to the model.

Finally, we show how to use recent innovations in vari-
ational inference and stochastic optimization to scale
up and speed up our algorithm. First, we use adaptive
learning rates (Duchi et al., 2011) to set the step size
in the stochastic optimization. Second, we develop
generic stochastic variational inference (Ho↵man et al.,
2013), where we additionally subsample from the data
to more cheaply compute noisy gradients. This inno-
vates on the algorithm of Ho↵man et al. (2013), which
requires closed form coordinate updates to compute
noisy natural gradients.

We demonstrate our method in two ways. First, we
compare our method against Metropolis-Hastings-in-
Gibbs (Bishop, 2006), a sampling based technique that
requires similar e↵ort on the part of the practitioner.
We find our method reaches better predictive likeli-
hoods much faster than sampling methods. Second, we
use our method to quickly build and evaluate several
models of longitudinal patient data. This demonstrates
the ease with which we can now consider models gen-
erally outside the realm of variational methods.

Related work. There have been several lines of work
that use sampling methods to approximate gradients
in variational inference. Wingate and Weber (2013)

have independently considered a similar procedure to
ours, where the gradient is construed as an expectation
and the KL is optimized with stochastic optimization.
They too include a term to reduce the variance, but
do not describe how to set it. We further innovate
on their approach with Rao-Blackwellization, speci-
fied control variates, adaptive learning rates, and data
subsampling. Salimans and Knowles (2012) provide a
framework based on stochastic linear regression. Un-
like our approach, their method does not generalize
to arbitrary approximating families and requires the
inversion of a large matrix that becomes impractical in
high dimensional settings. Kingma and Welling (2013)
provide an alternative method for variational inference
through a reparameterization of the variational distri-
butions. In contrast to our approach, their algorithm is
limited to only continuous latent variables. Carbonetto
et al. (2009) present a stochastic optimization scheme
for moment estimation based on the specific form of
the variational objective when both the model and
the approximating family are in the same exponential
family. This di↵ers from our more general modeling
setting where latent variables may be outside of the
exponential family. Finally, Paisley et al. (2012) use
Monte Carlo gradients for di�cult terms in the varia-
tional objective and also use control variates to reduce
variance. However, theirs is not a black-box method.
Both the objective function and control variates they
propose require model-specific derivations.

2 Black Box Variational Inference

Variational inference transforms the problem of approx-
imating a conditional distribution into an optimization
problem (Jordan et al., 1999; Bishop, 2006; Wainwright
and Jordan, 2008). The idea is to posit a simple family
of distributions over the latent variables and find the
member of the family that is closest in KL divergence
to the conditional distribution.

In a probabilistic model, let x be observations, z be
latent variables, and � the free parameters of a varia-
tional distribution q.z j�/. Our goal is to approximate
p.z j x/ with the free parameter �. In variational infer-
ence we optimize the Evidence Lower BOund (ELBO),

L.�/ , E
q�.z/

Œlogp.x; z/ � log q.z/ç: (1)

Maximizing the ELBO is equivalent to minimizing the
KL divergence (Jordan et al., 1999; Bishop, 2006). Intu-
itively, the first term rewards variational distributions
that place high mass on configurations of the latent
variables that also explain the observations; the second
term rewards variational distributions that are entropic,
i.e., that maximize uncertainty by spreading their mass
on many configurations.
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BBVI with the reparameterization gradient

q ELBO:
q Assume that we can express the variational distribution with a 

transformation

q Reparameterization gradient

q Can use autodifferentiation to take gradients (especially of the model) 
q Can use different transformations
q Not all distributions can be reparameterized
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Black Box Variational Inference

expectation of an easy-to-implement function f of the
latent and observed variables, where the expectation
is taken with respect to the variational distribution;
and we optimize that objective by sampling from the
variational distribution, evaluating the function f , and
forming the corresponding Monte Carlo estimate of
the gradient. We then use these noisy gradients in
a stochastic optimization algorithm to optimize the
variational parameters.

From the practitioner’s perspective, this method re-
quires only that he or she write functions to evaluate
the model log-likelihood. The remaining calculations
(properties of the variational distribution and evalu-
ating the Monte Carlo estimate) are easily put into a
library to share across models, which means our method
can be quickly applied to new modeling settings.

We will show that reducing the variance of the gradient
estimator is essential to the fast convergence of our
algorithm. We develop several strategies for controlling
the variance. The first is based on Rao-Blackwellization
(Casella and Robert, 1996), which exploits the factor-
ization of the variational distribution. The second is
based on control variates (Ross, 2002; Paisley et al.,
2012), using the gradient of the log probability of the
variational distribution. We emphasize that these vari-
ance reduction methods preserve our goal of black box
inference because they do not require computations
specific to the model.

Finally, we show how to use recent innovations in vari-
ational inference and stochastic optimization to scale
up and speed up our algorithm. First, we use adaptive
learning rates (Duchi et al., 2011) to set the step size
in the stochastic optimization. Second, we develop
generic stochastic variational inference (Ho↵man et al.,
2013), where we additionally subsample from the data
to more cheaply compute noisy gradients. This inno-
vates on the algorithm of Ho↵man et al. (2013), which
requires closed form coordinate updates to compute
noisy natural gradients.

We demonstrate our method in two ways. First, we
compare our method against Metropolis-Hastings-in-
Gibbs (Bishop, 2006), a sampling based technique that
requires similar e↵ort on the part of the practitioner.
We find our method reaches better predictive likeli-
hoods much faster than sampling methods. Second, we
use our method to quickly build and evaluate several
models of longitudinal patient data. This demonstrates
the ease with which we can now consider models gen-
erally outside the realm of variational methods.

Related work. There have been several lines of work
that use sampling methods to approximate gradients
in variational inference. Wingate and Weber (2013)

have independently considered a similar procedure to
ours, where the gradient is construed as an expectation
and the KL is optimized with stochastic optimization.
They too include a term to reduce the variance, but
do not describe how to set it. We further innovate
on their approach with Rao-Blackwellization, speci-
fied control variates, adaptive learning rates, and data
subsampling. Salimans and Knowles (2012) provide a
framework based on stochastic linear regression. Un-
like our approach, their method does not generalize
to arbitrary approximating families and requires the
inversion of a large matrix that becomes impractical in
high dimensional settings. Kingma and Welling (2013)
provide an alternative method for variational inference
through a reparameterization of the variational distri-
butions. In contrast to our approach, their algorithm is
limited to only continuous latent variables. Carbonetto
et al. (2009) present a stochastic optimization scheme
for moment estimation based on the specific form of
the variational objective when both the model and
the approximating family are in the same exponential
family. This di↵ers from our more general modeling
setting where latent variables may be outside of the
exponential family. Finally, Paisley et al. (2012) use
Monte Carlo gradients for di�cult terms in the varia-
tional objective and also use control variates to reduce
variance. However, theirs is not a black-box method.
Both the objective function and control variates they
propose require model-specific derivations.

2 Black Box Variational Inference

Variational inference transforms the problem of approx-
imating a conditional distribution into an optimization
problem (Jordan et al., 1999; Bishop, 2006; Wainwright
and Jordan, 2008). The idea is to posit a simple family
of distributions over the latent variables and find the
member of the family that is closest in KL divergence
to the conditional distribution.

In a probabilistic model, let x be observations, z be
latent variables, and � the free parameters of a varia-
tional distribution q.z j�/. Our goal is to approximate
p.z j x/ with the free parameter �. In variational infer-
ence we optimize the Evidence Lower BOund (ELBO),

L.�/ , E
q�.z/

Œlogp.x; z/ � log q.z/ç: (1)

Maximizing the ELBO is equivalent to minimizing the
KL divergence (Jordan et al., 1999; Bishop, 2006). Intu-
itively, the first term rewards variational distributions
that place high mass on configurations of the latent
variables that also explain the observations; the second
term rewards variational distributions that are entropic,
i.e., that maximize uncertainty by spreading their mass
on many configurations.
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Roadmap

q Two families of approximate inference algorithms
q Mean-field approximation (we have seen it)
q Loopy belief propagation (sum-product/message-passing on ANY graph, not 

just trees)

q Are there some connections of these two approaches?

q We will re-exam them from a unified point of view based on the 
variational principle:

q Loop BP: outer approximation
q Mean-field: inner approximation 
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Variational Methods

q “Variational”: fancy name for optimization-based formulations
q i.e., represent the quantity of interest as the solution to an optimization problem
q approximate the desired solution by relaxing/approximating the intractable

optimization problem

q Examples:
q Courant-Fischer for eigenvalues:

q Linear system of equations:
q variational formulation:

q for large system, apply conjugate gradient method
21
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Inference Problems in Graphical Models

q Undirected graphical model (MRF):

q The quantities of interest:

q marginal distributions: 

q normalization constant (partition function): 

q Question: how to represent these quantities in a variational form? 

q Use tools from (1) exponential families; (2) convex analysis
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Exponential Families

q Canonical parameterization

q Log normalization constant:

it is a convex function (Prop 3.1)

q Effective canonical parameters:

23

Canonical Parameters Sufficient Statistics Log partition Function

A(✓) = log

Z
exp{✓T�(x)}dx
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Graphical Models as Exponential Families

q Undirected graphical model (MRF):

q MRF in an exponential form:

q can be written in a linear form after some parameterization 

24

p(x; ✓) =
1

Z(✓)

Y

C2C
 (xC ; ✓C)

p(x; ✓) = exp

(
X

C2C
log (xC ; ✓C)� logZ(✓)

)

log (xC ; ✓C)
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Example: Gaussian MRF

q Consider a zero-mean multivariate Gaussian distribution that respects 
the Markov property of a graph

q Hammersley-Clifford theorem states that the precision matrix also respects 
the graph structure

q Gaussian MRF in the exponential form

q Sufficient statistics are

25

⇤ = ⌃�13.3 Examples of Graphical Models in Exponential Form 45

Fig. 3.1 (a) Undirected graphical model on five nodes. (b) For a Gaussian Markov random
field, the zero pattern of the inverse covariance or precision matrix respects the graph
structure: for any pair i ̸= j, if (i, j) /∈ E, then Θij = 0.

respects the Markov properties of G (see Section 2.2). It can be
represented in exponential form using the collection of sufficient statis-
tics (xs,x2

s,s ∈ V ; xsxt, (s, t) ∈ E). We define an m-vector θ of param-
eters associated with the vector of sufficient statistics x = (x1, . . . ,xm),
and a symmetric matrix Θ ∈ Rm×m associated with the matrix xxT .
Concretely, the matrix Θ is the negative of the inverse covariance or pre-
cision matrix, and by the Hammersley–Clifford theorem [25, 102, 153],
it has the property that Θst = 0 if (s, t) /∈ E, as illustrated in Fig-
ure 3.1. Consequently, the dimension of the resulting exponential family
is d = 2m + |E|.

With this set-up, the multivariate Gaussian is an exponential fam-
ily3 of the form:

pθ(x) = exp
{
⟨θ, x⟩ +

1
2
⟨⟨Θ, xxT ⟩⟩ − A(θ,Θ)

}
, (3.12)

where ⟨θ, x⟩ :=
∑m

i=1 θixi is the Euclidean inner product on Rm, and

⟨⟨Θ, xxT ⟩⟩ := trace(ΘxxT ) =
m∑

i=1

m∑

j=1

Θijxixj (3.13)

is the Frobenius inner product on symmetric matrices. The integral
defining A(θ,Θ) is finite only if Θ ≺ 0, so that

Ω = {(θ,Θ) ∈ Rm × Rm×m | Θ ≺ 0, Θ = ΘT }. (3.14)

3 Our inclusion of the 1
2 -factor in the term 1

2 ⟨⟨Θ, xxT ⟩⟩ is for later technical convenience.

p(x) = exp

⇢
1

2

⌦
⇥,xxT

↵
�A(⇥)

�
,where ⇥ = �⇤

{x2
s, s 2 V ;xsxt, (s, t) 2 E}
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Example: Discrete MRF

q In exponential form

26

p(x; �) / exp

8
<

:
X

s2V

X

j

�s;jIj(xs) +

X

(s,t)2E

�st;jkIj(xs)Ik(xt)

9
=

;

Example: Discrete Markov random field

PSfrag replacements

θst(xs, xt)
θs(xs)θt(xt)

Indicators: I j(xs) =

8

<

:

1 if xs = j

0 otherwise

Parameters: θs = {θs;j , j ∈ Xs}

θst = {θst;jk, (j, k) ∈ Xs × Xt}

Compact form: θs(xs) :=
P

j θs;jI j(xs)

θst(xs, xt) :=
P

j,k θst;jkI j(xs)I k(xt)

Density (w.r.t. counting measure) of the form:

p(x; θ) ∝ exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

Cumulant generating function (log normalization constant):

A(θ) = log
X

x∈Xn

exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯
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Why Exponential Families?

q Computing the expectation of sufficient statistics (mean parameters) given the 
canonical parameters yields the marginals

q Computing the normalizer yields the log partition function (or log likelihood 
function)

27

3.4 Mean Parameterization and Inference Problems 59

We refer to the sufficient statistics (3.34) as the standard overcom-
plete representation. Its overcompleteness was discussed previously in
Example 3.2.

With this choice of sufficient statistics, the mean parameters take a
very intuitive form: in particular, for each node s ∈ V

µs;j = Ep[I j(Xs)] = P[Xs = j] ∀j ∈ Xs, (3.35)

and for each edge (s, t) ∈ E, we have

µst;jk = Ep[I st;jk(Xs,Xt)] = P[Xs = j,Xt = k] ∀(j,k) ∈ Xs ∈ Xt.
(3.36)

Thus, the mean parameters correspond to singleton marginal distribu-
tions µs and pairwise marginal distributions µst associated with the
nodes and edges of the graph. In this case, we refer to the set M as the
marginal polytope associated with the graph, and denote it by M(G).
Explicitly, it is given by

M(G) := {µ ∈ Rd | ∃p such that (3.35) holds ∀(s;j), and

(3.36) holds ∀(st;jk
}
. (3.37)

Note that the correlation polytope for the Ising model presented
in Example 3.8 is a special case of a marginal polytope, obtained
for Xs ∈ {0,1} for all nodes s. The only difference is we have defined
marginal polytopes with respect to the standard overcomplete basis of
indicator functions, whereas the Ising model is usually parameterized as
a minimal exponential family. The codeword polytope of Example 3.9 is
another special case of a marginal polytope. In this case, the reduction
requires two steps: first, we convert the factor graph representation of
the code — for instance, as shown in Figure 3.7(a) — to an equiva-
lent pairwise Markov random field, involving binary variables at each
bit node, and higher-order discrete variables at each factor node. (See
Appendix E.3 for details of this procedure for converting from factor
graphs to pairwise MRFs.) The marginal polytope associated with this
pairwise MRF is simply a lifted version of the codeword polytope. We
discuss these and other examples of marginal polytopes in more detail
in later sections.
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logZ(�) = A(�)
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Computing Mean Parameter: Bernoulli 

q A single Bernoulli random variable

q Inference = Computing the mean parameter

q Want to do it in a variational manner: cast the procedure of computing 
mean (summation) in an optimization-based formulation

28

p(x; ✓) = exp{✓x�A(✓)}, x 2 {0, 1}, A(✓) = log(1 + e

✓
)

X ✓

µ(�) = E✓[X] = 1 · p(X = 1; �) + 0 · p(X = 0; �) =
e✓

1 + e✓
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Conjugate Dual Function

q Given any function , its conjugate dual function is:

q Conjugate dual is always a convex function: point-wise supremum of a 
class of linear functions

29

The conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

• f∗ is convex (even if f is not)

• will be useful in chapter 5

Convex functions 3–21

✓
✓µ

✓

µ

f(✓)

f⇤(µ) = sup
✓

{h✓, µi � f(✓)}
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Dual of the Dual is the Original

q Under some technical condition on     (convex and lower semi-
continuous), the dual of dual is itself: 

q For log partition function

q The dual variable      has a natural interpretation as the mean parameters 

30

f

f(✓) = sup
µ

{h✓, µi � f⇤(µ)}

f = (f⇤)⇤

A(✓) = sup
µ
{h✓, µi �A⇤(µ)}, ✓ 2 ⌦

µ
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Computing Mean Parameter: Bernoulli 

q The conjugate

q Stationary condition

q If 

q If 

q We have

q The variational form:

q The optimum is achieved at                      . This is the mean!
31

Example: Single Bernoulli

Random variable X ∈ {0, 1} yields exponential family of the form:

p(x; θ) ∝ exp
˘

θ x
¯

with A(θ) = log
ˆ

1 + exp(θ)
˜

.

Let’s compute the dual A∗(µ) := sup
θ∈R

˘

µθ − log[1 + exp(θ)]
¯

.

(Possible) stationary point: µ = exp(θ)/[1 + exp(θ)].

PSfrag replacements

A(θ)

θ

⟨µ, θ⟩ − A∗(µ)

PSfrag replacements

A(θ)

θ
⟨µ, θ⟩ − c

(a) Epigraph supported (b) Epigraph cannot be supported

We find that: A∗(µ) =

8

<

:

µ log µ + (1 − µ) log(1 − µ) if µ ∈ [0, 1]

+∞ otherwise.
.

Leads to the variational representation: A(θ) = maxµ∈[0,1]

˘

µ · θ − A∗(µ)
¯

.
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e✓

1 + e✓
(µ = rA(✓))

µ 2 (0, 1), ✓(µ) = log

✓
µ

1� µ

◆
, A⇤

(µ) = µ log(µ) + (1� µ) log(1� µ)

µ 62 [0, 1], A⇤(µ) = +1
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Computation of Conjugate Dual

q Given an exponential family

q The dual function

q The stationary condition:
q Derivatives of A yields mean parameters

q The stationary condition becomes 
q Question: for which does it have a solution        ?

32

p(x1, . . . , xm; ✓) = exp

(
dX

i=1

✓i�i(x)�A(✓)

)

66 Graphical Models as Exponential Families

between A and the maximum entropy principle is specified precisely in
terms of the conjugate dual function A∗, to which we now turn.

3.6 Conjugate Duality: Maximum Likelihood and
Maximum Entropy

Conjugate duality is a cornerstone of convex analysis [112, 203], and
is a natural source for variational representations. In this section, we
explore the relationship between the log partition function A and its
conjugate dual function A∗. This conjugate relationship is defined by a
variational principle that is central to the remainder of this survey, in
that it underlies a wide variety of known algorithms, both of an exact
nature (e.g., the junction tree algorithm and its special cases of Kalman
filtering, the forward–backward algorithm, peeling algorithms) and an
approximate nature (e.g., sum-product on graphs with cycles, mean
field, expectation-propagation, Kikuchi methods, linear programming,
and semidefinite relaxations).

3.6.1 General Form of Conjugate Dual

Given a function A, the conjugate dual function to A, which we denote
by A∗, is defined as follows:

A∗(µ) := sup
θ∈Ω

{⟨µ, θ⟩ − A(θ)}. (3.42)

Here µ ∈ Rd is a fixed vector of so-called dual variables of the same
dimension as θ. Our choice of notation — i.e., using µ again —
is deliberately suggestive, in that these dual variables turn out to
have a natural interpretation as mean parameters. Indeed, we have
already mentioned one statistical interpretation of this variational prob-
lem (3.42); in particular, the right-hand side is the optimized value of
the rescaled log likelihood (3.38). Of course, this maximum likelihood
problem only makes sense when the vector µ belongs to the set M; an
example is the vector of empirical moments µ̂ = 1

n

∑n
i=1 φ(Xi) induced

by a set of data Xn
1 = {X1, . . . ,Xn}. In our development, we consider

the optimization problem (3.42) more broadly for any vector µ ∈ Rd. In
this context, it is necessary to view A∗ as a function taking values in the

More general computation of the dual A∗

• consider the definition of the dual function:

A∗(µ) = sup
θ∈Rd

{
⟨µ, θ⟩ − A(θ)

}
.

• taking derivatives w.r.t θ to find a stationary point yields:

µ −∇A(θ) = 0.

• Useful fact: Derivatives of A yield mean parameters:

∂A

∂θα
(θ) = Eθ[φα(x)] :=

∫
φα(x)p(x; θ)ν(x).

Thus, stationary points satisfy the equation:

µ = Eθ[φ(x)] (1)
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✓(µ)µ 2 Rd

@A

@✓i
(✓) = E✓[�i(X)] =

Z
�i(x)p(x; ✓) dx

µ = E✓[�(X)]
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Computation of Conjugate Dual

q Let’s assume there is a solution         such that 

q The dual has the form

q The entropy is defined as  

q So the dual is when there is a solution

33

✓(µ) µ = E✓(u)[�(X)]

¡+Brief Article+¿

¡+The Author+¿

March 12, 2012

µ1 � u12

µ2 � u12

u12 � 0

1 + µ12 � u1 + u2

M(G) = {µ 2 Rd | 9p with marginals µs;j , µst;jk}

A⇤
(µ) = h✓(µ), µi �A(✓(µ))

= E✓(µ) [h✓(µ),�(X)i �A(✓(µ)]

= E✓(µ) [log p(X; ✓(µ)]

1

H(p(x)) = �
Z

p(x) log p(x) dx

¡+Brief Article+¿

¡+The Author+¿

March 12, 2012

µ1 � u12

µ2 � u12

u12 � 0

1 + µ12 � u1 + u2

M(G) = {µ 2 Rd | 9p with marginals µs;j , µst;jk}

A⇤
(µ) = h✓(µ), µi �A(✓(µ))

= E✓(µ) [h✓(µ),�(X)i �A(✓(µ)]

= E✓(µ) [log p(X; ✓(µ)]

A⇤
(µ) = �H(p(x; ✓(µ))

1

✓(µ)
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Remark

q The last few identities are not coincidental but rely on a deep theory in 
general exponential family.

q The dual function is the negative entropy function
q The mean parameter is restricted
q Solving the optimization returns the mean parameter and log partition function

q Next step: develop this framework for general exponential 
families/graphical models.

q However,
q Computing the conjugate dual (entropy) is in general intractable
q The constrain set of mean parameter is hard to characterize
q Hence we need approximation
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Complexity of Computing Conjugate Dual

q The dual function is implicitly defined:

q Solving the inverse mapping for canonical parameters  is nontrivial 

q Evaluating the negative entropy requires high-dimensional integration (summation)

q Question: for which does it have a solution        ? i.e., the domain
of . 

q the ones in marginal polytope!

35

74 Graphical Models as Exponential Families

Fig. 3.9 A block diagram decomposition of A∗ as the composition of two functions. Any
mean parameter µ ∈ M◦ is first mapped back to a canonical parameter θ(µ) in the inverse
image (∇A)−1(µ). The value of A∗(µ) corresponds to the negative entropy −H(pθ(µ)) of
the associated exponential family density pθ(µ).

rapidly with the graph size. Indeed, unless fundamental conjectures in
complexity theory turn out to be false, it is not even possible to opti-
mize a linear function over M for a general discrete MRF. In addition
to the complexity of the constraint set, issue (b) highlights that even
evaluating the cost function at a single point µ ∈ M, let alone optimiz-
ing it over M, is extremely difficult.

To understand the complexity inherent in evaluating the dual value
A∗(µ), note that Theorem 3.4 provides only an implicit characteri-
zation of A∗ as the composition of mappings: first, the inverse map-
ping (∇A)−1 : M◦ → Ω, in which µ maps to θ(µ), corresponding to the
exponential family member with mean parameters µ; and second, the
mapping from θ(µ) to the negative entropy −H(pθ(µ)) of the associ-
ated exponential family density. This decomposition of the value A∗(µ)
is illustrated in Figure 3.9. Consequently, computing the dual value
A∗(µ) at some point µ ∈ M◦ requires computing the inverse map-
ping (∇A)−1(µ), in itself a nontrivial problem, and then evaluating
the entropy, which requires high-dimensional integration for general
graphical models. These difficulties motivate the use of approximations
to M and A∗. Indeed, as shown in the sections to follow, a broad class
of methods for approximate marginalization are based on this strategy
of finding an approximation to the exact variational principle, which is
then often solved using some form of message-passing algorithm.

µ = E✓[�(X)] ✓(µ)

✓(µ)µ 2 Rd

A⇤(µ)

© Eric Xing @ CMU, 2005-2020



Marginal Polytope

q For any distribution        and a set of sufficient statistics , define a 
vector of mean parameters 

q is not necessarily an exponential family

q The set of all realizable mean parameters

q It is a convex set

q For discrete exponential families, this is called marginal polytope
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3.5 Properties of A 63

=
∫

X m
φα(x)

exp⟨θ, φ(x)⟩ν(dx)∫
X m exp⟨θ, φ(u)⟩ν(du)

= Eθ[φα(X)],

which establishes Equation (3.41a). The formula for the higher-order
derivatives can be proven in an entirely analogous manner.

Observe from Equation (3.41b) that the second-order partial deriva-
tive ∂2A

∂θαθβ
2 is equal to the covariance element cov{φα(X),φβ(X)}.

Therefore, the full Hessian ∇2A(θ) is the covariance matrix of the
random vector φ(X), and so is positive semidefinite on the open set
Ω, which ensures convexity (see Theorem 4.3.1 of Hiriart-Urruty and
Lemaréchal [112]). If the representation is minimal, there is no nonzero
vector a ∈ Rd and constant b ∈ R such that ⟨a, φ(x)⟩ = b holds ν-a.e.
This condition implies varθ[⟨a, φ(x)⟩] = aT ∇2A(θ)a > 0 for all a ∈ Rd

and θ ∈ Ω; this strict positive definiteness of the Hessian on the open
set Ω implies strict convexity [112].

3.5.2 Forward Mapping to Mean Parameters

We now turn to an in-depth consideration of the forward mapping
θ %→ µ, from the canonical parameters θ ∈ Ω defining a distribution pθ

to its associated vector of mean parameters µ ∈ Rd. Note that the gradi-
ent ∇A can be viewed as mapping from Ω to Rd. Indeed, Proposition 3.1
demonstrates that the range of this mapping is contained within the
set M of realizable mean parameters, defined previously as

M := {µ ∈ Rd | ∃ p s.t. Ep[φ(X)] = µ}.

We will see that a great deal hinges on the answers to the following
two questions:

(a) when does ∇A define a one-to-one mapping?
(b) when does the image of Ω under the mapping ∇A — that

is, the set ∇A(Ω) — fully cover the set M?

The answer to the first question is relatively straightforward, essen-
tially depending on whether or not the exponential family is minimal.
The second question is somewhat more delicate: to begin, note that our

µi = Ep[�i(X)] =

Z
�i(x)p(x) dx

p(x)

p(x)

�(x)
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Convex Polytope

q Convex hull representation

q Half-plane representation
q Minkowski-Weyl Theorem: any non-empty convex polytope can be 

characterized by a finite collection of linear inequality constraints

37

3.4 Mean Parameterization and Inference Problems 55

Fig. 3.5 Generic illustration of M for a discrete random variable with |X m| finite. In this
case, the set M is a convex polytope, corresponding to the convex hull of {φ(x) | x ∈ X m}.
By the Minkowski–Weyl theorem, this polytope can also be written as the intersection
of a finite number of half-spaces, each of the form {µ ∈ Rd | ⟨aj , µ⟩ ≥ bj} for some pair
(aj , bj) ∈ Rd × R.

Example 3.8 (Ising Mean Parameters). Continuing from Exam-
ple 3.1, the sufficient statistics for the Ising model are the singleton
functions (xs, s ∈ V ) and the pairwise functions (xsxt, (s, t) ∈ E). The
vector of sufficient statistics takes the form:

φ(x) :=
(
xs,s ∈ V ; xsxt, (s, t) ∈ E

)
∈ R|V |+|E|. (3.30)

The associated mean parameters correspond to particular marginal
probabilities, associated with nodes and edges of the graph G as

µs = Ep[Xs] = P[Xs = 1] for all s ∈ V , and (3.31a)

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s, t) ∈ E. (3.31b)

Consequently, the mean parameter vector µ ∈ R|V |+|E| consists of
marginal probabilities over singletons (µs), and pairwise marginals
over variable pairs on graph edges (µst). The set M consists of the
convex hull of {φ(x),x ∈ {0,1}m}, where φ is given in Equation (3.30).
In probabilistic terms, the set M corresponds to the set of all
singleton and pairwise marginal probabilities that can be realized
by some distribution over (X1, . . . ,Xm) ∈ {0,1}m. In the polyhedral
combinatorics literature, this set is known as the correlation polytope,
or the cut polytope [69, 187].
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Example: Two-node Ising Model

q Sufficient statistics:

q Mean parameters:

q Two-node Ising model
q Convex hull representation

q Half-plane representation
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56 Graphical Models as Exponential Families

To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as

⎡

⎢⎢⎢⎢⎣

0 0 1
1 0 −1
0 1 −1

−1 −1 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎣
µ1

µ2

µ12

⎤

⎥⎦ ≥

⎡

⎢⎢⎢⎢⎣

0
0
0

−1

⎤

⎥⎥⎥⎥⎦
.

These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

Fig. 3.6 Illustration of M for the special case of an Ising model with two variables
(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
constraints carve out a polytope with four facets, contained within the unit hypercube
[0,1]3.
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Fig. 3.5 Generic illustration of M for a discrete random variable with |X m| finite. In this
case, the set M is a convex polytope, corresponding to the convex hull of {φ(x) | x ∈ X m}.
By the Minkowski–Weyl theorem, this polytope can also be written as the intersection
of a finite number of half-spaces, each of the form {µ ∈ Rd | ⟨aj , µ⟩ ≥ bj} for some pair
(aj , bj) ∈ Rd × R.

Example 3.8 (Ising Mean Parameters). Continuing from Exam-
ple 3.1, the sufficient statistics for the Ising model are the singleton
functions (xs, s ∈ V ) and the pairwise functions (xsxt, (s, t) ∈ E). The
vector of sufficient statistics takes the form:

φ(x) :=
(
xs,s ∈ V ; xsxt, (s, t) ∈ E

)
∈ R|V |+|E|. (3.30)

The associated mean parameters correspond to particular marginal
probabilities, associated with nodes and edges of the graph G as

µs = Ep[Xs] = P[Xs = 1] for all s ∈ V , and (3.31a)

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s, t) ∈ E. (3.31b)

Consequently, the mean parameter vector µ ∈ R|V |+|E| consists of
marginal probabilities over singletons (µs), and pairwise marginals
over variable pairs on graph edges (µst). The set M consists of the
convex hull of {φ(x),x ∈ {0,1}m}, where φ is given in Equation (3.30).
In probabilistic terms, the set M corresponds to the set of all
singleton and pairwise marginal probabilities that can be realized
by some distribution over (X1, . . . ,Xm) ∈ {0,1}m. In the polyhedral
combinatorics literature, this set is known as the correlation polytope,
or the cut polytope [69, 187].
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To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as
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(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
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[0,1]3.
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�(x) := (x1, x2, x1x2)

µ1 = P(X1 = 1), µ2 = P(X2 = 1)

µ12 = P(X1 = 1, X2 = 1)
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Marginal Polytope for General Graphs

q Still doable for connected binary 
graphs with 3 nodes: 16 constraints

q For tree graphical models, the number 
of half-planes (facet complexity) grows 
only linearly in the graph size

q General graphs?
q extremely hard to characterize the 

marginal polytope
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Variational Principle (Theorem 3.4)

q The dual function takes the form

q satisfies 
q The log partition function has the variational form

q For all          , the above optimization problem is attained uniquely at 
that satisfies

40

✓(µ) µ = E✓(u)[�(X)]

✓ 2 ⌦

3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 67

extended real line R∗ = R ∪ {+∞}, as is standard in convex analysis
(see Appendix A.2.5 for more details).

As we have previously intimated, the conjugate dual function (3.42)
is very closely connected to entropy. Recall the definition (3.2) of the
Shannon entropy. The main result of the following theorem is that when
µ ∈ M◦, the value of the dual function A∗(µ) is precisely the negative
entropy of the exponential family distribution pθ(µ), where θ(µ) is the
unique vector of canonical parameters satisfying the relation

Eθ(µ)[φ(X)] = ∇A(θ(µ)) = µ. (3.43)

We will also find it essential to consider µ /∈ M◦, in which case it is
impossible to find canonical parameters satisfying the relation (3.43). In
this case, the behavior of the supremum defining A∗(µ) requires a more
delicate analysis. In fact, denoting by M the closure of M, it turns out
that whenever µ /∈ M, then A∗(µ) = +∞. This fact is essential in the
use of variational methods: it guarantees that any optimization problem
involving the dual function can be reduced to an optimization problem
over M. Accordingly, a great deal of our discussion in the sequel will be
on the structure of M for various graphical models, and various approx-
imations to M for models in which its structure is overly complex.

More formally, the following theorem, proved in Appendix B.2, provides
a precise characterization of the relation between A and its conjugate
dual A∗:

Theorem 3.4.

(a) For any µ ∈ M◦, denote by θ(µ) the unique canonical
parameter satisfying the dual matching condition (3.43).
The conjugate dual function A∗ takes the form

A∗(µ) =

{
−H(pθ(µ)) if µ ∈ M◦

+∞ if µ /∈ M.
(3.44)

For any boundary point µ ∈ M\M◦ we have
A∗(µ) = lim

n→+∞
A∗(µn) taken over any sequence {µn} ⊂ M◦

converging to µ.

A(✓) = sup
µ2M

{✓Tµ�A⇤(µ)}

µ(✓) 2 Mo

µ(✓) = E✓[�(X)]
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Example: Two-node Ising Model

q The distribution
q Sufficient statistics

q The marginal polytope is characterized by

q The dual has an explicit form

q The variational problem
q The optimum is attained at   
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X1 X2
p(x; ✓) / exp{✓1x1 + ✓2x2 + ✓12x12}

A⇤
(µ) = µ12 logµ12 + (µ1 � µ12) log(µ1 � µ12) + (µ2 � µ12) log(µ2 � µ12)

+(1 + µ12 � µ1 � µ2) log(1 + µ12 � µ1 � µ2)

A(✓) = max

{µ1,µ2,µ12}2M
{✓1µ1 + ✓2µ2 + ✓12µ12 �A⇤

(µ)}

µ1(✓) =
exp{✓1}+ exp{✓1 + ✓2 + ✓12}

1 + exp{✓1}+ exp{✓2}+ exp{✓1 + ✓2 + ✓12}
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1

•• GG(V,E)  =  2 connected Bernoulli nodes   
•
• moments

•

• variational problem

• solve (it’s still easy!)

The 2The 2ndnd Simplest GraphSimplest Graph x2x1

moment constraints
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Variational Principle

q Exact variational formulation

q : the marginal polytope, difficult to characterize
q : the negative entropy function, no explicit form

q Mean field method: non-convex inner bound and exact form of entropy

q Bethe approximation and loopy belief propagation: polyhedral outer 
bound and non-convex Bethe approximation

42

A(✓) = sup
µ2M

{✓Tµ�A⇤(µ)}

M
A⇤
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Mean Field Approximation
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Tractable Subgraphs

q For an exponential family with sufficient statistics     defined on graph G, 
the set of realizable mean parameter set

q Idea: restrict p to a subset of distributions associated with a tractable
subgraph

44

�

M(G;�) := {µ 2 Rd | 9p s.t. Ep[�(X)] = µ}

128 Mean Field Methods

we mean a subgraph F of the graph G over which it is feasible to per-
form exact calculations. The simplest example of a tractable subgraph
is the fully disconnected subgraph F0 = (V,∅), which contains all the
vertices of G but none of the edges. Any distribution that is Markov
with respect to F is then a product distribution, for which exact com-
putations are trivial.

A bit more generally, consider an exponential family with a collec-
tion φ = (φα, α ∈ I) of sufficient statistics associated with the cliques of
G = (V,E). Given a subgraph F , let I(F ) ⊆ I be the subset of sufficient
statistics associated with cliques of F . The set of all distributions that
are Markov with respect to F is a sub-family of the full φ-exponential
family; it is parameterized by the subspace of canonical parameters

Ω(F ) := {θ ∈ Ω | θα = 0 ∀ α ∈ I\I(F )}. (5.1)

We consider some examples to illustrate:

Example 5.1 (Tractable Subgraphs). Suppose that θ ∈ Ω para-
meterizes a pairwise Markov random field, with potential func-
tions associated with the vertices and edges of an undirected graph
G = (V,E). For each edge (s, t) ∈ E, let θ(s,t) denote the subvector of
parameters associated with sufficient statistics that depend only on
(Xs,Xt). Consider the completely disconnected subgraph F0 = (V,∅).
With respect to this subgraph, permissible parameters must belong to
the subspace

Ω(F0) :=
{
θ ∈ Ω | θ(s,t) = 0 ∀ (s, t) ∈ E

}
. (5.2)

The densities in this sub-family are all of the fully factorized or product
form

pθ(x) =
∏

s∈V

p(xs;θs), (5.3)

where θs refers to the subvector of canonical parameters associated with
vertex s.

To obtain a more structured approximation, one could choose a
spanning tree T = (V,E(T )). In this case, we are free to choose the
canonical parameters corresponding to vertices and edges in the tree

5.2 Optimization and Lower Bounds 129

T , but we must set to zero any canonical parameters corresponding
to edges not in the tree. Accordingly, the subspace of tree-structured
distributions is specified by the subset of canonical parameters

Ω(T ) :=
{
θ ∈ Ω | θ(s,t) = 0 ∀ (s, t) /∈ E(T )

}
. (5.4)

Associated with the exponential family defined by φ and G is the
set M(G;φ) of all mean parameters realizable by any distribution, as
previously defined in Equation (3.26). (Whereas our previous nota-
tion did not make explicit reference to G and φ, the definition of M
does depend on these quantities and it is now useful to make this
dependence explicit.) For a given tractable subgraph F , mean field
methods are based on optimizing over the subset of mean parame-
ters that can be obtained by the subset of exponential family densities
{pθ, θ ∈ Ω(F )} — namely

MF (G;φ) := {µ ∈ Rd | µ = Eθ[φ(x)] for some θ ∈ Ω(F )}. (5.5)

In terms of the moment mapping from Theorem 3.3, a more compact
definition of the set MF (G;φ) is as the image ∇A(Ω(F )). By Theo-
rem 3.3, we have M◦(G;φ) = ∇A(Ω) so that the inclusion

M◦
F (G;φ) ⊆ M◦(G;φ)

holds for any subgraph F . For this reason, we say that MF is an inner
approximation to the set M of realizable mean parameters.

To lighten the notation in the remainder of this section, we gener-
ally drop the φ term from M(G;φ) and MF (G;φ), writing M(G) and
MF (G), respectively. It is important to keep in mind, though, that
these sets do depend on the choice of sufficient statistics.

5.2 Optimization and Lower Bounds

We now have the necessary ingredients to develop the mean field
approach to approximate inference. Suppose that we are interested in
approximating some target distribution pθ, where θ ∈ Ω. Mean field
methods generate lower bounds on the value A(θ) of the cumulant func-
tion, as well as approximations to the mean parameters µ = Eθ[φ(X)]
of this target distribution pθ.
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Mean Field Methods

q For a given tractable subgraph F, a subset of canonical parameters is 

q Inner approximation

q Mean field solves the relaxed problem

is the exact dual function restricted to  
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5.2 Optimization and Lower Bounds 131

for any density q satisfying this moment-matching condition, we may
optimize over the choice of q: by Theorem 3.4, doing so yields the
exponential family density q∗(x) = pθ(µ)(x), for which H(q∗) = −A∗(µ)
by construction.

Since the dual function A∗ typically lacks an explicit form, it is not
possible, at least in general, to compute the lower bound (5.6). The
mean field approach circumvents this difficulty by restricting the choice
of µ to the tractable subset MF (G), for which the dual function has an
explicit form. For compactness in notation, we define A∗

F = A∗∣∣
MF (G),

corresponding to the dual function restricted to the set MF (G). As
long as µ belongs to MF (G), then the lower bound (5.6) involves A∗

F ,
and hence can be computed easily.

The next step of the mean field method is the natural one: find the
best approximation, as measured in terms of the tightness of the lower
bound (5.6). More precisely, the best lower bound from within MF (G)
is given by

max
µ∈MF (G)

{
⟨µ, θ⟩ − A∗

F (µ)
}
. (5.8)

The corresponding value of µ is defined to be the mean field approxi-
mation to the true mean parameters.

In Section 5.3, we illustrate the use of this generic procedure in
obtaining lower bounds and approximate mean parameters for various
types of graphical models.

5.2.2 Mean Field and Kullback–Leibler Divergence

An important alternative interpretation of the mean field optimization
problem (5.8) is as minimizing the Kullback–Leibler (KL) divergence
between the approximating (tractable) distribution and the target dis-
tribution. In order to make this connection clear, we first digress to dis-
cuss various forms of the KL divergence for exponential family models.

The conjugate duality between A and A∗, as characterized in The-
orem 3.4, leads to several alternative forms of the KL divergence for
exponential family members. Given two distributions with densities q
and p with respect to a base measure ν, the standard definition of the
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⌧2MF (G)
{h⌧, ✓i �A⇤

F (⌧)}

M(F ;�) := {⌧ 2 Rd | ⌧ = E✓[�(X)] for some ✓ 2 ⌦(F )}
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Example: Naïve Mean Field for Ising Model

q Ising model in {0,1} representation

q Mean parameters

q For fully disconnected graph F,

q The dual decomposes into sum, one for each node

46

p(x) / exp

8
<

:
X

s2V

xs✓s +

X

(s,t)2E

xsxt✓st

9
=

;

Geometry of mean field

• let H represent a tractable subgraph (i.e., for which

A∗ has explicit form)

• let Mtr(G; H) represent tractable mean parameters:

Mtr(G; H) := {µ| µ = Eθ[φ(x)] s. t. θ respects H}.
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PSfrag replacements

µe

M

Mtr
• under mild conditions, Mtr is a non-

convex inner approximation to M

• optimizing over Mtr (as opposed to M)

yields lower bound :

A(θ) ≥ sup
eµ∈Mtr

˘
⟨θ, eµ⟩ − A∗(eµ)

¯
.
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Example: Ising Model 

!  Sufficient statistics: 

!  Mean parameters: 

!  Two-node Ising model 
!  Convex hull representation 

!  Half-plane representation 

!  Exercise: three-node Ising model  
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φ(x) :=
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)
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The associated mean parameters correspond to particular marginal
probabilities, associated with nodes and edges of the graph G as

µs = Ep[Xs] = P[Xs = 1] for all s ∈ V , and (3.31a)

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s, t) ∈ E. (3.31b)

Consequently, the mean parameter vector µ ∈ R|V |+|E| consists of
marginal probabilities over singletons (µs), and pairwise marginals
over variable pairs on graph edges (µst). The set M consists of the
convex hull of {φ(x),x ∈ {0,1}m}, where φ is given in Equation (3.30).
In probabilistic terms, the set M corresponds to the set of all
singleton and pairwise marginal probabilities that can be realized
by some distribution over (X1, . . . ,Xm) ∈ {0,1}m. In the polyhedral
combinatorics literature, this set is known as the correlation polytope,
or the cut polytope [69, 187].
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56 Graphical Models as Exponential Families

To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as

⎡

⎢⎢⎢⎢⎣

0 0 1
1 0 −1
0 1 −1

−1 −1 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎣
µ1

µ2

µ12

⎤

⎥⎦ ≥

⎡

⎢⎢⎢⎢⎣

0
0
0

−1

⎤

⎥⎥⎥⎥⎦
.

These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

Fig. 3.6 Illustration of M for the special case of an Ising model with two variables
(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
constraints carve out a polytope with four facets, contained within the unit hypercube
[0,1]3.

56 Graphical Models as Exponential Families

To make these ideas more concrete, consider the simplest nontrivial
case: namely, a pair of variables (X1,X2), and the graph consisting of
the single edge joining them. In this case, the set M is a polytope in
three dimensions (two nodes plus one edge): it is the convex hull of
the vectors {(x1,x2,x1x2) | (x1,x2) ∈ {0,1}2}, or more explicitly

conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)},

as illustrated in Figure 3.6.
Let us also consider the half-space representation (3.29) for this

case. Elementary probability theory and a little calculation shows that
the three mean parameters (µ1,µ2,µ12) must satisfy the constraints
0 ≤ µ12 ≤ µi for i = 1,2 and 1 + µ12 − µ1 − µ2 ≥ 0. We can write
these constraints in matrix-vector form as

⎡

⎢⎢⎢⎢⎣

0 0 1
1 0 −1
0 1 −1

−1 −1 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎣
µ1

µ2

µ12

⎤

⎥⎦ ≥

⎡

⎢⎢⎢⎢⎣

0
0
0

−1

⎤

⎥⎥⎥⎥⎦
.

These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

Fig. 3.6 Illustration of M for the special case of an Ising model with two variables
(X1,X2) ∈ {0,1}2. The four mean parameters µ1 = E[X1], µ2 = E[X2] and µ12 = E[X1X2]
must satisfy the constraints 0 ≤ µ12 ≤ µi for i = 1,2, and 1 + µ12 − µ1 − µ2 ≥ 0. These
constraints carve out a polytope with four facets, contained within the unit hypercube
[0,1]3.

X1 X2

¡+Brief Article+¿

¡+The Author+¿

March 12, 2012

µ1 � u12

µ2 � u12

u12 � 0

1 + µ12 � u1 + u2

1

A⇤
F (⌧) =

X

s2V

[⌧s log ⌧s + (1� ⌧s) log(1� ⌧s)]

MF (G) := {⌧ 2 R|V |+|E| | 0  ⌧s  1, 8s 2 V, ⌧st = ⌧s⌧t, 8(s, t) 2 E}

© Eric Xing @ CMU, 2005-2020



Example: Naïve Mean Field for Ising Model

q Mean field problem

q The same objective function as in free energy based approach

q The naïve mean field update equations

q Also yields lower bound on log partition function
47
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5.4 Nonconvexity of Mean Field 141

Fig. 5.3 Cartoon illustration of the set MF (G) of mean parameters that arise from tractable
distributions is a nonconvex inner bound on M(G). Illustrated here is the case of discrete
random variables where M(G) is a polytope. The circles correspond to mean parameters
that arise from delta distributions, and belong to both M(G) and MF (G).

a finite convex hull3

M(G) = conv{φ(e), e ∈ X m} (5.24)

in d-dimensional space, with extreme points of the form µe := φ(e) for
some e ∈ X m. Figure 5.3 provides a highly idealized illustration of this
polytope, and its relation to the mean field inner bound MF (G).

We now claim that MF (G) — assuming that it is a strict subset
of M(G) — must be a nonconvex set. To establish this claim, we first
observe that MF (G) contains all of the extreme points µx = φ(x) of
the polytope M(G). Indeed, the extreme point µx is realized by the
distribution that places all its mass on x, and such a distribution is
Markov with respect to any graph. Therefore, if MF (G) were a con-
vex set, then it would have to contain any convex combination of such
extreme points. But from the representation (5.24), taking convex com-
binations of all such extreme points generates the full polytope M(G).
Therefore, whenever MF (G) is a proper subset of M(G), it cannot be
a convex set.

Consequently, nonconvexity is an intrinsic property of mean field
approximations. As suggested by Example 5.4, this nonconvexity

3 For instance, in the discrete case when the sufficient statistics φ are defined by indicator
functions in the standard overcomplete basis (3.34), we referred to M(G) as a marginal
polytope.

�(e)

Geometry of Mean Field

q Mean field optimization is always non-convex for any exponential family 
in which the state space        is finite

q Recall the marginal polytope is a convex hull

q contains all the extreme points
q If it is a strict subset, then it must be non-convex

q Example: two-node Ising model

q It has a parabolic cross section along  , hence non-convex
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Xm

M(G) = conv{�(e); e 2 Xm}

MF (G)

MF (G) = {0  ⌧1  1, 0  ⌧2  1, ⌧12 = ⌧1⌧2}
⌧1 = ⌧2
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Bethe Approximation 
and Sum-Product
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Sum-Product/Belief Propagation Algorithm

q Message passing rule:

q Marginals:

q Exact for trees, but approximate for loopy graphs (so called loopy belief 
propagation)

q Question:  
q How is the algorithm on trees related to variational principle?
q What is the algorithm doing for graphs with cycles?

50

28 Background

into a product of subproblems, one for each of the subtrees in the set
{Tt, t ∈ N(s)}, in the following way:

µs(xs) = κ ψs(xs)
∏

t∈N(s)

M∗
ts(xs) (2.8a)

M∗
ts(xs) :=

∑

x′
Vt

ψst(xs,x
′
t) p(x′

Vt
;Tt) (2.8b)

In these equations, κ denotes a positive constant chosen to ensure that
µs normalizes properly. For fixed xs, the subproblem defining M∗

ts(xs) is
again a tree-structured summation, albeit involving a subtree Tt smaller
than the original tree T . Therefore, it too can be broken down recur-
sively in a similar fashion. In this way, the marginal at node s can be
computed by a series of recursive updates.

Rather than applying the procedure described above to each node
separately, the sum-product algorithm computes the marginals for all
nodes simultaneously and in parallel. At each iteration, each node t
passes a “message” to each of its neighbors u ∈ N(t). This message,
which we denote by Mtu(xu), is a function of the possible states xu ∈ Xu

(i.e., a vector of length |Xu| for discrete random variables). On the full
graph, there are a total of 2|E| messages, one for each direction of each
edge. This full collection of messages is updated, typically in parallel,
according to the recursion

Mts(xs) ← κ
∑

x′
t

{
ψst(xs,x

′
t)ψt(x′

t)
∏

u∈N(t)/s

Mut(x′
t)

}
, (2.9)

where κ > 0 again denotes a normalization constant. It can
be shown [192] that for tree-structured graphs, iterates gener-
ated by the update (2.9) will converge to a unique fixed point
M∗ = {M∗

st,M
∗
ts, (s, t) ∈ E} after a finite number of iterations. More-

over, component M∗
ts of this fixed point is precisely equal, up to a

normalization constant, to the subproblem defined in Equation (2.8b),
which justifies our abuse of notation post hoc. Since the fixed point
M∗ specifies the solution to all of the subproblems, the marginal µs at
every node s ∈ V can be computed easily via Equation (2.8a).

Max-product algorithm: Suppose that the summation in the
update (2.9) is replaced by a maximization. The resulting max-product
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Tree Graphical Models

q Discrete variables on a tree 

q Sufficient statistics:

q Exponential representation of distribution: 

where

q Mean parameters are marginal probabilities:

51

B: Belief propagation/sum-product on trees

• discrete variables Xs ∈ {0, 1, . . . , ms − 1} on a tree T = (V, E)

• sufficient statistics: indicator functions for each node and edge

I j(xs) for s = 1, . . . n, j ∈ Xs

I jk(xs, xt) for (s, t) ∈ E, (j, k) ∈ Xs × Xt.

• exponential representation of distribution:

p(x; θ) ∝ exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

where θs(xs) :=
P

j∈Xs
θs;jI j(xs) (and similarly for θst(xs, xt))

• mean parameters are simply marginal probabilities, represented as:

µs(xs) :=
X

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
X

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt)

• the marginals must belong to the following marginal polytope:

MARG(T ) := { µ ≥ 0 |
X

xs

µs(xs) = 1,
X

xt

µst(xs, xt) = µs(xs) },
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Examples of M: Discrete MRF

• sufficient statistics:
I j(xs) for s = 1, . . . n, j ∈ Xs

I jk(xs, xt) for(s, t) ∈ E, (j, k) ∈ Xs × Xt

• mean parameters are simply marginal probabilities, represented as:

µs(xs) :=
X

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
X

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt)

PSfrag replacements aj

MARG(G)

⟨aj , µ⟩ = bj

µe • denote the set of realizable µs and µst

by MARG(G)

• refer to it as the marginal polytope

• extremely difficult to characterize for

general graphs
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3.4 Mean Parameterization and Inference Problems 59

We refer to the sufficient statistics (3.34) as the standard overcom-
plete representation. Its overcompleteness was discussed previously in
Example 3.2.

With this choice of sufficient statistics, the mean parameters take a
very intuitive form: in particular, for each node s ∈ V

µs;j = Ep[I j(Xs)] = P[Xs = j] ∀j ∈ Xs, (3.35)

and for each edge (s, t) ∈ E, we have

µst;jk = Ep[I st;jk(Xs,Xt)] = P[Xs = j,Xt = k] ∀(j,k) ∈ Xs ∈ Xt.
(3.36)

Thus, the mean parameters correspond to singleton marginal distribu-
tions µs and pairwise marginal distributions µst associated with the
nodes and edges of the graph. In this case, we refer to the set M as the
marginal polytope associated with the graph, and denote it by M(G).
Explicitly, it is given by

M(G) := {µ ∈ Rd | ∃p such that (3.35) holds ∀(s;j), and

(3.36) holds ∀(st;jk
}
. (3.37)

Note that the correlation polytope for the Ising model presented
in Example 3.8 is a special case of a marginal polytope, obtained
for Xs ∈ {0,1} for all nodes s. The only difference is we have defined
marginal polytopes with respect to the standard overcomplete basis of
indicator functions, whereas the Ising model is usually parameterized as
a minimal exponential family. The codeword polytope of Example 3.9 is
another special case of a marginal polytope. In this case, the reduction
requires two steps: first, we convert the factor graph representation of
the code — for instance, as shown in Figure 3.7(a) — to an equiva-
lent pairwise Markov random field, involving binary variables at each
bit node, and higher-order discrete variables at each factor node. (See
Appendix E.3 for details of this procedure for converting from factor
graphs to pairwise MRFs.) The marginal polytope associated with this
pairwise MRF is simply a lifted version of the codeword polytope. We
discuss these and other examples of marginal polytopes in more detail
in later sections.
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µst(xs, xt) =
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(j,k)2Xs⇥Xt

µst;jkIjk(xs, xt) = P(Xs = xs, Xt = xt)

µs(xs) =
X

j2Xs

µs;jIj(xs) = P(Xs = xs)
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Example: Discrete MRF 

 
!  In exponential form 
 

!  Why is this representation is useful? How is it related to inference 
problem? 
!  Computing the expectation of sufficient statistics (mean parameters) 

given the canonical parameters yields the marginals  
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Example: Discrete Markov random field

PSfrag replacements

θst(xs, xt)
θs(xs)θt(xt)

Indicators: I j(xs) =

8

<

:

1 if xs = j

0 otherwise

Parameters: θs = {θs;j , j ∈ Xs}

θst = {θst;jk, (j, k) ∈ Xs × Xt}

Compact form: θs(xs) :=
P

j θs;jI j(xs)

θst(xs, xt) :=
P

j,k θst;jkI j(xs)I k(xt)

Density (w.r.t. counting measure) of the form:

p(x; θ) ∝ exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

Cumulant generating function (log normalization constant):

A(θ) = log
X

x∈Xn

exp
˘ X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯
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Marginal Polytope for Trees

q Recall marginal polytope for general graphs

q By junction tree theorem (see Prop. 2.1 & Prop. 4.1)

q In particular, if ,  then 

has the corresponding marginals
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Proof. Consider an element µ of the full marginal polytope M(G):
clearly, any such vector must satisfy the normalization and pair-
wise marginalization conditions defining the set L(G), from which
we conclude that M(G) ⊆ L(G). In order to demonstrate the reverse
inclusion for a tree-structured graph T , let µ be an arbitrary element
of L(T ); we need to show that µ ∈ M(T ). By definition of L(T ), the
vector µ specifies a set of locally consistent singleton marginals µs for
vertices s ∈ V and pairwise marginals µst for edges (s, t) ∈ E. By the
junction tree theorem, we may use them to form a distribution, Markov
with respect to the tree, as follows:

pµ(x) :=
∏

s∈V

µs(xs)
∏

(s,t)∈E

µst(xs,xt)
µs(xs)µt(xt)

. (4.8)

(We take 0/0 := 0 in cases of zeros in the elements of µ.) It is a
consequence of the junction tree theorem or can be verified directly
via an inductive “leaf-stripping” argument that with this choice of
pµ, we have Epµ [I j(Xs)] = µs(xs) for all s ∈ V and j ∈ Xs, as well
as Epµ [I jk(Xs,Xt)] = µst(xs,xt) for all (s, t) ∈ E, and (j,k) ∈ Xs × Xt.
Therefore, the distribution (4.8) provides a constructive certificate of
the membership µ ∈ M(T ), which establishes that L(T ) = M(T ).

For a graph G with cycles, in sharp contrast to the tree case, the
set L(G) is a strict outer bound on M(G), in that there exist vectors
τ ∈ L(G) that do not belong to M(G), for which reason we refer to
members τ of L(G) as pseudomarginals. The following example illus-
trates the distinction between globally realizable marginals and pseu-
domarginals.

Example 4.1 (L(G) versus M(G)). Let us explore the relation
between the two sets on the simplest graph for which they fail to
be equivalent — namely, the single cycle on three vertices, denoted
by C3. Considering the binary random vector X ∈ {0,1}3, note that
each singleton pseudomarginal τs, for s = 1,2,3, can be viewed as
a 1 × 2 vector, whereas each pairwise pseudomarginal τst, for edges
(s, t) ∈ {(12),(13),(23)} can be viewed as a 2 × 2 matrix. We define
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Decomposition of Entropy for Trees

q For trees, the entropy decomposes as 

q The dual function has an explicit form
53
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27.4 Bethe Entropy Approximation

First lets think about trees – we know that any distribution on a tree factorizes as:

p(x; µ) =
⌃

s�V

µs(xs)
⌃

(s,t)�E

µst(xs, xt)

µs(xs)µt(xt)
(27.24)

For trees entropy is written as:

H(p(x; µ)) = �
⇧

x

p(x; µ) log p(x; µ) (27.25)

=
⇧

s�V

⇤
�

⇧

xs

µs(xs) log µs(xs)

 �⌥ ⌦
Hs(µs)

⌅
�

�
⇧

(s,t)�E

� ⇧

xs,xt

µst(xs, xt) log
µst(xs, xt)

µs(xs)µt(xt)
 �⌥ ⌦

Ist(µst), KL-Divergence

⇥
(27.26)

=
⇧

s�V

Hs(µs)�
⇧

(s,t)�E

Ist(µst) (27.27)

Where the Ist(µst) term can be thought of as a measure of independence or ”mutual infor-
mation” between µst and µs, µt.

Bethe Entropy Approximation:

HBethe(p(x; µ)) ⇥
⇧

s�V

Hs(µs)�
⇧

(s,t)�E

Ist(/must) (27.28)

Note that this is exact for trees, but an approximation for a graph with cycles.

Bethe Approximation:

max
⇤s,⇤st�LOCAL(G)

{

Linear term⌥ ⌦ �⇧
s ⇤ V

⇧

j

�s(j)⇤s(j) +
⇧

(s,t)�E

⇧

j,i

�st(i, j)⇤st(i, j) +

Bethe Entropy⌥ ⌦ �
HBethe(⇤) }

 �⌥ ⌦
F (⇤ ;�)

(27.29)

Now we will formulate the Lagrangian to solve this, focusing on the marginalization con-
straint first. We will see soon how the multipliers exponentiated are like message passing in

27-7

A⇤(µ) = �H(p(x;µ))
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Exact Variational Principle for Trees

q Variational formulation

q Assign Lagrange multiplier        for the normalization constraint 
; and for each marginalization constraint

q The Lagrangian has the form
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Exact variational principle on trees

• putting the pieces back together yields:

A(θ) = max
µ∈MARG(T )

˘
⟨θ, µ⟩ +

X

s∈V

Hs(µs) −
X

(s,t)∈E(T )

Ist(µst)
¯
.

• let’s try to solve this problem by a (partial) Lagrangian formulation

• assign a Lagrange multiplier λts(xs) for each constraint

Cts(xs) := µs(xs) −
P

xt
µst(xs, xt) = 0

• will enforce the normalization (
P

xs
µs(xs) = 1) and non-negativity

constraints explicitly

• the Lagrangian takes the form:

L(µ; λ) = ⟨θ, µ⟩ +
X

s∈V

Hs(µs) −
X

(s,t)∈E(T )

Ist(µst)

+
X

(s,t)∈E

ˆ X

xt

λst(xt)Cst(xt) +
X

xs

λts(xs)Cts(xs)
˜

40
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Lagrangian Derivation

q Taking the derivatives of the Lagrangian w.r.t.      and 

q Setting them to zeros yields 

55

Lagrangian derivation (continued)

• taking derivatives of the Lagrangian w.r.t µs and µst yields

∂L
∂µs(xs)

= θs(xs) − log µs(xs) +
X

t∈N (s)

λts(xs) + C

∂L
∂µst(xs, xt)

= θst(xs, xt) − log
µst(xs, xt)

µs(xs)µt(xt)
− λts(xs) − λst(xt) + C′

• setting these partial derivatives to zero and simplifying:

µs(xs) ∝ exp
˘

θs(xs)
¯

Y

t∈N (s)
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˘

λts(xs)
¯

µs(xs, xt) ∝ exp
˘

θs(xs) + θt(xt) + θst(xs, xt)
¯

×
Y

u∈N (s)\t

exp
˘

λus(xs)
¯

Y

v∈N (t)\s

exp
˘

λvt(xt)
¯

• enforcing the constraint Cts(xs) = 0 on these representations yields the
familiar update rule for the messages Mts(xs) = exp(λts(xs)):

Mts(xs) ←
X

xt

exp
˘

θt(xt) + θst(xs, xt)
¯

Y

u∈N (t)\s

Mut(xt)
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Lagrangian derivation (continued)
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Lagrangian Derivation (continued)

q Adjusting the Lagrange multipliers or messages to enforce          

yields

q Conclusion: the message passing updates are a Lagrange method to 
solve the stationary condition of the variational formulation
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Lagrangian derivation (continued)
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• enforcing the constraint Cts(xs) = 0 on these representations yields the
familiar update rule for the messages Mts(xs) = exp(λts(xs)):

Mts(xs) ←
X

xt

exp
˘

θt(xt) + θst(xs, xt)
¯

Y

u∈N (t)\s

Mut(xt)
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BP on Arbitrary Graphs

q Two main difficulties of the variational formulation

q The marginal polytope is hard to characterize, so let’s use the tree-based outer bound

These locally consistent vectors     are called pseudo-marginals.

q Exact entropy l.        acks explicit form, so let’s approximate it by the exact expression for 
trees
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A(✓) = sup
µ2M

{✓Tµ�A⇤(µ)}

B: Belief propagation on arbitrary graphs

Two main ingredients:

1. Exact entropy −A∗(µ) is intractable, so let’s approximate it.

The Bethe approximation A∗
Bethe(µ) ≈ A∗(µ) is based on the exact

expression for trees:

−A∗
Bethe(µ) =

∑

s∈V

Hs(µs) −
∑

(s,t)∈E

Ist(µst).

2. The marginal polytope MARG(G) is also difficult to characterize, so

let’s use the following (tree-based) outer bound:

LOCAL(G) := { τ ≥ 0 |
∑

xs

τs(xs) = 1,
∑

xt

τst(xs, xt) = τs(xs) },

Note: Use τ to distinguish these locally consistent pseudomarginals from globally

consistent marginals.
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recall from the proof of Proposition 4.1 the factorization (4.8) of any
tree-structured MRF distribution in terms of marginal distributions
{µs,s ∈ V } and {µst,(s, t) ∈ E} on the node and edges, respectively, of
the tree. These marginal distributions correspond to the mean parame-
ters under the canonical overcomplete sufficient statistics (3.34). Thus,
for a tree-structured MRF, we can compute the (negative) dual value
−A∗(µ) directly, simply by computing the entropy H(pµ) of the dis-
tribution (4.8). Denoting by Eµ the expectation under the distribu-
tion (4.8), we obtain

H(pµ) = −A∗(µ) = Eµ[− logpµ(X)]

=
∑

s∈V

Hs(µs) −
∑

(s,t)∈E

Ist(µst). (4.11)

The different terms in this expansion are the singleton entropy

Hs(µs) := −
∑

xs∈Xs

µs(xs) logµs(xs) (4.12)

for each node s ∈ V , and the mutual information

Ist(µst) :=
∑

(xs,xt)∈Xs×Xt

µst(xs,xt) log
µst(xs,xt)

µs(xs)µt(xt)
(4.13)

for each edge (s, t) ∈ E. Consequently, for a tree-structured graph, the
dual function A∗ can be expressed as an explicit and easily computable
function of the mean parameters µ.

With this background, the Bethe approximation to the entropy of
an MRF with cycles is easily described: it simply assumes that decom-
position (4.11) is approximately valid for a graph with cycles. This
assumption yields the Bethe entropy approximation

−A∗(τ) ≈ HBethe(τ) :=
∑

s∈V

Hs(τs) −
∑

(s,t)∈E

Ist(τst). (4.14)

An important fact, central in the derivation of the sum-product algo-
rithm, is that this approximation (4.14) can be evaluated for any set of
pseudomarginals {τs,s ∈ V } and {τst,(s, t) ∈ E} that belong to L(G).
For this reason, our change in notation — from µ for exact marginals
to τ for pseudomarginals — is deliberate.

© Eric Xing @ CMU, 2005-2020



Bethe Variational Problem (BVP)

q Combining these two ingredient leads to the Bethe variational problem 
(BVP):

q A simple structured problem (differentiable & constraint set is a simple 
convex polytope)

q Loopy BP can be derived as am iterative method for solving a Lagrangian 
formulation of the BVP (Theorem 4.2); similar proof as for tree graphs

q A set of pseudo-marginals given by Loopy BP fixed point in any graph if and 
only if they are local stationary points of BVP
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We note in passing that Yedidia et al. [268, 269] used an alternative
form of the Bethe entropy approximation (4.14), one which can be
obtained via the relation Ist(τst) = Hs(τs) + Ht(τt) − Hst(τst), where
Hst is the joint entropy defined by the pseudomarginal τst. Doing so
and performing some algebraic manipulation yields

HBethe(τ) = −
∑

s∈V

(ds − 1)Hs(τs) +
∑

(s,t)∈E

Hst(τst), (4.15)

where ds corresponds to the number of neighbors of node s (i.e., the
degree of node s). However, the symmetric form (4.14) turns out to be
most natural for our development in the sequel.

4.1.3 Bethe Variational Problem and Sum-Product

We now have the two ingredients needed to construct the Bethe approx-
imation to the exact variational principle (3.45) from Theorem 3.4:

• the set L(G) of locally consistent pseudomarginals (4.7) is a
convex (polyhedral) outer bound on the marginal polytope
M(G); and

• the Bethe entropy (4.14) is an approximation of the exact
dual function A∗(τ).

By combining these two ingredients, we obtain the Bethe variational
problem (BVP):

max
τ∈L(G)

{
⟨θ, τ⟩ +

∑

s∈V

Hs(τs) −
∑

(s,t)∈E

Ist(τst)
}

. (4.16)

Note that this problem has a very simple structure: the cost function
is given in closed form, it is differentiable, and the constraint set L(G)
is a polytope specified by a small number of constraints. Given this
special structure, one might suspect that there should exist a relatively
simple algorithm for solving this optimization problem (4.16). Indeed,
the sum-product algorithm turns out to be exactly such a method.

In order to develop this connection between the variational pro-
blem (4.16) and the sum-product algorithm, let λss be a Lagrange© Eric Xing @ CMU, 2005-2020



Geometry of BP

q Consider the following assignment of pseudo-marginals
q Can easily verify 

q However, (need a bit more work) 

q Tree-based outer bound
q For any graph,
q Equality holds if and only if the graph is a tree

q Question: does solution to the BVP ever fall into the gap?
q Yes, for any element of outer bound         , it is possible to construct 

a distribution with it as a BP fixed point (Wainwright et. al. 2003) 
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Illustration: Globally inconsistent BP fixed points

Consider the following assignment of pseudomarginals τs, τst:

Locally consistent

(pseudo)marginals

3

2

1

• can verify that τ ∈ LOCAL(G), and that τ is a fixed point of belief

propagation (with all constant messages)

• however, τ is globally inconsistent

Note: More generally: for any τ in the interior of LOCAL(G), can

construct a distribution with τ as a BP fixed point.
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Fig. 4.2 Highly idealized illustration of the relation between the marginal polytope M(G)
and the outer bound L(G). The set L(G) is always an outer bound on M(G), and the
inclusion M(G) ⊂ L(G) is strict whenever G has cycles. Both sets are polytopes and so can
be represented either as the convex hull of a finite number of extreme points, or as the
intersection of a finite number of half-spaces, known as facets.

Both sets are polytopes, and consequently can be represented either
as the convex hull of a finite number of extreme points, or as the inter-
section of a finite number of half-spaces, known as facets. Letting φ
be a shorthand for the full vector of indicator functions in the stan-
dard overcomplete representation (3.34), the marginal polytope has
the convex hull representation M(G) = conv{φ(x) | x ∈ X}. Since the
indicator functions are {0,1}-valued, all of its extreme points consist
of {0,1} elements, of the form µx := φ(x) for some x ∈ X m; there are
a total of |X m| such extreme points. However, with the exception of
tree-structured graphs, the number of facets for M(G) is not known
in general, even for relatively simple cases like the Ising model; see
the book [69] for background on the cut or correlation polytope, which
is equivalent to the marginal polytope for an Ising model. However,
the growth must be super-polynomial in the graph size, unless certain
widely believed conjectures in computational complexity are false.

On the other hand, the polytope L(G) has a polynomial number
of facets, upper bounded by any graph by O(rm + r2|E|). It has more
extreme points than M(G), since in addition to all the integral extreme
points {µx,x ∈ X m}, it includes other extreme points τ ∈ L(G)\M(G)
that contain fractional elements; see Section 8.4 for further discussion
of integral versus fractional extreme points. With the exception of trees
and small instances, the total number of extreme points of L(G) is not
known in general.

L(G)

⌧ 62 M(G)

M(G) � L(G)
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Inexactness of Bethe Entropy Approximation

q Consider a fully connected graph with

q It is globally valid: ;   realized by the distribution that places mass 1/2 
on each of configuration (0,0,0,0) and (1,1,1,1)

q

q
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We begin by considering the Bethe entropy approximation, and its
potential inexactness:

Example 4.2 (Inexactness of HBethe). Consider the fully
connected graph K4 on four vertices, and the collection of singleton
and pairwise marginal distributions given by

µs(xs) =
[
0.5 0.5

]
for s = 1,2,3,4 (4.26a)

µst(xs,xt) =
[
0.5 0
0 0.5

]
∀ (s, t) ∈ E. (4.26b)

It can be verified that these marginals are globally valid, generated
in particular by the distribution that places mass 0.5 on each of the
configurations (0, 0, 0, 0) and (1, 1, 1, 1). Let us calculate the Bethe
entropy approximation. Each of the four singleton entropies are given
by Hs(µs) = log2, and each of the six (one for each edge) mutual infor-
mation terms are given by Ist(µst) = log2, so that the Bethe entropy
is given by

HBethe(µ) = 4log2 − 6log2 = −2log2 < 0,

which cannot be a true entropy. In fact, for this example, the
true entropy (or value of the negative dual function) is given by
−A∗(µ) = log2 > 0.

In addition to the inexactness of HBethe as an approximation to the
negative dual function, the Bethe variational principle also involves
relaxing the marginal polytope M(G) to the first-order constraint set
L(G). As illustrated in Example 4.1, the inclusion M(C3) ⊆ L(C3) holds
strictly for the 3-node cycle C3. The constructive procedure of Exam-
ple 4.1 can be substantially generalized to show that the inclusion
M(G) ⊂ L(G) holds strictly for any graph G with cycles. Figure 4.2
provides a highly idealized illustration3 of the relation between M(G)
and L(G): both sets are polytopes, and for a graph with cycles, M(G)
is always strictly contained within the outer bound L(G).

3 In particular, this picture is misleading in that it suggests that L(G) has more facets and
more vertices than M(G); in fact, the polytope L(G) has fewer facets and more vertices,
but this is difficult to convey in a 2D representation.
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Remark

q This connection provides a principled basis for applying the sum-
product algorithm for loopy graphs

q However,
q Although there is always a fixed point of loopy BP, there is no guarantees on the convergence 

of the algorithm on loopy graphs
q The Bethe variational problem is usually non-convex. Therefore, there are no guarantees on the 

global optimum
q Generally, no guarantees that                  is a lower bound of 

q Nevertheless,
q The connection and understanding suggest a number of avenues for improving upon the 

ordinary sum-product algorithm, via progressively better approximations to the entropy function 
and outer bounds on the marginal polytope (Kikuchi clustering)
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tree-structured problem, we have the equality ABethe(θ) = A(θ) for
all θ ∈ Rd. Given this equivalence, it is natural to consider the rela-
tion between ABethe(θ) and the cumulant function A(θ) for general
graphs. In general, the Bethe value ABethe(θ) is simply an approxi-
mation to the cumulant function value A(θ). Unlike the mean field
methods to be discussed in Section 5, it is not guaranteed to pro-
vide a lower bound on the cumulant function. As will be discussed
at more length in Section 7, Wainwright et al. [246] derived “con-
vexified” forms of the Bethe variational principle that are guaranteed
to yield upper bounds on the cumulant function for any graphical
model. On the other hand, Sudderth et al. [224] show that ABethe(θ)
is a lower bound on the cumulant function A(θ) for certain classes
of attractive graphical models. Such models, in which the interactions
encourage random variables to agree with one another, are common
in computer vision and other applications in spatial statistics. This
lower-bounding property is closely related to the connection between
the Bethe approximation and loop series expansions [51], discussed in
Section 4.1.6.

Another important consequence of the Bethe/sum-product connec-
tion is in suggesting a number of avenues for improving upon the
ordinary sum-product algorithm, via progressively better approxima-
tions to the entropy function and outer bounds on the marginal poly-
tope. We turn to discussion of a class of such generalized sum-product
algorithms beginning in Section 4.2.

4.1.4 Inexactness of Bethe and Sum-Product

In this section, we explore some aspects of the inexactness of the
sum-product algorithm. From a variational perspective, the inexact-
ness stems from the two approximations made in setting up Bethe
variational principle:

(a) Replacing the marginal polytope M(G) by the polyhedral
outer bound L(G) and

(b) The Bethe entropy HBethe as an approximation to the exact
entropy as a function of the mean parameters.
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Summary

q Variational methods in general turn inference into an optimization problem via 
exponential families and convex duality

q The exact variational principle is intractable to solve; there are two distinct components 
for approximations:

q Either inner or outer bound to the marginal polytope
q Various approximation to the entropy function

q Mean field: non-convex inner bound and exact form of entropy
q BP: polyhedral outer bound and non-convex Bethe approximation
q Kikuchi and variants: tighter polyhedral outer bounds and better entropy 

approximations (Yedidia et. al. 2002)
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