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Inference Problems in Graphical Models

q E.g.: A general undirected graphical model (MRF):

q The quantities of interest:

q marginal distributions: 

q normalization constant (partition function): 

q Exact inference: tree graph, discrete scope or known integral, …

q What if exact inference is expensive or even impossible? (when this can 
happen?) 
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Approximate Inference: The Big Picture

q Variational Inference
q Mean-field (inner approximation)
q Loopy Belief Propagation (outer approximation)
q Kikuchi and variants (tighter outer approximation)
q Expectation Propagation (reverse KL)
q …

q Sampling
q Monte Carlo
q Sequential Monte Carlo (Particle Filters)
q Markov Chain Monte Carlo
q Hybrid Monte Carlo
q …
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Variational Methods

q “Variational”: fancy name for optimization-based formulations
q i.e., represent the quantity of interest as the solution to an optimization problem
q approximate the desired solution by relaxing/approximating the intractable

optimization problem

q Examples:
q Courant-Fischer for eigenvalues:

q Linear system of equations:
q variational formulation:

q for large system, apply conjugate gradient method
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Variational Inference: High-level Idea

q Inference: answer queries of P
q Challenge: direct inference on P is often intractable
q Indirect approach: 

q Project P to a tractable family of distributions Q
q Perform inference on the projected Q

q Projection requires a measure of distance
q A convenient choice: KL(Q, P)

q Mean-field: Assume Q is fully factorized
q The simplest possible family of distributions

q Example: Latent Dirichlet Allocation (LDA)
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3.4 Mean Parameterization and Inference Problems 55

Fig. 3.5 Generic illustration of M for a discrete random variable with |X m| finite. In this
case, the set M is a convex polytope, corresponding to the convex hull of {φ(x) | x ∈ X m}.
By the Minkowski–Weyl theorem, this polytope can also be written as the intersection
of a finite number of half-spaces, each of the form {µ ∈ Rd | ⟨aj , µ⟩ ≥ bj} for some pair
(aj , bj) ∈ Rd × R.

Example 3.8 (Ising Mean Parameters). Continuing from Exam-
ple 3.1, the sufficient statistics for the Ising model are the singleton
functions (xs, s ∈ V ) and the pairwise functions (xsxt, (s, t) ∈ E). The
vector of sufficient statistics takes the form:

φ(x) :=
(
xs,s ∈ V ; xsxt, (s, t) ∈ E

)
∈ R|V |+|E|. (3.30)

The associated mean parameters correspond to particular marginal
probabilities, associated with nodes and edges of the graph G as

µs = Ep[Xs] = P[Xs = 1] for all s ∈ V , and (3.31a)

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s, t) ∈ E. (3.31b)

Consequently, the mean parameter vector µ ∈ R|V |+|E| consists of
marginal probabilities over singletons (µs), and pairwise marginals
over variable pairs on graph edges (µst). The set M consists of the
convex hull of {φ(x),x ∈ {0,1}m}, where φ is given in Equation (3.30).
In probabilistic terms, the set M corresponds to the set of all
singleton and pairwise marginal probabilities that can be realized
by some distribution over (X1, . . . ,Xm) ∈ {0,1}m. In the polyhedral
combinatorics literature, this set is known as the correlation polytope,
or the cut polytope [69, 187].
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Probabilistic Topic Models

q Humans cannot afford to deal with (e.g., search, browse, or measure 
similarity) a huge number of text documents

q We need computers to help out …
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How to get started for a new modeling task?

Here are some important elements to consider before you start:
q Task:

q Embedding? Classification? Clustering? Topic extraction? …
q Data representation:

q Input and output (e.g., continuous, binary, counts, …) 
q Model:

q BN? MRF? Regression? SVM? 
q Inference:

q Exact inference? MCMC? Variational? 
q Learning:

q MLE? MCLE? Max margin? 
q Evaluation:

q Visualization? Human interpretability? Perperlexity? Predictive accuracy? 
It is better to consider one element at a time!
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Tasks: document embedding 

q Say, we want to have a mapping …, so that 

q Compare similarity 
q Classify contents
q Cluster/group/categorizing
q Distill semantics and perspectives 
q .. 

Þ
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Summarizing the data using topics
Some example topics

students
education
learning
educational
teaching
school
student
skills
teacher
academic

market
economic
financial
economics
markets
returns
price
stock
value

investment

cortex
cortical
areas
visual
area
primary

connections
ventral
cerebral
sensory

Bayesian
model
inference
models
probability
probabilistic
Markov
prior
hidden
approach

Education Market
Bayesian 
modeling

Visual 
cortex

Chong Wang Probabilistic Modeling for Large-scale Data Exploration 12
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See how data changes over time
1 topic 3 topics 5 topics 10 topics
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Figure 6: Time stamp prediction. ‘m’ stands for flat approach of ‘month’, ‘w’ for ‘week’, ‘d’ for ‘day’ and and ‘h’
for ‘hour.’ ‘m+w’ stands for the hierarchical approach of combining ‘month’ and ‘week’, and ‘m+w+d’, ‘w+d’,
‘w+d+h’ are similarly defined. The baseline is the expectation of the error by randomly assigning a time. (a)
AP data. 5-topic and 10-topic models perform better than others, and the hierarchical approach always achieves
the best performance. (b) Election 08 data. 1-topic model performs best due to the short documents. The
hierarchical approach achieves comparable performances.
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Figure 7: Examples from a 3-topic cDTM using the week model in the Election 08 data. In year 2007, the topics
were more about general issues, while around year 2008, were more about candidates and changing faster.
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User interest modeling using topics

http://cogito-demos.ml.cmu.edu/cgi-bin/recommendation.cgi
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Representation:

q Data:

q Each document is a vector in the word space
q Ignore the order of words in a document. Only count matters!

q A high-dimensional and sparse representation
– Not efficient text processing tasks, e.g., search, document 

classification, or similarity measure
– Not effective for browsing

As for the Arabian and Palestinean voices that are against the 
current negotiations and the so-called peace process, they are not 
against peace per se, but rather for their well-founded 
predictions that Israel would NOT give an inch of the West bank 
(and most probably the same for Golan Heights) back to the 
Arabs. An 18 months of "negotiations" in Madrid, and 
Washington proved these predictions. Now many will jump on 
me saying why are you blaming israelis for no-result negotiations. 
I would say why would the Arabs stall the negotiations, what do 
they have to loose ?

Arabian

negotiations
against

peace
Israel

Arabs
blaming

Bag of Words Representation
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How to Model Semantic?

q Q: What is it about?
q A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 

Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

Source
Target
SMT

Alignment
Score
BLEU

Parse
Tree
Noun

Phrase
Grammar

CFG

likelihood
EM

Hidden
Parameters
Estimation

argMax

MT                    Syntax              Learning

0.6                          0.3                   0.1   

Unigram over vocabulary

To
pi

cs

Mixing 
Proportion

Topic Models
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Why this is Useful?

q Q: What is it about?
q A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 

Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

MT                    Syntax              Learning

Mixing 
Proportion

0.6                          0.3                   0.1   

l Q: give me similar document?
l Structured way of browsing the collection

l Other tasks
l Dimensionality reduction 

l TF-IDF vs. topic mixing proportion

l Classification, clustering, and more …
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Topic Models: The Big Picture

Unstructured Collection Structured Topic Network

Topic Discovery

Dimensionality  
Reduction

w1

w2

wn

x
x

x
x

T1

Tk T2
x x x

x

Word Simplex Topic Simplex
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Words in Contexts

•�It was a nice shot. ”
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Words in Contexts (con'd)

q The opposition Labor Party fared even worse,  with a predicted 35 

seats,  seven less than last election.

© Eric Xing @ CMU, 2005-2020 18



"Words" in Contexts (con'd)

Sivic et al. ICCV 2005© Eric Xing @ CMU, 2005-2020 19



More Generally: Admixture Models

q Objects are bags of elements

q Mixtures are distributions over elements

q Objects have mixing vector q
q Represents each mixtures’ contributions

q Object is generated as follows:
q Pick a mixture component from q
q Pick an element from that component

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
bank1  money1 bank1 bank1 
loan1 river2 stream2 bank1 
money1 river2 bank1 money1 
bank1  loan1   bank1  
money1 stream2 

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
bank1  money1 bank1 bank1 
loan1 river2 stream2 bank1 
money1 river2 bank1 money1 
bank1  loan1   bank1  
money1 stream2 

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
bank1  money1 bank1 bank1 
loan1 river2 stream2 bank1 
money1 river2 bank1 money1 
bank1  loan1   bank1  
money1 stream2 

…

0.1 0.1 0.5…..

0.1 0.5 0.1…..

0.5 0.1 0.1…..

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
bank1  money1 bank1 bank1 
loan1 river2 stream2 bank1 
money1 river2 bank1 money1 
bank1  loan1   bank1  
money1 stream2 
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Topic Models Represented as a GM

Generating a document
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Choices of Priors

q Dirichlet (LDA) (Blei et al. 2003)
q Conjugate prior means efficient inference
q Can only capture variations in each topic’s 

intensity independently

q Logistic Normal (CTM=LoNTAM) (Blei & Lafferty 2005, Ahmed & Xing 
2006)

q Capture the intuition that some topics are highly 
correlated and can rise up in intensity together

q Not a conjugate prior implies hard inference
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Generative Semantic of LoNTAM
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Posterior inference

z w b
N

✓
K

Topics

Topic proportions

Topic assignments

D

a ⌘
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Posterior inference results

z w b
N

a ✓
K

Bayesian
model
inference
…..

input
output
system
…..

cortex
cortical
areas
…..

Topics

Topic proportions

Topic assignments

D

⌘
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Joint likelihood of all variables

z w b
N

✓
K

D

a ⌘

We are interested in computing the posterior, 
and the data likelihood!

© Eric Xing @ CMU, 2005-2020 26



Inference and Learning are both intractable 

q A possible query:

q Close form solution?

q Sum in the denominator over Tn terms, and integrate over n k-dimensional topic 
vectors

q Learning: What to learn? What is the objective function?
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Approximate Inference

q Variational Inference

q Mean field approximation (Blei et al.)
q Expectation propagation (Minka et al.)
q Variational 2nd-order Taylor approximation (Xing)

q Markov Chain Monte Carlo

q Gibbs sampling (Griffiths et al)
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Variational Inference

q Consider a generative model !" #|% , and prior ! %
q Joint distribution: !" #, % = !" #|% ! %

q Assume variational distribution () %|#
q Objective: Maximize lower bound for log likelihood

q Equivalently, minimize free energy

log ! #
= -. () % # || !/ % # + 1

%
() % # log !" #, %() % #

≥ 1
%
() % # log !" #, %() % #

≔ ℒ(/,6; #)

9 /, :; # = −log ! # + -.(() % # || !/(%|#))
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Variational Inference

Maximize the variational lower bound:

• E-step: maximize ℒ w.r.t. ", with # fixed 

• If closed form solutions exist:

• M-step: maximize ℒ w.r.t. #, with " fixed 

max' ℒ #,"; *

max+ ℒ #,"; *

,'∗ (/|1) ∝ exp[log :+(1, /)]

ℒ #,"; * = =>?(@|A) log :+ 1 / + CD ,' / 1 ||: /
= log : * − CD(,' F * || :#(F|*))
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Mean-field assumption (in topic models)

q True posterior

q Break the dependency using the fully factorized distribution

q Mean-field family usually does NOT include the true posterior.

p(�, ✓, z|w) =
p(�, ✓, z,w)

p(w)

q.ˇ; ✓;z/ D
Y

k

q.ˇk/
Y
d

q.✓d /
Y

n

q.zdn/
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Mean Field Approximation  

q Parametric form for each marginal factor in ! ", $, % &, ', ():

q Learning parameters of the variational distribution (E-step):

q For LDA, we can compute the optimal MF approximation in closed form.
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Update each marginal

q Update:

q Where in LDA:

q And we obtain:

This is also a Dirichlet — the same as its prior!
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Update each marginal

q Similarly to ! "# $#), we obtain optimal parameters &#'⋆ for ! )#' &#'):

q And optimal parameters *+⋆ for ! ,+ *+):

q Iterating these equations to convergence yields the MF approximation to 
the posterior distribution.
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Coordinate ascent algorithm for LDA

1: Initialize variational topics q(Ø
k

), k = 1, ...,K .
2: repeat
3: for each document d 2 {1,2, ...,D} do
4: Initialize variational topic assigments q(z

dn

), n = 1, ...,N

5: repeat
6: Update variational topic proportions q(µ

d

)
7: Update variational topic assigments q(z

dn

), n = 1, ...,N

8: until Change of q(µ
d

) is small enough
9: end for

10: Update variational topics q(Ø
k

), k = 1, ...,K .
11: until Lower bound L(q) converges

Chong Wang (CMU) Large-scale Latent Variable Models February 28, 2013 50 / 50
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Conclusion

q GM-based topic models are cool
q Flexible 
q Modular
q Interactive

q There are many ways of implementing topic models
q unsupervised
q supervised

q Efficient Inference/learning algorithms
q GMF, with Laplace approx. for non-conjugate dist.
q MCMC

q Many applications
q …
q Word-sense disambiguation
q Image understanding
q Network inference
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Supplementary
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Supplementary: More on strategies in VI

q Alternative approximation scheme

q How to evaluate: empirical (ground truth unknown) vs. simulation (ground 
truth known)

q Comparison (of what)

q Building blocks
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Recall Choices of Priors

q Dirichlet (LDA) (Blei et al. 2003)
q Conjugate prior means efficient inference
q Can only capture variations in each topic’s 

intensity independently

q Logistic Normal (CTM=LoNTAM) (Blei & Lafferty 2005, Ahmed & Xing 
2006)

q Capture the intuition that some topics are highly 
correlated and can rise up in intensity together

q Not a conjugate prior implies hard inference
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Tangent Approximation
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How to evaluate?

q Empirical Visualization: e.g., topic discovery on New York Times
Topic discovery

The 5 most frequent topics from the HDP on the New York Times.
game

second

season
team

play

games

players

points

coach

giants

street
school

house

life

children

family
says

night

man

know

life

says

show

man
director

television

film

story

movie

films

house

life

children

man

war

book

story

books

author

novel

street

house

night
place

park

room

hotel

restaurant

garden

wine

house

bush

political

party

clinton
campaign

republican

democratic

senator
democrats percent

street

house

building

real

space
development

square
housing

buildings

game

second
team

play

won

open

race

win

round
cup

game

season

team

run
league

games
hit

baseball

yankees

mets

government

officials

war
military

iraq

army

forces

troops

iraqi

soldiers

school

life

children

family

says

women

help
mother

parents
child

percent

business

market

companies

stock

bank

financial

fund

investors
funds government

life

war
women

political
black

church

jewish

catholic

pope

street

show

art
museum

works
artists

artist

gallery

exhibition
paintings street

yesterday
police

man

case
found

officer

shot

officers

charged

 1  2  3  4  5

 6  7  8  9 10

11 12 13 14 15

Chong Wang Probabilistic Modeling for Large-scale Data Exploration 60

© Eric Xing @ CMU, 2005-2020 42



How to evaluate?

q Test on Synthetic Text where ground truth is known:

w

β  

q

z

μ Σ
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Comparison: accuracy and speed

q L2 error in topic vector est. 
and # of iterations

q Varying Num. of Topics

q Varying Voc. Size

q Varying Num. Words Per Document
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Comparison: perplexity
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Classification Result on PNAS collection

q PNAS abstracts from 1997-2002
q 2500  documents
q Average of 170 words per document

q Fitted 40-topics model using both approaches
q Use low dimensional representation to predict the abstract category

q Use SVM classifier
q 85% for training and 15% for testing

Classification Accuracy

-Notable Difference
-Examine the low dimensional
representations below
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What makes topic models useful --- The Zoo of Topic 
Models!

q It is a building block of many models.
Williamson et al. 2010 Chang & Blei, 2009

Boyd-Graber & Blei, 2008 Wang & Blei, 2008McCallum et al. 2007

Titov & McDonald, 2008

What makes topic models useful? 

!  It is a building block of many models. 
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Extending LDA
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to di�erent topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution �t, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
�t over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell
V (b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w(b)
k the kth token in the event b

V (b)
ij entity i and j’s groups behaved same (1)

or di�erently (2) on the event b
S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution �(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb � Uniform(
1
T

)

wit|�t � Multinomial(�t)

�t|� � Dirichlet(�)

git|�t � Multinomial(�t)

�t|� � Dirichlet(�)

V (b)
ij |�(b)

gigj
� Binomial(�(b)

gigj
)

�(b)
gh |� � Beta(�).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables � determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n(m)

· � NB(
�

k bmk�k, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length �k according to Eq. 1.
(b) Sample the relative mass �k � Gamma(�, 1).
(c) Draw the topic distribution over words,

�k � Dirichlet(�).

2. for m = 1, . . . , M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n(m)
· � NB(

�
k bmk�k, 1/2).

(c) Sample the distribution over topics,
�m � Dirichlet(bm · �).

(d) For each word wmi, i = 1, . . . , n(m)
· ,

i. Draw the topic index zmi � Discrete(�m).
ii. Draw the word wmi � Discrete(�zmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, �m, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters � separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n(m)

· =
P

k n(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmj� + ��i,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(�,Z|�,�) =
�

d [q�(�d|�d)
�

n qz(zd,n|�d,n)] , (3)

where � is a set of Dirichlet parameters, one for each doc-

ument, and � is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = �d,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2 |zd1 , zd2 , �, �)] +

�
d

�
n Eq [log p(wd,n|�1:K , zd,n)] +

�
d

�
n Eq [log p(zd,n|�d)] +�

d Eq [log p(�d|�)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2 = 1 whenever a link is ob-
served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2 = 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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(b) Sentence Graphical Model

Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document �,
and the node’s parent’s successor weights �. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an e�cient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters �t is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and �sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 � k � K) topic’s parameter at term w is:

�0,k,w � N (m, v0)

�j,k,w|�i,k,w, s � N
�
�i,k,w, v�sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write �sj ,si

as �sj for short.)

1. For each topic k, 1 � k � K,

(a) Draw �0,k � N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to su�er from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is di�erent: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for di�erent items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is di�cult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and e�ciently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very di�erent types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, e�ectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
�loc

d,v and a distribution defining preference for local topics
versus global topics �d,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution �s. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(�) for the distribution
�s permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics �gl

z from a Dirichlet prior
Dir(�gl) and Kloc word distributions for local topics �loc

z�

from Dir(�loc). Then, for each document d:

• Choose a distribution of global topics �gl
d � Dir(�gl).

• For each sentence s choose a distribution �d,s(v) �
Dir(�).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, �z, specific to a particular
topic/author, z, however topics are selected di�erently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, �, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, �, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution �x that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution �z. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite di�erent. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• The posterior can be used in creative ways.

• E.g., we can use inferences in information retrieval, recommendation,
similarity, visualization, summarization, and other applications.

What makes topic models useful? 

!  It is a building block of many models. 
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Extending LDA
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to di�erent topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution �t, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
�t over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell
V (b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w(b)
k the kth token in the event b

V (b)
ij entity i and j’s groups behaved same (1)

or di�erently (2) on the event b
S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution �(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb � Uniform(
1
T

)

wit|�t � Multinomial(�t)

�t|� � Dirichlet(�)

git|�t � Multinomial(�t)

�t|� � Dirichlet(�)

V (b)
ij |�(b)

gigj
� Binomial(�(b)

gigj
)

�(b)
gh |� � Beta(�).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables � determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n(m)

· � NB(
�

k bmk�k, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length �k according to Eq. 1.
(b) Sample the relative mass �k � Gamma(�, 1).
(c) Draw the topic distribution over words,

�k � Dirichlet(�).

2. for m = 1, . . . , M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n(m)
· � NB(

�
k bmk�k, 1/2).

(c) Sample the distribution over topics,
�m � Dirichlet(bm · �).

(d) For each word wmi, i = 1, . . . , n(m)
· ,

i. Draw the topic index zmi � Discrete(�m).
ii. Draw the word wmi � Discrete(�zmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, �m, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters � separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n(m)

· =
P

k n(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmj� + ��i,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(�,Z|�,�) =
�

d [q�(�d|�d)
�

n qz(zd,n|�d,n)] , (3)

where � is a set of Dirichlet parameters, one for each doc-

ument, and � is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = �d,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2 |zd1 , zd2 , �, �)] +

�
d

�
n Eq [log p(wd,n|�1:K , zd,n)] +

�
d

�
n Eq [log p(zd,n|�d)] +�

d Eq [log p(�d|�)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2 = 1 whenever a link is ob-
served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2 = 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document �,
and the node’s parent’s successor weights �. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an e�cient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters �t is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and �sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 � k � K) topic’s parameter at term w is:

�0,k,w � N (m, v0)

�j,k,w|�i,k,w, s � N
�
�i,k,w, v�sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write �sj ,si

as �sj for short.)

1. For each topic k, 1 � k � K,

(a) Draw �0,k � N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to su�er from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is di�erent: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for di�erent items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is di�cult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and e�ciently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very di�erent types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, e�ectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
�loc

d,v and a distribution defining preference for local topics
versus global topics �d,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution �s. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(�) for the distribution
�s permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics �gl

z from a Dirichlet prior
Dir(�gl) and Kloc word distributions for local topics �loc

z�

from Dir(�loc). Then, for each document d:

• Choose a distribution of global topics �gl
d � Dir(�gl).

• For each sentence s choose a distribution �d,s(v) �
Dir(�).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, �z, specific to a particular
topic/author, z, however topics are selected di�erently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, �, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, �, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution �x that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution �z. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite di�erent. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• The posterior can be used in creative ways.

• E.g., we can use inferences in information retrieval, recommendation,
similarity, visualization, summarization, and other applications.

What makes topic models useful? 

!  It is a building block of many models. 
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Extending LDA
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to di�erent topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution �t, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
�t over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell
V (b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w(b)
k the kth token in the event b

V (b)
ij entity i and j’s groups behaved same (1)

or di�erently (2) on the event b
S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution �(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb � Uniform(
1
T

)

wit|�t � Multinomial(�t)

�t|� � Dirichlet(�)

git|�t � Multinomial(�t)

�t|� � Dirichlet(�)

V (b)
ij |�(b)

gigj
� Binomial(�(b)

gigj
)

�(b)
gh |� � Beta(�).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables � determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n(m)

· � NB(
�

k bmk�k, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length �k according to Eq. 1.
(b) Sample the relative mass �k � Gamma(�, 1).
(c) Draw the topic distribution over words,

�k � Dirichlet(�).

2. for m = 1, . . . , M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n(m)
· � NB(

�
k bmk�k, 1/2).

(c) Sample the distribution over topics,
�m � Dirichlet(bm · �).

(d) For each word wmi, i = 1, . . . , n(m)
· ,

i. Draw the topic index zmi � Discrete(�m).
ii. Draw the word wmi � Discrete(�zmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, �m, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters � separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n(m)

· =
P

k n(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmj� + ��i,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(�,Z|�,�) =
�

d [q�(�d|�d)
�

n qz(zd,n|�d,n)] , (3)

where � is a set of Dirichlet parameters, one for each doc-

ument, and � is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = �d,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2 |zd1 , zd2 , �, �)] +

�
d

�
n Eq [log p(wd,n|�1:K , zd,n)] +

�
d

�
n Eq [log p(zd,n|�d)] +�

d Eq [log p(�d|�)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2 = 1 whenever a link is ob-
served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2 = 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document �,
and the node’s parent’s successor weights �. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an e�cient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters �t is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and �sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 � k � K) topic’s parameter at term w is:

�0,k,w � N (m, v0)

�j,k,w|�i,k,w, s � N
�
�i,k,w, v�sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write �sj ,si

as �sj for short.)

1. For each topic k, 1 � k � K,

(a) Draw �0,k � N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to su�er from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is di�erent: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for di�erent items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is di�cult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and e�ciently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very di�erent types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, e�ectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
�loc

d,v and a distribution defining preference for local topics
versus global topics �d,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution �s. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(�) for the distribution
�s permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics �gl

z from a Dirichlet prior
Dir(�gl) and Kloc word distributions for local topics �loc

z�

from Dir(�loc). Then, for each document d:

• Choose a distribution of global topics �gl
d � Dir(�gl).

• For each sentence s choose a distribution �d,s(v) �
Dir(�).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, �z, specific to a particular
topic/author, z, however topics are selected di�erently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, �, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, �, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution �x that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution �z. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite di�erent. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.

252

• The posterior can be used in creative ways.

• E.g., we can use inferences in information retrieval, recommendation,
similarity, visualization, summarization, and other applications.

What makes topic models useful? 

!  It is a building block of many models. 
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Extending LDA
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to di�erent topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution �t, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
�t over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell
V (b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w(b)
k the kth token in the event b

V (b)
ij entity i and j’s groups behaved same (1)

or di�erently (2) on the event b
S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution �(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb � Uniform(
1
T

)

wit|�t � Multinomial(�t)

�t|� � Dirichlet(�)

git|�t � Multinomial(�t)

�t|� � Dirichlet(�)

V (b)
ij |�(b)

gigj
� Binomial(�(b)

gigj
)

�(b)
gh |� � Beta(�).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables � determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n(m)

· � NB(
�

k bmk�k, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length �k according to Eq. 1.
(b) Sample the relative mass �k � Gamma(�, 1).
(c) Draw the topic distribution over words,

�k � Dirichlet(�).

2. for m = 1, . . . , M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n(m)
· � NB(

�
k bmk�k, 1/2).

(c) Sample the distribution over topics,
�m � Dirichlet(bm · �).

(d) For each word wmi, i = 1, . . . , n(m)
· ,

i. Draw the topic index zmi � Discrete(�m).
ii. Draw the word wmi � Discrete(�zmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, �m, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters � separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n(m)

· =
P

k n(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmj� + ��i,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(�,Z|�,�) =
�

d [q�(�d|�d)
�

n qz(zd,n|�d,n)] , (3)

where � is a set of Dirichlet parameters, one for each doc-

ument, and � is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = �d,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2 |zd1 , zd2 , �, �)] +

�
d

�
n Eq [log p(wd,n|�1:K , zd,n)] +

�
d

�
n Eq [log p(zd,n|�d)] +�

d Eq [log p(�d|�)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2 = 1 whenever a link is ob-
served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2 = 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document �,
and the node’s parent’s successor weights �. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an e�cient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters �t is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and �sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 � k � K) topic’s parameter at term w is:

�0,k,w � N (m, v0)

�j,k,w|�i,k,w, s � N
�
�i,k,w, v�sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write �sj ,si

as �sj for short.)

1. For each topic k, 1 � k � K,

(a) Draw �0,k � N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to su�er from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is di�erent: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for di�erent items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is di�cult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and e�ciently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very di�erent types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, e�ectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
�loc

d,v and a distribution defining preference for local topics
versus global topics �d,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution �s. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(�) for the distribution
�s permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics �gl

z from a Dirichlet prior
Dir(�gl) and Kloc word distributions for local topics �loc

z�

from Dir(�loc). Then, for each document d:

• Choose a distribution of global topics �gl
d � Dir(�gl).

• For each sentence s choose a distribution �d,s(v) �
Dir(�).

• For each sliding window v
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N

D

"

#

!

$

T

A,A

z

w

Author Model

(Multi-label Mixture Model)
[McCallum 1999]

N

D

#$

A

ad ad rda

ddd

d

d

Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, �z, specific to a particular
topic/author, z, however topics are selected di�erently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, �, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, �, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution �x that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution �z. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite di�erent. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.

252

• The posterior can be used in creative ways.

• E.g., we can use inferences in information retrieval, recommendation,
similarity, visualization, summarization, and other applications.
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More on Mean Field Approximation
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Gibbs predictive distribution:
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The naive mean field approximation

q Approximate p(X) by fully factorized q(X)=Piqi(Xi)

q For Boltzmann distribution p(X)=exp{åi < j qijXiXj+qioXi}/Z :
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§ Áxjñqj resembles a “message” sent from node j to i 
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Exact:

Clusters:

(intractable)

Cluster-based approx. to the Gibbs free energy
(Wiegerinck 2001, 
Xing et al 03,04)
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Mean field approx. to Gibbs free energy

q Given a disjoint clustering, {C1, … , CI}, of all variables
q Let 

q Mean-field free energy

q Will never equal to the exact Gibbs free energy no matter what clustering is 
used, but it does always define a lower bound of the likelihood 

q Optimize each qi(xc)'s. 
q Variational calculus …
q Do inference in each qi(xc) using any tractable algorithm
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The Generalized Mean Field theorem

Theorem: The optimum GMF approximation to the cluster marginal is 
isomorphic to the cluster posterior of the original distribution given internal 
evidence and its generalized mean fields:

GMF algorithm: Iterate over each qi
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[xing et al. UAI 2003]
A generalized mean field algorithm
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[xing et al. UAI 2003]A generalized mean field algorithm
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Theorem: The GMF algorithm is guaranteed to 
converge to a local optimum, and provides a lower 
bound for the likelihood of evidence (or partition 
function) the model.

Convergence theorem
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Cluster marginal of a square block Ck:
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Virtually a reparameterized Ising model of small size.

Example 1: Generalized MF approximations to Ising
models
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GMF approximation to Ising models

GMF2x2
GMF4x4

BP

Attractive coupling: positively weighted
Repulsive coupling: negatively weighted
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GMFr
GMFb

BP

Example 2: Sigmoid belief network
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Example 3: Factorial HMM
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