
Probabilistic Graphical Models

Case Studies: HMM and CRF
Eric Xing
Lecture 6, February 3, 2020

Reading: see class homepage
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Hidden Markov Model: 
from static to dynamic mixture models

Dynamic mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Static mixture

AX1

Y1

N
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Example

q Speech recognition

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 
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Applications of HMMs

q Some early applications of HMMs
q finance, but we never saw them  
q speech recognition  
q modelling ion channels 

q In the mid-late 1980s HMMs entered genetics and molecular biology, 
and they are now firmly entrenched.

q Some current applications of HMMs to biology
q mapping chromosomes
q aligning biological sequences
q predicting sequence structure
q inferring evolutionary relationships
q finding genes in DNA sequence
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Definition (of HMM)

q Observation space
Alphabetic set:
Euclidean space:

q Index set of hidden states

q Transition probabilities between any two states

or
q Start probabilities

q Emission probabilities associated with each state

or in general:
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Probability of a parse

q Given a sequence x = x1……xT
and a parse y = y1, ……, yT,

q To find how likely is the parse:
(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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Variable Elimination on Hidden Markov Model

p(x, y) = p(x1……xT, y1, ……, yT) 
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)

Conditional probability:
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Variable Elimination on Hidden Markov Model

Conditional probability:
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The Forward Algorithm

q We want to calculate P(x), the likelihood of x, given the HMM
q Sum over all possible ways of generating x:

q To avoid summing over an exponential number of paths y, define

(the forward probability)

q The recursion:
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The Backward Algorithm

q We want to compute                      ,
the posterior probability distribution on the t th position, given x

q We start by computing

q The recursion:
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The junction tree algorithm: message passing for HMM

q A junction tree for the HMM

q Rightward pass

q This is exactly the forward algorithm!
q Leftward pass …

q This is exactly the backward algorithm! 
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Summary
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Posterior decoding

q We can now calculate

q Then, we can ask
q What is the most likely state at position t of sequence x:

q Note that this is an MPA of a single hidden state, 
what if we want to a MPA of a whole hidden state sequence?

q Posterior Decoding: 

q This is different from MPA of a whole sequence of 
hidden states

q This can be understood as bit error rate
vs. word error rate
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MPA of X ?
MPA of (X, Y) ?

x y P(x,y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3
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Viterbi decoding

q GIVEN x = x1, …, xT, we want to find y = y1, …, yT, such that P(y|x) is 
maximized:

y* = argmaxy P(y|x) = argmaxp P(y,x) 

q Let

= Probability of most likely sequence of states ending at state yt = k

q The recursion:

q Underflows are a significant problem

q These numbers become extremely small – underflow
q Solution: Take the logs of all values:
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The Viterbi Algorithm – derivation

q Define the viterbi probability:
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Computational Complexity and implementation details

q What is the running time, and space required, for Forward, and 
Backward?

Time:   O(K2N); Space: O(KN).

q Useful implementation technique to avoid underflows
q Viterbi: sum of logs
q Forward/Backward:   rescaling at each position by multiplying by a constant
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Learning HMM: two scenarios

q Supervised learning: estimation when the “right answer” is known
q Examples: 

GIVEN: a genomic region x = x1…x1,000,000 where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, as he changes dice 
and produces 10,000 rolls

q Unsupervised learning: estimation when the “right answer” is unknown
q Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the CpG islands 
there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he changes dice

q QUESTION: Update the parameters q of the model to maximize P(x|q) ---
Maximal likelihood (ML) estimation 
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Parameter sharing

q Consider a time-invariant (stationary) 1st-order Markov model
q Initial state probability vector: 
q State transition probability matrix:

q The joint:

q The log-likelihood:

q Again, we optimize each parameter separately
q p is a multinomial frequency vector, and we've seen it before
q What about A?
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Learning a Markov chain transition matrix

q A is a stochastic matrix: 
q Each row of A is multinomial distribution.
q So MLE of Aij is the fraction of transitions from i to j

q Application: 
q if the states Xt represent words, this is called a bigram language model

q Sparse data problem:
q If i à j did not occur in data, we will have Aij =0, then any future sequence with word 

pair i à j will have zero probability. 
q A standard hack: backoff smoothing or deleted interpolation
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Supervised ML estimation for “Hidden” MM

q Given x = x1…xN for which the true state path y = y1…yN is known,
q Define:

Aij = # times state transition i®j occurs in y
Bik = # times state i in y emits k in x

q We can show that the maximum likelihood parameters q are:

q What if x is continuous? We can treat                                     as N´T observations of, 
e.g., a Gaussian, and apply learning rules for Gaussian …
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Supervised ML estimation, ctd.

q Intuition:
q When we know the underlying states, the best estimate of q is the average 

frequency of transitions & emissions that occur in the training data

q Drawback:
q Given little data, there may be overfitting:

q P(x|q) is maximized, but q is unreasonable:0 probabilities – VERY BAD

q Example:
q Given 10 casino rolls, we observe

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
y = F, F, F, F, F, F, F, F, F, F

q Then: aFF = 1; aFL = 0
bF1 = bF3 = .2; 
bF2 = .3; bF4 = 0; bF5 = bF6 = .1 
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Pseudocounts

q Solution for small training sets:
q Add pseudocounts

Aij = # times state transition i®j occurs in y + Rij
Bik = # times state i in y emits k in x + Sik

q Rij, Sij are pseudocounts representing our prior belief
q Total pseudocounts: Ri = SjRij , Si = SkSik , 

q --- "strength" of prior belief, 
q --- total number of imaginary instances in the prior

q Larger total pseudocounts Þ strong prior belief

q Small total pseudocounts: just to avoid 0 probabilities --- smoothing

q This is equivalent to Bayesian est. under a uniform prior with "parameter 
strength" equals to the pseudocounts
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Bayesian language model

q Global and local parameter independence

q The posterior of Aià· and Ai'à· is factorized despite v-structure on Xt, because Xt-1acts like a multiplexer
q Assign a Dirichlet prior bi to each row of the transition matrix:

q We could consider more realistic priors, e.g., mixtures of Dirichlets to account for types of words 
(adjectives, verbs, etc.)
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Example: HMM

q Supervised learning: estimation when the “right answer” is known
q Examples: 

GIVEN: a genomic region x = x1…x1,000,000 where we have good (experimental) 
annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, as he changes dice 
and produces 10,000 rolls

q Unsupervised learning: estimation when the “right answer” is unknown
q Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the CpG islands there, 
neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he changes dice

q QUESTION: Update the parameters q of the model to maximize P(x|q) ---
Maximal likelihood (ML) estimation 
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Learning HMM: two scenarios

q Supervised learning: if only we knew the true state path then ML 
parameter estimation would be trivial

q E.g., recall that for complete observed tabular BN:

q What if y is continuous? We can treat                                       as N´T observations of, e.g., a GLIM, and 
apply learning rules for GLIM …

q Unsupervised learning: when the true state path is unknown, we can fill 
in the missing values using inference recursions.

q The Baum Welch algorithm (i.e., EM)
q Guaranteed to increase the log likelihood of the model after each iteration
q Converges to local optimum, depending on initial conditions
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The Baum Welch algorithm

q The complete log likelihood

q The expected complete log likelihood

q EM
q The E step

q The M step ("symbolically" identical to MLE)
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Conditional Random Fields
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Shortcomings of Hidden Markov Model (1): locality of 
features

q HMM models capture dependences between each state and only
its corresponding observation  

q NLP example: In a sentence segmentation task, each segmental state may 
depend not just on a single word (and the adjacent segmental stages), but also 
on the (non-local) features of the whole line such as line length, indentation, 
amount of white space, etc.

q Mismatch between learning objective function and prediction 
objective function

q HMM learns a joint distribution of states and observations P(Y, X), but in a 
prediction task, we need the conditional probability P(Y|X)

Y1 Y2 … … … Yn

X1 X2 … … … Xn
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Shortcomings of HMM (2): the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

What the local transition probabilities say:

• State 1 almost always prefers to go to state 2

• State 2 almost always prefer to stay in state 2 © Eric Xing @ CMU, 2005-2020 29



HMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 1-> 1-> 1-> 1:

• 0.4 x 0.45 x 0.5 = 0.09 
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HMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 2->2->2->2 :

• 0.2 X 0.3 X 0.3 = 0.018 
Other paths:
1-> 1-> 1-> 1: 0.09 
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HMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 1->2->1->2:

• 0.6 X 0.2 X 0.5 = 0.06
Other paths:
1->1->1->1: 0.09 
2->2->2->2: 0.018 
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HMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 1->1->2->2:

• 0.4 X 0.55 X 0.3 = 0.066
Other paths:
1->1->1->1: 0.09 
2->2->2->2: 0.018
1->2->1->2: 0.06 © Eric Xing @ CMU, 2005-2020 33



HMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Most Likely Path:  1-> 1-> 1-> 1
• Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.

• why?
© Eric Xing @ CMU, 2005-2020 34



HMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Most Likely Path:  1-> 1-> 1-> 1
• State 1 has only two transitions but state 2 has 5:

• Average transition probability from state 2 is lower © Eric Xing @ CMU, 2005-2020 35



HMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Label bias problem in HMM:
• Preference of states with lower number of transitions over others
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Solution: 
Do not normalize probabilities locally

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

From local probabilities ….
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Solution: 
Do not normalize probabilities locally

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
20

3010

20

10

20

20

30

2020

30

10

10

30

5

510

30

20

20

20

From local probabilities to local potentials

• States with lower transitions do not have an unfair advantage!
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From HMM to CRF

q CRF is a partially directed model
q Discriminative model, unlike HMM
q Usage of global normalizer Z(x) overcomes the label bias 

problem of HMM
q Models the dependence between each state and the entire 

observation sequence

Y1 Y2 … … … Yn

x1:n
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y2 y3y1 yT... 

... 

P(X,Y) =



Conditional Random Fields

q General parametric form:
Y1 Y2 … … … Yn

x1:n
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CRFs: Inference

q Given CRF parameters l and µ, find the y* that maximizes P(y|x)

q Can ignore Z(x) because it is not a function of y
q Run the max-product algorithm on the junction-tree of CRF:

Y1 Y2 … … … Yn

x1:n

Y1,Y2 Y2,Y3 ……. Yn-2,Yn-1
Yn-1,Yn

Y2 Y3
Yn-2 Yn-1

Same as Viterbi decoding 
used in HMMs!
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CRF learning

q Given {(xd, yd)}d=1
N, find l*, µ* such that

q Computing the gradient w.r.t l: 
Gradient of the log-partition function in an 
exponential family is the expectation of the 

sufficient statistics.
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CRF learning

q Computing the model expectations:

q Requires exponentially large number of summations: Is it intractable?

q Tractable!
q Can compute marginals using the sum-product algorithm on the chain

Expectation of f over the corresponding marginal 
probability of neighboring nodes!!
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CRF learning

q Computing marginals using junction-tree calibration:

q Junction Tree Initialization: 

q After calibration: 

Y1 Y2 … … … Yn

x1:n

Y1,Y2 Y2,Y3 ……. Yn-2,Yn-1
Yn-1,Yn

Y2 Y3
Yn-2 Yn-1

Also called 
forward-backward algorithm
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CRF learning

q Computing feature expectations using calibrated potentials:

q Now we know how to compute rlL(l,µ):

q Learning can now be done using gradient ascent: 
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CRF learning

q In practice, we use a Gaussian Regularizer for the parameter vector to 
improve generalizability

q In practice, gradient ascent has very slow convergence
q Alternatives:

q Conjugate Gradient method
q Limited Memory Quasi-Newton Methods 
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CRFs: some empirical results

q Comparison of error rates on synthetic data

HMM error

C
R

F 
er

ro
r

Data is increasingly higher 
order in the direction of arrow

CRFs achieve the lowest 
error rate for higher order 
data
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CRFs: some empirical results

q Parts of Speech tagging

q Using same set of features: HMM >=< CRF > MEMM
q Using additional overlapping features: CRF+ > MEMM+ >> 

HMM
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Supplementary 
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Other CRFs
q So far we have discussed only 1-

dimensional chain CRFs
q Inference and learning: exact

q We could also have CRFs for 
arbitrary graph structure

q E.g: Grid CRFs
q Inference and learning no longer tractable
q Approximate techniques used

q MCMC Sampling
q Variational Inference
q Loopy Belief Propagation

q We will discuss these techniques soon
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Applications of CRF in Vision

Image Segmentation

Stereo Matching Image Restoration

© Eric Xing @ CMU, 2005-2020 51



Application: Image Segmentation
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Application: Handwriting Recognition
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Application: Pose Estimation
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Feature Functions for CRF in Vision
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Case Study: Image Segmentation

q Image segmentation (FG/BG) by modeling of interactions btw RVs 
q Images are noisy. 
q Objects occupy continuous regions in an image.

Input image Pixel-wise separate
optimal labeling

Locally-consistent 
joint optimal labeling

[Nowozin,Lampert 2012]

Y*= argmax
y∈{0,1}n

Vi (yi,X)+ Vi, j (yi, yj )
j∈Ni

∑
i∈S
∑

i∈S
∑
#

$
%
%

&

'
(
(
.

Y: labels
X: data (features)
S: pixels
Ni: neighbors of pixel i

Unary Term Pairwise Term
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Discriminative Random Fields

q A special type of CRF
q The unary and pairwise potentials are designed using local 

discriminative classifiers.
q Posterior

q Association Potential 
q Local discriminative model for site i: using logistic link with 

GLM.

q Interaction Potential
q Measure of how likely site i and j have the same label given 

X

Ai (yi,X) = logP(yi | fi (X))

P(Y | X) = 1
Z
exp( Ai (yi,X)+ Iij (yi, yj,X)

j∈Ni

∑
i∈S
∑

i∈S
∑ )

S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.

Association Interaction

P(yi =1| fi (X)) =
1

1+ exp(−(wT fi (X)))
=σ (wT fi (X))

Iij (yi, yj,X) = kyiyj + (1− k)(2σ (yiyjµij (X))−1))

(1) Data-independent smoothing term (2) Data-dependent pairwise logistic function  
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DRF Results

q Task: Detecting man-made structure in natural scenes. 
q Each image is divided in non-overlapping 16x16 tile blocks. 

q An example

q Logistic: No smoothness in the labels
q MRF: Smoothed False positive. Lack of neighborhood 

interaction of the data
S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.

Input image Logistic MRF DRF
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Multiscale Conditional Random Fields

q Considering features in different 
scales

q Local Features (site)
q Regional Label Features (small 

patch)
q Global Label Features (big patch 

or the whole image)
q The conditional probability P(L|X) is 

formulated by features in different 
scales

He, X. et. al.: Multiscale conditional random fields for image labeling. CVPR 2004

Õ=
s

s XLP
Z

XLP )|(1)|(

åÕ=
L s

s XLPZ )|(
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Multiscale Conditional Random Fields

He, X. et. al.: Multiscale conditional random fields for image labeling. CVPR 2004

Local Features

Regional Label Features

Global Label Features
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mCRF Results

He, X. et. al.: Multiscale conditional random fields for image labeling. CVPR 2004 © Eric Xing @ CMU, 2005-2020 61



Topic Random Fields

q Spatial MRF over topic assignments

Zhao, B. et. al.: Topic random fields for image segmentation. ECCV 2010 © Eric Xing @ CMU, 2005-2020 62



TRF Results

Zhao, B. et. al.: Topic random fields for image segmentation. ECCV 2010

Spatial LDA vs. Topic Random Fields
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Summary

q Conditional Random Fields are partially directed discriminative models
q They overcome the label bias problem of HMM by using a global normalizer
q Inference for 1-D chain CRFs is exact

q Same as Max-product or Viterbi decoding
q Learning also is exact

q globally optimum parameters can be learned
q Requires using sum-product or forward-backward algorithm

q CRFs involving arbitrary graph structure are intractable in general
q E.g.: Grid CRFs
q Inference and learning require approximation techniques

q MCMC sampling
q Variational methods
q Loopy BP 
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