Probabilistic Graphical Models

Case Studies: HMM and CRF

Eric Xing

Hidden Markov Model:

from static to dynamic mixture models
Static mixture
Dynamic mixture

Example

- Speech recognition

Fig. 1.2 Isolated Word Problem

Applications of HMMs

- Some early applications of HMMs

\square	finance, but we never saw them
speech recognition	
modelling ion channels	

- In the mid-late 1980s HMMs entered genetics and molecular biology, and they are now firmly entrenched.
- Some current applications of HMMs to biology
mapping chromosomes
aligning biological sequences
predicting sequence structure
- inferring evolutionary relationships
- finding genes in DNA sequence

Definition (of HMM)

- Observation space Alphabetic set: Euclidean space:

$$
\begin{gathered}
\mathrm{C}=\left\{c_{1}, c_{2}, \cdots, c_{k}\right\} \\
\mathrm{R}^{d}
\end{gathered}
$$

$$
\mathrm{I}=\{1,2, \cdots, M\}
$$

- Transition probabilities between any two states

$$
p\left(y_{t}^{j}=1 \mid y_{t-1}^{i}=1\right)=a_{i, j},
$$

or

$$
p\left(y_{+} \mid y_{+-1}^{i}=1\right) \sim \operatorname{Multinomial}\left(a_{i, 1}, a_{i, 1}, \ldots, a_{i, M}\right), \forall i \in \mathrm{I}
$$

- Start probabilities

$$
p\left(y_{1}\right) \sim \operatorname{Multinomial}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{M}\right) .
$$

- Emission probabilities associated with each state
or in general:

$$
p\left(x_{+} \mid y_{+}^{i}=1\right) \sim \operatorname{Multinomial}\left(b_{i, 1}, b_{i, 1}, \ldots, b_{i, K}\right), \forall i \in \mathrm{I} .
$$

$$
p\left(x_{+} \mid y_{+}^{i}=1\right) \sim \mathrm{f}\left(\cdot \mid \theta_{i}\right), \forall i \in \mathrm{I} .
$$

Probability of a parse

- Given a sequence $\mathbf{x}=\boldsymbol{X}_{1} \ldots . . \boldsymbol{X}_{\mathrm{T}}$ and a parse $\mathbf{y}=y_{1}, \ldots \ldots, y_{T}$,
- To find how likely is the parse: (given our HMM and the sequence)


```
p(\mathbf{x},\mathbf{y})\quad=p(\mp@subsup{x}{1}{}\ldots\ldots.\mp@subsup{x}{\textrm{T}}{},\mp@subsup{y}{1}{},\ldots\ldots,\mp@subsup{y}{\textrm{T}}{})\quad\mathrm{ (Joint probability)}
    =p(\mp@subsup{y}{1}{})p(\mp@subsup{x}{1}{}|\mp@subsup{y}{1}{})p(\mp@subsup{y}{2}{}|\mp@subsup{y}{1}{})p(\mp@subsup{x}{2}{}|\mp@subsup{y}{2}{})\ldotsp(\mp@subsup{y}{\textrm{T}}{}|\mp@subsup{y}{\textrm{T}-1}{})p(\mp@subsup{x}{\textrm{T}}{}|\mp@subsup{y}{\textrm{T}}{})
    =p(\mp@subsup{y}{1}{})}\textrm{P}(\mp@subsup{y}{2}{}|\mp@subsup{y}{1}{})\ldotsp(\mp@subsup{y}{\textrm{T}}{}|\mp@subsup{y}{\textrm{T}-1}{})\timesp(\mp@subsup{x}{1}{}|\mp@subsup{y}{1}{})p(\mp@subsup{x}{2}{}|\mp@subsup{y}{2}{})\ldotsp(\mp@subsup{x}{\textrm{T}}{}|\mp@subsup{y}{\textrm{T}}{}
    =p(\mp@subsup{y}{1}{},\ldots\ldots,\mp@subsup{y}{\textrm{T}}{})p(\mp@subsup{x}{1}{}\ldots\ldots..\mp@subsup{x}{\textrm{T}}{}|\mp@subsup{y}{1}{},\ldots\ldots,\mp@subsup{y}{\textrm{T}}{})
```


Variable Elimination on Hidden Markov Model

$$
\begin{aligned}
& p(\mathbf{x}, \mathbf{y}) \quad=p\left(x_{1} \ldots \ldots x_{\mathrm{T}}, y_{1}, \ldots \ldots, y_{\mathrm{T}}\right) \\
& \quad=p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(y_{\mathrm{T}} \mid y_{\mathrm{T}-1}\right) p\left(x_{\mathrm{T}} \mid y_{\mathrm{T}}\right)
\end{aligned}
$$

Conditional probability:

$$
\begin{aligned}
& \text { probability } \\
& \begin{aligned}
p\left(y_{i} \mid x_{1}, \ldots, x_{T}\right) & \propto \sum_{y_{1}} \ldots \sum_{\left(y_{i}-1\right)}^{V} \sum_{W_{i+1}} \ldots \sum_{y_{T}} p\left(y_{i}, \ldots, y_{T}, x_{1}, \ldots, x_{T}\right) \\
& =\sum_{y_{1}} \ldots \sum_{y_{i-1}} \sum_{y_{i+1}} \ldots \sum_{y_{T}} p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) \ldots p\left(y_{T} \mid y_{T-1}\right) p\left(x_{T} \mid y_{T}\right)
\end{aligned} \\
& \begin{array}{l}
=\sum_{y_{2}} \cdots \sum_{y_{1}} \cdots \cdots \cdots \sum_{y_{1}} p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) p\left(y_{2}\left(y_{1}\right)\right. \\
=\sum_{3_{2}} \cdots \cdots \sum_{y_{2}} \cdots \cdots\left(x_{1} y_{2}\right) \\
=\sum_{y_{2}} \cdots \sum_{y_{2}}\left(x_{1} x_{2}, y_{3}\right)
\end{array}
\end{aligned}
$$

Variable Elimination on Hidden Markov Model

Conditional probability:

$$
\begin{aligned}
& p\left(y_{i} \mid x_{1}, \ldots, x_{T}\right)=\sum_{y_{1}} \ldots \sum_{y_{i-1}} \sum_{y_{i+1}} \ldots \sum_{y_{T}} p\left(y_{i}, \ldots, y_{T}, x_{1}, \ldots, x_{T}\right) \\
& =\sum_{y_{1}} \cdots \sum_{y_{i-1}} \sum_{y_{i+1}} \ldots \sum_{y_{T}} p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) \ldots p\left(y_{T} \mid y_{T-1}\right) p\left(x_{T} \mid y_{T}\right) \\
& =\sum_{y_{1}} \cdots \cdots \sum_{y_{t-1}} \cdots \cdots \sum_{y_{T}} P\left(y_{t} \mid y_{\tau-1}\right) P\left(x_{\tau} \mid y_{\tau}\right) \\
& =\sum_{y_{1}} \cdots \sum_{y_{T-L}} \cdots \frac{m_{\eta_{T}}() P\left(y_{T-1}\left(y_{T-2}\right) P\left(x_{T-1} \mid y_{T-1}\right)\right.}{\left.\sum_{m^{\prime} y_{T-1} c}\right)}
\end{aligned}
$$

The Forward Algorithm

- We want to calculate $P(\mathbf{x})$, the likelihood of \mathbf{x}, given the HMM - Sum over all possible ways of generating \mathbf{x} :

$$
p(\mathbf{x})=\sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y})=\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{N}} \pi_{y_{1}} \prod_{t=2}^{T} a_{y_{1-1}, v_{t}} \prod_{t=1}^{T} p\left(x_{t} \mid y_{t}\right)
$$

- To avoid summing over an exponential number of paths \mathbf{y}, define

$$
\alpha\left(y_{t}^{k}=1\right)=\alpha_{t}^{k} \stackrel{\text { def }}{=} P\left(x_{1}, \ldots, x_{t}, y_{t}^{k}=1\right) \quad \text { (the forward probability) }
$$

- The recursion:

$$
\begin{aligned}
\alpha_{t}^{k} & =p\left(x_{t} \mid y_{t}^{k}=1\right) \sum_{i} \alpha_{t-1}^{i} a_{i, k} \\
P(\mathbf{x}) & =\sum_{k} \alpha_{T}^{k}
\end{aligned}
$$

The Backward Algorithm

- We want to compute $P\left(y_{t}^{k}=1 \mid \mathbf{x}\right)$
the posterior probability distribution on the $t^{\text {th }}$ position, given \mathbf{x}
- We start by computing

$$
\begin{aligned}
P\left(y_{t}^{k}=1, \mathbf{x}\right)= & P\left(x_{1}, \ldots, x_{t}, y_{t}^{k}=1, x_{t+1}, \ldots, x_{T}\right) \\
& =P\left(x_{1}, \ldots, x_{t}, y_{t}^{k}=1\right) P\left(x_{t+1}, \ldots, x_{T} \mid x_{1}, \ldots, x_{t}, y_{t}^{k}=1\right) \\
& =P\left(x_{1} \ldots x_{t}, y_{t}^{k}=1\right) P\left(x_{t+1} \ldots x_{T} \mid y_{t}^{k}=1\right)
\end{aligned}
$$

$$
\text { Forward, } \alpha_{t}^{k} \quad \text { Backward, } \quad \beta_{t}^{k}=P\left(x_{t+1}, \ldots, x_{T} \mid y_{t}^{k}=1\right)
$$

- The recursion:

$$
\beta_{t}^{k}=\sum_{i} a_{k, i} p\left(x_{t+1} \mid y_{t+1}^{i}=1\right) \beta_{t+1}^{i}
$$

The junction tree algorithm: message passing for HMM

- A junction tree for the HMM

- Rightward pass

$$
\begin{aligned}
\mu_{t \rightarrow t+1}\left(y_{t+1}\right) & =\sum_{y_{t}} \psi\left(y_{t}, y_{t+1}\right) \mu_{t-1 \rightarrow t}\left(y_{t}\right) \mu_{t \uparrow}\left(y_{t+1}\right) \\
& =\sum_{y_{t}} p\left(y_{t+1} \mid y_{t}\right) \mu_{t-1 \rightarrow t}\left(y_{t}\right) p\left(x_{t+1} \mid y_{t+1}\right) \\
& =p\left(x_{t+1} \mid y_{t+1}\right) \sum_{v} a_{y_{t}, y_{t+1}} \mu_{t-1 \rightarrow t}\left(y_{t}\right)
\end{aligned}
$$

- This is exactly the forward algorithm!

- Leftward pass

$$
\begin{aligned}
\mu_{t-1 \leftarrow t}\left(y_{t}\right) & =\sum_{y_{t+1}} \psi\left(y_{t}, y_{t+1}\right) \mu_{t \leftarrow t+1}\left(y_{t+1}\right) \mu_{t \uparrow}\left(y_{t+1}\right) \\
& =\sum_{y_{t+1}} p\left(y_{t+1} \mid y_{t}\right) \mu_{t \leftarrow t+1}\left(y_{t+1}\right) p\left(x_{t+1} \mid y_{t+1}\right)
\end{aligned}
$$

- This is exactly the backward algorithm!

Summary

- Forward algorithm

$$
\begin{gathered}
\alpha_{t}^{k}=\mu_{t-1 \rightarrow t}(k)=P\left(x_{1}, \ldots, x_{t-1}, x_{t}, y_{t}^{k}=1\right) \\
\alpha_{t}^{k}=p\left(x_{+} \mid y_{+}^{k}=1\right) \sum_{i} \alpha_{t-1}^{i} a_{i, k}
\end{gathered}
$$

- Backward algorithm

$$
\gamma_{t}^{i} \stackrel{\operatorname{def}}{=} p\left(y_{t}^{i}=1 \mid x_{1: T}\right) \propto \alpha_{t}^{i} \beta_{t}^{i}=\sum_{j} \xi_{t}^{i, j}
$$

$$
\xi_{t}^{i, j} \stackrel{\operatorname{def}}{=} p\left(y_{t}^{i}=1, y_{t+1}^{j}=1, x_{1: T}\right)
$$

The matrix-vector form:

$$
\begin{aligned}
& B_{+}(i) \stackrel{\text { def }}{=} p\left(x_{+} \mid y_{+}^{i}=1\right) \\
& A(i, j) \stackrel{\operatorname{def}}{=} p\left(y_{t+1}^{j}=1 \mid y_{+}^{i}=1\right) \\
& \alpha_{+}=\left(A^{T} \alpha_{t-1}\right) * B_{+} \\
& \beta_{+}=A\left(\beta_{t+1} \cdot * B_{t+1}\right) \\
& \xi_{+}=\left(\alpha_{+}\left(\beta_{++1} \cdot * B_{t+1}\right)^{T}\right) \cdot * A \\
& \gamma_{+}=\alpha_{+} \cdot * \beta_{+}
\end{aligned}
$$

$$
\propto \mu_{t-1 \rightarrow t}\left(y_{t}^{i}=1\right) \mu_{t \leftarrow t+1}\left(y_{t+1}^{j}=1\right) p\left(x_{t+1} \mid y_{t+1}\right) p\left(y_{t+1} \mid y_{t}\right)
$$

$$
\xi_{t}^{i, j}=\alpha_{t}^{i} \beta_{t+1}^{j} a_{i, j} p\left(x_{t+1} \mid y_{t+1}^{i}=1\right)
$$

$$
\begin{aligned}
& \beta_{t}^{k}=\sum a_{k, i} p\left(x_{t+1} \mid y_{t+1}^{i}=1\right) \beta_{t+1}^{i} \\
& \beta_{+}^{k} \stackrel{\text { det }}{=} \mu_{t-k+t}(k)=P\left(x_{t+1}, \ldots, x_{T} \mid y_{t}^{k}=1\right)
\end{aligned}
$$

Posterior decoding

- We can now calculate

$$
P\left(y_{+}^{k}=1 \mid \mathbf{x}\right)=\frac{P\left(y_{+}^{k}=1, \mathbf{x}\right)}{P(\mathbf{x})}=\frac{\alpha_{+}^{k} \beta_{+}^{k}}{P(\mathbf{x})}
$$

- Then, we can ask
- What is the most likely ştate at position t of sequence \mathbf{x} :

$$
k_{t}^{*}=\arg \max _{k} P\left(y_{t}^{k}=1 \mid \mathbf{x}\right)
$$

- Note that this is an MPA of a single hidden state, what if we want to a MPA of a whole hidden state sequence?
- Posterior Decoding:

$$
\left\{y_{t}^{k_{+}^{*}}=1: t=1 \cdots T\right\}
$$

- This is different from MPA of a whole sequence hidden states
- This can be understood as bit error rate vs. word error rate

Example: MPA of X ? MPA of (X, Y) ?

x	y	$P(x, y)$
0	0	0.35
0	1	0.05
1	0	0.3
1	1	0.3

Viterbi decoding

a GIVEN $\mathbf{x}=x_{1}, \ldots, x_{T}$, we want to find $\mathbf{y}=y_{1}, \ldots, y_{T}$, such that $P(\mathbf{y} \mid \mathbf{x})$ is maximized:

$$
\mathbf{y}^{*}=\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y} \mid \mathbf{x})=\operatorname{argmax}_{\pi} P(\mathbf{y}, \mathbf{x})
$$

- Let $\quad V_{t}^{k}=\max _{\left\{y_{1}, \ldots y_{t+1}\right\}} P\left(x_{1}, \ldots, x_{t-1}, y_{1}, \ldots, y_{t-1}, x_{t}, y_{t}^{k}=1\right)$

$$
=\text { Probability of most likely sequence of states ending at state } y_{\mathrm{t}}=k
$$

- The recursion: $V_{t}^{k}=p\left(x_{t} \mid y_{t}^{k}=1\right) \max _{i} a_{i, k} V_{+-1}^{i}$
- Underflows are a significant problem

$$
p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right)=\pi_{y_{1}} a_{y_{1}, y_{2}} \cdots a_{y_{t+1}, y_{t}} b_{y_{1}, x_{1}} \cdots b_{y_{t}, x_{t}}
$$

- These numbers become extremely small - underflow
- Solution: Take the logs of all values: $\quad V_{t}^{k}=\log p\left(x_{+} \mid y_{t}^{k}=1\right)+\max _{i}\left(\log \left(a_{i, k}\right)+V_{t-1}^{i}\right)$

The Viterbi Algorithm - derivation

- Define the viterbi probability:

$$
\begin{aligned}
V_{t+1}^{k} & =\max _{\left\{y_{1}, \ldots+\right\}} P\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}, x_{t+1}, y_{t+1}^{k}=1\right) \\
& =\max _{\left\{y_{1}, \ldots, t\right)} P\left(x_{t+1}, y_{t+1}^{k}=1 \mid x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right) P\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right) \\
& =\max _{\left\{y_{1}, \ldots, t\right)} P\left(x_{t+1}, y_{t+1}^{k}=1 \mid y_{t}\right) P\left(x_{1}, \ldots, x_{t-1}, y_{1}, \ldots, y_{t-1}, x_{t}, y_{t}\right) \\
& =\max _{i} P\left(x_{t+1}, y_{t+1}^{k}=1 \mid y_{t}^{i}=1\right) \max _{\left\{y_{1}, \ldots, y_{t+1}\right\}} P\left(x_{1}, \ldots, x_{t-1}, y_{1}, \ldots, y_{t-1}, x_{t}, y_{t}^{i}=1\right) \\
& =\max _{i} P\left(x_{t+1}, y_{t+1}^{k}=1\right) a_{i, k} V_{t}^{i} \\
& =P\left(x_{t+1} \mid y_{t+1}^{k}=1\right) \max _{i} a_{i, k} V_{t}^{i}
\end{aligned}
$$

- What is the running time, and space required, for Forward, and Backward?

$$
\begin{aligned}
\alpha_{t}^{k} & =p\left(x_{t} \mid y_{t}^{k}=1\right) \sum_{i} \alpha_{t-1}^{i} a_{i, k} \\
\beta_{t}^{k} & =\sum_{i} a_{k, i} p\left(x_{t+1} \mid y_{t+1}^{i}=1\right) \beta_{t+1}^{i} \\
V_{t}^{k} & =p\left(x_{t} \mid y_{t}^{k}=1\right) \max _{i} a_{i, k} V_{t-1}^{i}
\end{aligned}
$$

$$
\text { Time: } O\left(K^{2} M\right) ; \quad \text { Space: } O(K M)
$$

- Useful implementation technique to avoid underflows
- Viterbi: sum of logs
- Forward/Backward: rescaling at each position by multiplying by a constant

Learning HMM: two scenarios

- Supervised learning: estimation when the "right answer" is known
- Examples:

GIVEN: a genomic region $x=x_{1} \ldots x_{1,000,000}$ where we have good
(experimental) annotations of the CDG islands
GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown - Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition GIVEN: 10,000 rolls of the casino player, but we don't see when he changes dice

- QUESTION: Update the parameters θ of the model to maximize $P(x \mid \theta)$--Maximal likelihood (ML) estimation

Parameter sharing

- Consider a time-invariant (stationary) $1^{\text {stt-order Markov model }}$
- Initial state probability vector:

$$
\pi_{k}=p\left(X_{1}^{k}=1\right)
$$

$$
A_{i j} \stackrel{\operatorname{def}}{=} p\left(X_{t}^{j}=1 \mid X_{t-1}^{i}=1\right)
$$

- The joint:
- The log-likelihood:

$$
\begin{aligned}
& p\left(X_{1: T} \mid \theta\right)=p\left(x_{1} \mid \pi\right) \prod_{t=2}^{T} \prod_{t=2} p\left(X_{t} \mid X_{t-1}\right) \\
& \quad \quad \quad(\theta ; D)=\sum_{\text {separatelv }} \log p\left(x_{n, 1} \mid \pi\right)+\sum_{n} \sum_{t=2}^{T} \log p\left(x_{n, t} \mid x_{n, t-1}, A\right)
\end{aligned}
$$

- Again, we optimize each parameter separately
- π is a multinomial frequency vector, and we've seen it before
- What about A ?

Learning a Markov chain transition matrix

- A is a stochastic matrix: $\quad \sum_{j} A_{i j}=1$
- Each row of A is multinomial distribution.
- So MLE of $A_{i j}$ is the fraction of transitions from i to j

$$
A_{i j}^{M L}=\frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=2}^{T} x_{n, t-1}^{i} x_{n, t}^{j}}{\sum_{n} \sum_{t=2}^{T} x_{n, t-1}^{i}}
$$

- Application:
- if the states X_{+}represent words, this is called a bigram language mode/
- Sparse data problem:
- If $i \rightarrow j$ did not occur in data, we will have $A_{i j}=0$, then any future sequence with word pair $i \rightarrow j$ will have zero probability.
- A standard hack: backoff smoothing or deleted interpolation

$$
\tilde{A}_{i \rightarrow 0}=\lambda \eta_{+}+(1-\lambda) A_{i \rightarrow 0}^{M L}
$$

Supervised ML estimation for "Hidden" MM

a Given $x=x_{1} \ldots x_{N}$ for which the true state path $y=y_{1} \ldots y_{N}$ is known, - Define:
$A_{i j}=\#$ times state transition $i \rightarrow j$ occurs in \mathbf{y}
$B_{i k}=$ \# times state i in \mathbf{y} emits k in \mathbf{x}

- We can show that the maximum likelihood parameters θ are:

$$
\begin{aligned}
& a_{i j}^{M L}=\frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=2}^{T} y_{n, t-1}^{i} y_{n, t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n, t-1}^{i}}=\frac{A_{i j}}{\sum_{j^{\prime}} A_{i j^{\prime}}} \\
& b_{i k}^{M L}=\frac{\#(i \rightarrow k)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=1}^{T} y_{n, t}^{i} x_{n, t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n, t}^{i}}=\frac{B_{i k}}{\sum_{k^{\prime}} B_{i k^{\prime}}}
\end{aligned}
$$

- What if x is continuous? We can treat $\left\{\left(x_{n, t}, y_{n, t}\right): t=1: T, n=1: N\right\}$ as $\boldsymbol{N} \boldsymbol{T}$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Supervised ML estimation, ctd.

- Intuition:
- When we know the underlying states, the best estimate of θ is the average frequency of transitions \& emissions that occur in the training data
- Drawback:
a Given little data, there may be overfitting:
- $P(x \mid \theta)$ is maximized, but θ is unreasonable:0 probabilities - VERY BAD
- Example:
- Given 10 casino rolls, we observe
- Then: $a_{F F}=1 ; \quad a_{F L}=0$
$b_{F 1}=b_{F 3}=.2 ;$
$b_{F 2}=.3 ; b_{F 4}=0 ; b_{F 5}=b_{F 6}=.1$

Pseudocounts

- Solution for small training sets:
- Add pseudocounts
$A_{i j}=\#$ times state transition $i \rightarrow j$ occurs in $\mathbf{y}+R_{i j}$
$B_{i k}=$ \# times state i in \mathbf{y} emits k in $\mathbf{x}+S_{i k}$
- $R_{i j}, S_{i j}$ are pseudocounts representing our prior belief
- Total pseudocounts: $R_{i}=\Sigma_{j} R_{i j}, S_{i}=\Sigma_{k} S_{i k}$,
- --- "strength" of prior belief,
- --- total number of imaginary instances in the prior
- Larger total pseudocounts \Rightarrow strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --- smoothing
- This is equivalent to Bayesian est. under a uniform prior with "parameter strength" equals to the pseudocounts

Bayesian language model

- Global and local parameter independence

 acts like a multiplexer
- Assign a Dirichlet prior β_{i} to each row of the transition matrix:

$$
A_{i j}^{\text {Bayes }} \stackrel{\text { def }}{=} p\left(j \mid i, D, \beta_{i}\right)=\frac{\#(i \rightarrow j)+\beta_{i, k}}{\#(i \rightarrow \bullet)+\left|\beta_{i}\right|}=\lambda_{i} \beta_{i, k}^{\prime}+\left(1-\lambda_{i}\right) A_{i j}^{M L}, \text { where } \lambda_{i}=\frac{\left|\beta_{i}\right|}{\left|\beta_{i}\right|+\#(i \rightarrow \bullet)}
$$

- We could consider more realistic priors, e.g., mixtures of Dirichlets to account for types of words (adjectives, verbs, etc.)

Example: HMM

- Supervised learning: estimation when the "right answer" is known
- Examples:

GIVEN: a genomic region $x=x_{1} \ldots x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown - Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don't see when he changes dice

- QUESTION: Update the parameters θ of the model to maximize $P(x \mid \theta)$--Maximal likelihood (ML) estimation

Learning HMM: two scenarios

- Supervised learning: if only we knew the true state path then ML parameter estimation would be trivial
- E.g., recall that for complete observed tabular BN:

$$
\begin{aligned}
& a_{i j}^{M L}=\frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=2}^{T} y_{n,-1}^{i} y_{n, t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n, t-1}^{i}} \\
& b_{i k}^{M L}=\frac{\#(i \rightarrow k)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=1}^{T} y_{n, t}^{i} X_{n, t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n, t}^{\prime}}
\end{aligned}
$$

- What if y is continuous? We can treat $\left\{\left(x_{n, t}, y_{n, t}\right): t=1: T, n=1: N\right\}$ as $N^{\prime} T$ observations of, e.g., a GLIM, and apply learning rules for GLIM ...
- Unsupervised learning: when the true state path is unknown, we can fill in the missing values using inference recursions.
- The Baum Welch algorithm (i.e., EM)
- Guaranteed to increase the log likelihood of the model after each iteration
- Converges to local optimum, depending on initial conditions

The Baum Welch algorithm

- The complete log likelihood

$$
\ell_{c}(\boldsymbol{\theta} ; \mathbf{x}, \mathbf{y})=\log p(\mathbf{x}, \mathbf{y})=\log \prod_{n}\left(p\left(y_{n, 1}\right) \prod_{t=2}^{T} p\left(y_{n, t} \mid y_{n, t-1}\right) \prod_{t=1}^{T} p\left(x_{n, t} \mid x_{n, t}\right)\right)
$$

- The expected complete log likelihood
- EM
- The E step

$$
\begin{aligned}
& \gamma_{n, t}^{i}=\left\langle y_{n, t}^{i}\right\rangle=p\left(y_{n, t}^{i}=1 \mid \mathbf{x}_{n}\right) \\
& \xi_{n, t}^{i, j}=\left\langle y_{n, t-1}^{i} y_{n, t}^{j}\right\rangle=p\left(y_{n, t-1}^{i}=1, y_{n, t}^{j}=1 \mid \mathbf{x}_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& b_{k}^{M L}=\frac{\#(i \rightarrow k)}{\#(i \rightarrow 0)}=\frac{\sum_{n} \sum_{t+n}^{r} y_{n}^{\prime} x_{n+t}^{k}}{\sum_{n} \sum_{t=1}^{r} y_{n+t}^{n}}
\end{aligned}
$$

- The M step ("symbolically" identical to MLE)

$$
\pi_{i}^{M L}=\frac{\sum_{n} \gamma_{n, 1}^{\prime}}{N} \quad a_{i j}^{M L}=\frac{\sum_{n} \sum_{t=t}^{T} \xi_{n, t}^{\prime}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n, t}^{\prime}} \quad b_{i k}^{M L}=\frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n, t}^{\prime} x_{n, t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n, t}^{\prime}}
$$

Conditional Random Fields

Shortcomings of Hidden Markov Model (1): locality of features

- HMM models capture dependences between each state and only its corresponding observation
- NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
- HMM learns a joint distribution of states and observations $P(Y, X)$, but in a prediction task, we need the conditional probability $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$

Shortcomings of HMM (2): the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4
State 1

State 5
What the local transition probabilities say:

- State 1 almost always prefers to go to state 2
- State 2 almost always prefer to stay in state 2

HMM: the Label bias problem

Probability of path 1-> 1-> 1-> 1:

- $0.4 \times 0.45 \times 0.5=0.09$

HMM: the Label bias problem

- Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2 .
- why?

HMM: the Label bias problem

Most Likely Path: 1-> 1-> 1-> 1

- State 1 has only two transitions but state 2 has 5 :

HMM: the Label bias problem

Label bias problem in HMM:

- Preference of states with lower number of transitions over others

Solution:

Do not normalize probabilities locally

From local probabilities

Solution:

Do not normalize probabilities locally

From local probabilities to local potentials

- States with lower transitions do not have an unfair advantage!

From HMM to CRF

$$
P\left(\mathbf{y}_{1: n} \mid \mathbf{x}_{1: n}\right)=\frac{1}{Z\left(\mathbf{x}_{1: n}\right)} \prod_{i=1}^{n} \phi\left(y_{i}, y_{i-1}, \mathbf{x}_{1: n}\right)=\frac{1}{Z\left(\mathbf{x}_{1: n}, \mathbf{w}\right)} \prod_{i=1}^{n} \exp \left(\mathbf{w}^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{1: n}\right)\right)
$$

- CRF is a partially directed model
- Discriminative model, unlike HMM
- Usage of global normalizer $\mathbf{Z}(\mathbf{x})$ overcomes the label bias problem of HMM
- Models the dependence between each state and the entire observation sequence

Conditional Random Fields

- General parametric form:

$$
\begin{aligned}
& P(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp \left(\sum_{i=1}^{n}\left(\sum_{k} \lambda_{k} f_{k}\left(y_{i}, y_{i-1}, \mathbf{x}\right)+\sum_{l} \mu_{l} g_{l}\left(y_{i}, \mathbf{x}\right)\right)\right) \\
& =\frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp \left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}\right)+\mu^{T} \mathbf{g}\left(y_{i}, \mathbf{x}\right)\right)\right) \\
& \text { where } Z(\mathbf{x}, \lambda, \mu)=\sum_{\mathbf{y}} \exp \left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}\right)+\mu^{T} \mathbf{g}\left(y_{i}, \mathbf{x}\right)\right)\right)
\end{aligned}
$$

CRFs: Inference

- Given CRF parameters λ and $\boldsymbol{\mu}$, find the y^{*} that maximizes $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$

$$
\mathbf{y}^{*}=\arg \max _{\mathbf{y}} \exp \left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}\right)+\mu^{T} \mathbf{g}\left(y_{i}, \mathbf{x}\right)\right)\right)
$$

- Can ignore $Z(x)$ because it is not a function of y
- Run the max-product algorithm on the junction-tree of CRF:

CRF learning

- Given $\left\{\left(\mathrm{X}_{\mathrm{d}}, \mathrm{y}_{\mathrm{d}}\right)\right\}_{\mathrm{d}=1}{ }^{\mathrm{N}}$, find λ^{*}, μ^{*} such that

$$
\begin{aligned}
\lambda *, \mu * & =\arg \max _{\lambda, \mu} L(\lambda, \mu)=\arg \max _{\lambda, \mu} \prod_{d=1}^{N} P\left(\mathbf{y}_{d} \mid \mathbf{x}_{d}, \lambda, \mu\right) \\
& =\arg \max _{\lambda, \mu} \prod_{d=1}^{N} \frac{1}{Z\left(\mathbf{x}_{d}, \lambda, \mu\right)} \exp \left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)+\mu^{T} \mathbf{g}\left(y_{d, i}, \mathbf{x}_{d}\right)\right)\right) \\
& =\arg \max _{\lambda, \mu} \sum_{d=1}^{N}\left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)+\mu^{T} \mathbf{g}\left(y_{d, i}, \mathbf{x}_{d}\right)\right)-\log Z\left(\mathbf{x}_{d}, \lambda, \mu\right)\right)
\end{aligned}
$$

- Computing the gradient w.r.t λ :

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

$$
\nabla_{\lambda} L(\lambda, \mu)=\sum_{d=1}^{N}\left(\sum_{i=1}^{n} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)-\sum_{\mathbf{y}}\left(P\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{d}}\right) \sum_{i=1}^{n} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)\right)\right)
$$

CRF learning

$$
\begin{aligned}
& \nabla_{\lambda} L(\lambda, \mu)=\sum_{d=1}^{N}\left(\sum_{i=1}^{n} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)-\sum_{\mathbf{y}}\left(P\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{d}}\right) \sum_{i=1}^{n} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right)\right)\right) \\
& \text { Computing the model expectations: }
\end{aligned}
$$

- Requires exponentially large number of summations: Is it intractable?

$$
\begin{aligned}
\sum_{\mathbf{y}}\left(P\left(\mathbf{y} \mid \mathbf{x}_{d}\right) \sum_{i=1}^{n} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right)\right) & =\sum_{i=1}^{n}\left(\sum_{\mathbf{y}} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right) P\left(\mathbf{y} \mid \mathbf{x}_{d}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{y_{i}, y_{i-1}} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right) P\left(y_{i}, y_{i-1} \mid \mathbf{x}_{d}\right) \\
\square \quad \text { Tractable! } \quad & \begin{array}{c}
\text { Expectation of } \mathbf{f} \text { over the corresponding marginal } \\
\text { probability of neighboring nodes!! }
\end{array}
\end{aligned}
$$

- Can compute marginals using the sum-product algoritnm on the chain

CRF learning

- Computing marginals using junction-tree calibration:

- Junction Tree Initialization:

$$
\begin{aligned}
\alpha^{0}\left(y_{i}, y_{i-1}\right)= & \exp \left(\lambda^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right)\right. \\
& \left.+\mu^{T} \mathbf{g}\left(y_{i}, \mathbf{x}_{d}\right)\right)
\end{aligned}
$$

- After calibration:

$$
\begin{aligned}
P\left(y_{i}, y_{i-1} \mid \mathbf{x}_{d}\right) & \propto \alpha\left(y_{i}, y_{i-1}\right) \text { forward-backward algorithm } \\
\Rightarrow P\left(y_{i}, y_{i-1} \mid \mathbf{x}_{d}\right) & =\frac{\alpha\left(y_{i}, y_{i-1}\right)}{\sum_{y_{i}, y_{i-1}} \alpha\left(y_{i}, y_{i-1}\right)}=\alpha^{\prime}\left(y_{i}, y_{i-1}\right)
\end{aligned}
$$

CRF learning

- Computing feature expectations using calibrated potentials:

$$
\sum_{y_{i}, y_{i-1}} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right) P\left(y_{i}, y_{i-1} \mid \mathbf{x}_{d}\right)=\sum_{y_{i}, y_{i-1}} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right) \alpha^{\prime}\left(y_{i}, y_{i-1}\right)
$$

- Now we know how to compute $r_{\lambda} L(\lambda, \mu)$:

$$
\begin{aligned}
\nabla_{\lambda} L(\lambda, \mu) & =\sum_{d=1}^{N}\left(\sum_{i=1}^{n} \mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)-\sum_{\mathbf{y}}\left(P\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{d}}\right) \sum_{i=1}^{n} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right)\right)\right) \\
& =\sum_{d=1}^{N}\left(\sum_{i=1}^{n}\left(\mathbf{f}\left(y_{d, i}, y_{d, i-1}, \mathbf{x}_{d}\right)-\sum_{y_{i}, y_{i-1}} \alpha^{\prime}\left(y_{i}, y_{i-1}\right) \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{d}\right)\right)\right)
\end{aligned}
$$

- Learning can now be done using gradient ascent:

$$
\begin{aligned}
& \lambda^{(t+1)}=\lambda^{(t)}+\eta \nabla_{\lambda} L\left(\lambda^{(t)}, \mu^{(t)}\right) \\
& \mu^{(t+1)}=\mu^{(t)}+\eta \nabla_{\mu} L\left(\lambda^{(t)}, \mu^{(t)}\right)
\end{aligned}
$$

CRF learning

- In practice, we use a Gaussian Regularizer for the parameter vector to improve generalizability

$$
\lambda *, \mu *=\arg \max _{\lambda, \mu} \sum_{d=1}^{N} \log P\left(\mathbf{y}_{d} \mid \mathbf{x}_{d}, \lambda, \mu\right)-\frac{1}{2 \sigma^{2}}\left(\lambda^{T} \lambda+\mu^{T} \mu\right)
$$

- In practice, gradient ascent has very slow convergence - Alternatives:
- Conjugate Gradient method
- Limited Memory Quasi-Newton Methods

CRFs: some empirical results

- Comparison of error rates on synthetic data

Data is increasingly higher order in the direction of arrow

CRFs achieve the lowest error rate for higher order data

CRFs: some empirical results

- Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM $^{+}$	4.81%	26.99%
CRF $^{+}$	4.27%	23.76%

${ }^{+}$Using spelling features

- Using same set of features: HMM >=<CRF > MEMM
- Using additional overlapping features: $\mathrm{CRF}^{+}>\mathrm{MEMM}^{+} \gg$ HMM

Supplementary

Other CRFs

- So far we have discussed only 1dimensional chain CRFs
- Inference and learning: exact
- We could also have CRFs for arbitrary graph structure
- E.g: Grid CRFs
- Inference and learning no longer tractable
- Approximate techniques used
- MCMC Sampling
- Variational Inference
- Loopy Belief Propagation
- We will discuss these techniques SOOn

Applications of CRF in Vision

Stereo Matching

Image Segmentation

Image Restoration

Application: Image Segmentation

$$
\begin{aligned}
& \phi_{i}\left(y_{i}, x\right) \in \mathbb{R}^{\approx 1000} \text { : local image features, e.g. bag-of-words } \\
& \quad \rightarrow\left\langle w_{i}, \phi_{i}\left(y_{i}, x\right)\right\rangle: \text { local classifier (like logistic-regression) } \\
& \phi_{i, j}\left(y_{i}, y_{j}\right)=\llbracket y_{i}=y_{j} \rrbracket \in \mathbb{R}^{1}: \text { test for same label } \\
& \left.\quad \rightarrow\left\langle w_{i j}, \phi_{i j}\left(y_{i}, y_{j}\right)\right\rangle: \text { penalizer for label changes (if } w_{i j}>0\right)
\end{aligned}
$$

combined: $\operatorname{argmax}_{y} p(y \mid x)$ is smoothed version of local cues

original

local classification

local + smoothness

Application: Handwriting Recognition

$$
\begin{aligned}
& \phi_{i}\left(y_{i}, x\right) \in \mathbb{R}^{\approx 1000}: \text { image representation (pixels, gradients) } \\
& \quad \rightarrow\left\langle w_{i}, \phi_{i}\left(y_{i}, x\right)\right\rangle: \text { local classifier if } x_{i} \text { is letter } y_{i} \\
& \phi_{i, j}\left(y_{i}, y_{j}\right)=e_{y_{i}} \otimes e_{y_{j}} \in \mathbb{R}^{26 \cdot 26} \text { : letter/letter indicator } \\
& \rightarrow\left\langle w_{i j}, \phi_{i j}\left(y_{i}, y_{j}\right)\right\rangle: \text { encourage/suppress letter combinations }
\end{aligned}
$$

```
combined: }\mp@subsup{\operatorname{argmax}}{y}{}p(y|x)\mathrm{ is " corrected" version of local cues
```


Application: Pose Estimation

$\phi_{i}\left(y_{i}, x\right) \in \mathbb{R}^{\approx 1000}$: local image representation, e.g. HoG $\rightarrow\left\langle w_{i}, \phi_{i}\left(y_{i}, x\right)\right\rangle$: local confidence map
$\phi_{i, j}\left(y_{i}, y_{j}\right)=$ good_fit $\left(y_{i}, y_{j}\right) \in \mathbb{R}^{1}$: test for geometric fit $\rightarrow\left\langle w_{i j}, \phi_{i j}\left(y_{i}, y_{j}\right)\right\rangle:$ penalizer for unrealistic poses together: $\operatorname{argmax}_{y} p(y \mid x)$ is sanitized version of local cues

original

local classification

local + geometry

Feature Functions for CRF in Vision

$\phi_{i}\left(y_{i}, x\right)$: local representation, high-dimensional
$\rightarrow\left\langle w_{i}, \phi_{i}\left(y_{i}, x\right)\right\rangle$: local classifier
$\phi_{i, j}\left(y_{i}, y_{j}\right)$: prior knowledge, low-dimensional $\rightarrow\left\langle w_{i j}, \phi_{i j}\left(y_{i}, y_{j}\right)\right\rangle$: penalize outliers
learning adjusts parameters:

- unary w_{i} : learn local classifiers and their importance
- binary $w_{i j}$: learn importance of smoothing/penalization
$\operatorname{argmax}_{y} p(y \mid x)$ is cleaned up version of local prediction

Case Study: Image Segmentation

- Image segmentation (FG/BG) by modeling of interactions btw RVs - Images are noisy.
- Objects occupy continuous regions in an image.

Input image

Pixel-wise separate optimal labeling

Locally-consistent joint optimal labeling
Y : labels
X : data (features)
S : pixels
N_{i} : neighbors of pixel i

Discriminative Random Fields

- A special type of CRF
- The unary and pairwise potentials are designed using local discriminative classifiers.
- Posterior

$$
P(Y \mid X)=\frac{1}{Z} \exp \left(\sum_{i \in S} A\right.
$$

- Association Potential
- Local discriminative model for site i : using logistic link with

$$
\begin{aligned}
& \text { GLM. } \\
& A_{i}\left(y_{i}, X\right)=\log P\left(y_{i} \mid f_{i}(X)\right) \quad P\left(y_{i}=1 \mid f_{i}(X)\right)=\frac{1}{1+\exp \left(-\left(w^{T} f_{i}(X)\right)\right)}=\sigma\left(w^{T} f_{i}(X)\right)
\end{aligned}
$$

- Interaction Potential
- Measure of how likely site i and j have the same label given

$$
X_{I_{i j}\left(y_{i}, y_{j}, X\right)}=\underbrace{k y_{i} y_{j}}_{i}+(1-k)\left(2 \sigma\left(y_{i} y_{j} u_{i j}(X)\right)-1\right))
$$

(1) Data-independent smoothing term (2) Data-dependent pairwise logistic function
S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.

- Task: Detecting man-made structure in natural scenes.
- Each image is divided in non-overlapping 16×16 tile blocks.
- An example

- Logistic: No smoothness in the labels
- MRF: Smoothed False positive. Lack of neighborhood interaction of the data
S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.

Multiscale Conditional Random Fields

- Considering features in different scales
- Local Features (site)
- Regional Label Features (small patch)
- Global Label Features (big patch or the whole image)
- The conditional probability $P(L / X)$ is formulated by features in different se(Al|le $)=\frac{1}{Z} \prod_{s} P_{s}(L \mid X)$

$$
Z=\sum_{L} \prod_{s} P_{s}(L \mid X)
$$

He, X. et. al.: Multiscale conditional random fields for image labeling. CVPR 2004

Multiscale Conditional Random Fields

He, X. et. al.: Multiscale conditional random fields for image labeling. CVPR 2004

He, X. et. al.: Multiscale conditional random fields for image labeling. CVPR 2004

Topic Random Fields

- Spatial MRF over topic assignments

$$
p\left(\mathbf{z}^{d} \mid \boldsymbol{\theta}^{d}, \sigma\right)=\frac{1}{A\left(\boldsymbol{\theta}^{d}, \sigma\right)} \exp \left[\sum_{n} \sum_{k} z_{n k}^{d} \log \theta_{k}^{d}+\sum_{n \sim m} \sigma I\left(z_{n}^{d}=z_{m}^{d}\right)\right]
$$

(a) Spatial LDA

(b) TRF

TRF Results

Spatial LDA vs. Topic Random Fields

Zhao, B. et. al.: Topic random fields for image segmentation. ECCV 2010

Summary

- Conditional Random Fields are partially directed discriminative models
- They overcome the label bias problem of HMM by using a global normalizer
- Inference for 1-D chain CRFs is exact
- Same as Max-product or Viterbi decoding
- Learning also is exact
- globally optimum parameters can be learned
- Requires using sum-product or forward-backward algorithm
- CRFs involving arbitrary graph structure are intractable in general
- E.g.: Grid CRFs
- Inference and learning require approximation techniques
- MCMC sampling
- Variational methods
- Loopy BP

