Probabilistic Graphical Models

Parameter Estimation

Eric Xing
Lecture 5, January 29, 2020

Reading: see class homepage

Learning Graphical Models

The goal:

- Given set of independent samples (assignments of random variables), find the best (the most likely?) Bayesian Network (both DAG and CPDs)

Learning Graphical Models

- Scenarios:
- completely observed GMs
- directed
- undirected
- partially or unobserved GMs
- directed
- undirected (an open research topic)
- Estimation principles:
- Maximal likelihood estimation (MLE)
- Bayesian estimation
- Maximal conditional likelihood
- Maximal "Margin"
- Maximum entropy
- We use learning as a name for the process of estimating the parameters, and in some cases, the topology of the network, from data.

ML Parameter Est. for completely observed GMs of given structure

- The data:

$$
\left\{\left(z_{1}, x_{1}\right),\left(z_{2}, x_{2}\right),\left(z_{3}, x_{3}\right), \ldots\left(z_{N}, x_{N}\right)\right\}
$$

Parameter Learning

- Assume G is known and fixed,
- from expert design
- from an intermediate outcome of iterative structure learning
- Goal: estimate from a dataset of N independent, identically distributed (iid) training cases $D=\left\{x_{1}, \ldots, x_{N}\right\}$.
- In general, each training case $\mathbf{x}_{n}=\left(x_{n, 1}, \ldots, x_{n, M}\right)$ is a vector of M values, one per node,
- the model can be completely observable, i.e., every element in x_{n} is known (no missing values, no hidden variables),
- or, partially observable, i.e., $\exists i$, s.t. $x_{n, i}$ is not observed.
- In this lecture we consider learning parameters for a BN with given structure and is completely observable

$$
\ell(\theta ; D)=\log p(D \mid \theta)=\log \prod_{n}\left(\prod_{i} p\left(x_{n, i} \mid \mathbf{x}_{n, \pi_{i}}, \theta_{i}\right)\right)=\sum_{i}\left(\sum_{n} \log p\left(x_{n, i} \mid \mathbf{x}_{n, \pi_{i}}, \theta_{i}\right)\right)
$$

Review of density estimation

- Can be viewed as single-node GMs
- Instances of

Exponential Family Dist.

- Building blocks of general GM
- MLE and Bayesian estimate
- See supplementary slides

Estimation of conditional density

- Can be viewed as two-node graphical models
- Instances of GLIM (Generalized Linear Models)
- Building blocks of general GM

- MLE and Bayesian estimate
- See supplementary slides

Exponential family, a basic building block

- For a numeric random variable X

$$
\begin{aligned}
& p(x \mid \eta)=h(x) \exp \left\{\eta^{T} T(x)-A(\eta)\right\} \\
& =\frac{1}{Z(\eta)} h(x) \exp \left\{\eta^{T} T(x)\right\}
\end{aligned}
$$

is an exponential family distribution with natural (canonical) parameter η

- Function $\pi(x)$ is a sufficient statistic.
- Function $\mathrm{A}(\eta)=\log \mathrm{Z}(\eta)$ is the log normalizer.
- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

Example: Multivariate Gaussian Distribution

- For a continuous vector random variable $X \in \boldsymbol{R}^{k}$:

$$
\begin{aligned}
p(x \mid \mu, \Sigma) & =\frac{1}{(2 \pi)^{k / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\} \\
& =\frac{1}{(2 \pi)^{k / 2}} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} x x^{T}\right)+\mu^{T} \Sigma^{-1} x-\frac{1}{2} \mu^{T} \Sigma^{-1} \mu-\log |\Sigma|\right\}
\end{aligned}
$$

- Exponential family representation

$$
\begin{aligned}
\eta & =\left[\Sigma^{-1} \mu ;-\frac{1}{2} \operatorname{vec}\left(\Sigma^{-1}\right)\right]=\left[\eta_{1}, \operatorname{vec}\left(\eta_{2}\right)\right], \eta_{1}=\Sigma^{-1} \mu \text { and } \eta_{2}=-\frac{1}{2} \Sigma^{-1} \\
T(x) & =\left[x ; \operatorname{vec}\left(x x^{T}\right)\right] \\
A(\eta) & =\frac{1}{2} \mu^{T} \Sigma^{-1} \mu+\log |\Sigma|=-\frac{1}{2} \operatorname{tr}\left(\eta_{2} \eta_{1} \eta_{1}^{T}\right)-\frac{1}{2} \log \left(-2 \eta_{2}\right) \\
h(x) & =(2 \pi)^{-k / 2}
\end{aligned}
$$

- Note: a k-dimensional Gaussian is a $\left(d+d^{\ell}\right)$-parameter distribution with a $\left(d+d^{\mathbb{R}}\right)$ element vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained and have lower degree of freedom)

Example: Multinomial distribution

- For a binary vector random variable $\quad x \sim \operatorname{multi}(x \mid \pi)$,

$$
\begin{aligned}
p(x \mid \pi) & =\pi_{1}^{x_{1}} \pi_{2}^{x_{1}} \cdots \pi_{K}^{x_{K}}=\exp \left\{\sum_{k} x_{k} \ln \pi_{k}\right\} \\
& =\exp \left\{\sum_{k=1}^{K-1} x_{k} \ln \pi_{k}+\left(1-\sum_{k=1}^{K-1} x_{K}\right) \ln \left(1-\sum_{k=1}^{K-1} \pi_{k}\right)\right\} \\
& =\exp \left\{\sum_{k=1}^{K-1} x_{k} \ln \left(\frac{\pi_{k}}{1-\sum_{k=1}^{K-1} \pi_{k}}\right)+\ln \left(1-\sum_{k=1}^{K-1} \pi_{k}\right)\right\}
\end{aligned}
$$

- Exponential family representation

$$
\begin{aligned}
\eta & =\left[\ln \left(\pi_{k} / \pi_{K}\right) ; 0\right] \\
T(x) & =[x] \\
A(\eta) & =-\ln \left(1-\sum_{k=1}^{K-1} \pi_{k}\right)=\ln \left(\sum_{k=1}^{K} e^{\eta_{k}}\right) \\
h(x) & =1
\end{aligned}
$$

Why exponential family?

- Moment generating property

$$
\begin{aligned}
\frac{d A}{d \eta} & =\frac{d}{d \eta} \log Z(\eta)=\frac{1}{Z(\eta)} \frac{d}{d \eta} Z(\eta) \\
& =\frac{1}{Z(\eta)} \frac{d}{d \eta} \int h(x) \exp \left\{\eta^{T} T(x)\right\} d x \\
& =\int T(x) \frac{h(x) \exp \left\{\eta^{T} T(x)\right\}}{Z(\eta)} d x \\
& =E[T(x)]
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} A}{d \eta^{2}} & =\int T^{2}(x) \frac{h(x) \exp \left\{\eta^{T} T(x)\right\}}{Z(\eta)} d x-\int T(x) \frac{h(x) \exp \left\{\eta^{T} T(x)\right\}}{Z(\eta)} d x \frac{1}{Z(\eta)} \frac{d}{d \eta} Z(\eta) \\
& =E\left[T^{2}(x)\right]-E^{2}[T(x)] \\
& =\operatorname{Var}[T(x)]
\end{aligned}
$$

Moment estimation

- We can easily compute moments of any exponential family distribution by taking the derivatives of the log normalizer $\boldsymbol{A}(\eta)$.
- The $q^{\text {th }}$ derivative gives the $q^{\text {th }}$ centered moment.

$$
\begin{gathered}
\frac{d A(\eta)}{d \eta}=\text { mean } \\
\frac{d^{2} A(\eta)}{d \eta^{2}}=\text { variance }
\end{gathered}
$$

- When the sufficient statistic is a stacked vector, partial derivatives need to be considered.

Moment vs canonical parameters

- The moment parameter μ can be derived from the natural (canonical) parameter

$$
\frac{d A(\eta)}{d \eta}=E[T(x)] \stackrel{\operatorname{def}}{=} \mu
$$

- $A(\eta)$ is convex since

$$
\frac{d^{2} A(\eta)}{d \eta^{2}}=\operatorname{Var}[T(x)]>0
$$

- Hence we can invert the relationship and infer the canonical parameter from the moment parameter (1-to-1):

$$
\eta \stackrel{\operatorname{def}}{=} \psi(\mu)
$$

- A distribution in the exponential family can be parameterized not only by η-the canonical parameterization, but also by μ-the moment parameterization.

MLE for Exponential Family

- For iid data, the log-likelihood is

$$
\begin{aligned}
\ell(\eta ; D) & =\log \prod_{n} h\left(x_{n}\right) \exp \left\{\eta^{T} T\left(x_{n}\right)-A(\eta)\right\} \\
& =\sum_{n} \log h\left(x_{n}\right)+\left(\eta^{T} \sum_{n} T\left(x_{n}\right)\right)-N A(\eta)
\end{aligned}
$$

- Take derivatives and set to "zero:

$$
\begin{gathered}
\frac{\partial \ell}{\partial \eta}=\sum_{n} T\left(x_{n}\right)-N \frac{\partial A(\eta)}{\partial \eta}=0 \\
\Rightarrow \frac{\partial A(\eta)}{\partial \eta}=\frac{1}{N} \sum_{n} T\left(x_{n}\right) \\
\hat{\mu}_{M L E}=\frac{1}{N} \sum_{n} T\left(x_{n}\right)
\end{gathered}
$$

- This amounts to moment matching.
- We can infer the canonical parameters using $\eta_{\text {MLE }}=\psi\left(\hat{\mu}_{\text {MLE }}\right)$

Sufficiency

- For $p(x \mid \theta), \pi(x)$ is sufficient for θ if there is no information in X regarding θ beyond that in $\pi(x)$.
- We can throw away \boldsymbol{X} for the purpose of inference w.r.t. θ.
- Bayesian view

$p(\theta \mid T(x), x)=p(\theta \mid T(x))$
- Frequentist view

- The Neyman factorization theorem
- $\pi(x)$ is sufficient for θ if

$$
\begin{aligned}
p(x, T(x), \theta) & =\psi_{1}(T(x), \theta) \psi_{2}(x, T(x)) \\
\Rightarrow p(x \mid \theta) & =g(T(x), \theta) h(x, T(x))
\end{aligned}
$$

Examples

- Gaussian:

$$
\begin{aligned}
\eta & =\left[\Sigma^{-1} \mu ;-\frac{1}{2} \operatorname{vec}\left(\Sigma^{-1}\right)\right] \\
T(x) & =\left[x ; \operatorname{vec}\left(x x^{T}\right)\right] \\
A(\eta) & =\frac{1}{2} \mu^{T} \Sigma^{-1} \mu+\frac{1}{2} \log |\Sigma| \\
h(x) & =(2 \pi)^{-k / 2}
\end{aligned} \quad \Rightarrow \mu_{M L E}=\frac{1}{N} \sum_{n} T_{1}\left(x_{n}\right)=\frac{1}{N} \sum_{n} x_{n}
$$

- Multinomial:

$$
\begin{aligned}
\eta & =\left[\ln \left(\pi_{k} / \pi_{K}\right) ; 0\right] \\
T(x) & =[x] \\
A(\eta) & =-\ln \left(1-\sum_{k=1}^{K-1} \pi_{k}\right)=\ln \left(\sum_{k=1}^{K} e^{\eta_{k}}\right) \\
h(x) & =1
\end{aligned}
$$

- Poisson:

$$
\begin{aligned}
\eta & =\log \lambda \\
T(x) & =x \\
A(\eta) & =\lambda=e^{\eta} \quad \Rightarrow \mu_{M L E}=\frac{1}{N} \sum_{n} x_{n} \\
h(x) & =\frac{1}{x!}
\end{aligned}
$$

Generalized Linear Models (GLIMs)

- The graphical model
- Linear regression
- Discriminative linear classification
- Commonality:
model $\mathrm{E}_{p}(Y)=\mu=f\left(\theta^{\top} X\right)$
- What is $p()$? the cond. dist. of Y.

- What is $f()$? the response function.
- GLIM
- The observed input \boldsymbol{x} is assumed to enter into the model via a linear combination of its elements
- The conditional mean μ is represented as a function $f(\xi)$ of ξ, where f is known as the response function $\xi=\theta^{\top} X$
- The observed output \boldsymbol{y} is assumed to be characterized by an exponential family distribution with conditional mean μ.

Recall Linear Regression

- Let us assume that the target variable and the inputs are related by the equation:

$$
y_{i}=\theta^{T} \mathbf{x}_{i}+\varepsilon_{i}
$$

where ε is an error term of unmodeled effects or random noise

- Now assume that ε follows a Gaussian $N(0, \sigma)$, then we hav ϵ

$$
p\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}}{2 \sigma^{2}}\right)
$$

- We can use LMS algorithm, which is a gradient ascent/descent approach, to estimate the parameter

Recall: Logistic Regression (sigmoid classifier, perceptron, etc.)

- The condition distribution: a Bernoulli
$p(y \mid x)=\mu(x)^{y}(1-\mu(x))^{1-y}$
where μ is a logistic function

$$
\mu(x)=\frac{1}{1+e^{-\theta^{T} x}}
$$

- We can used the brute-force gradient method as in LR
- But we can also apply generic laws by observing the $p(y \mid x)$ is an exponential family function, more specifically, a generalized linear model!

More examples: parameterizing graphical models

- Markov random fields

$$
\begin{gathered}
p(\mathbf{x})=\frac{1}{Z} \exp \left\{-\sum_{c \in C} \phi_{c}\left(\mathbf{x}_{c}\right)\right\}=\frac{1}{Z} \exp \{-H(\mathbf{x})\} \\
p(X)=\frac{1}{Z} \exp \left\{\sum_{i, j \in N_{i}} \theta_{i j} X_{i} X_{j}+\sum_{i} \theta_{i 0} X_{i}\right\}
\end{gathered}
$$

Restricted Boltzmann Machines

hidden units
visible units

$$
p(x, h \mid \theta)=\exp \left\{\sum_{i} \theta_{i} \phi_{i}\left(x_{i}\right)+\sum_{j} \theta_{j} \phi_{j}\left(h_{j}\right)+\sum_{i, j} \theta_{i, j} \phi_{i, j}\left(x_{i}, h_{j}\right)-A(\boldsymbol{\theta})\right\}
$$

Conditional Random Fields

- Discriminative

$$
p_{\theta}(y \mid x)=\frac{1}{Z(\theta, x)} \exp \left\{\sum_{c} \theta_{c} f_{c}\left(x, y_{c}\right)\right\}
$$

- X_{i} 's are assumed as features that are interdependent
- When labeling X_{i} future observations are taken into account

GLIM, cont.

$$
\begin{aligned}
& \theta \longrightarrow \xi \xrightarrow{\theta} \mu \xrightarrow{f} \eta \xrightarrow{\text { EXP }} y \\
& \Rightarrow p(y \mid \eta)=h(y) \exp \left\{\eta^{T}(x) y-A(\eta)\right\} \\
& \Rightarrow p(\eta, \phi)=h(y, \phi) \exp \left\{\frac{1}{\phi}\left(\eta^{T}(x) y-A(\eta)\right)\right\}
\end{aligned}
$$

- The choice of exp family is constrained by the nature of the data y
- Example: y is a continuous vector \rightarrow multivariate Gaussian
y is a class label \rightarrow Bernoulli or multinomial
- The choice of the response function
- Following some mild constrains, e.g., [0,1]. Positivity ...
- Canonical response function:
- In this case $\theta^{\top} x$ directly corresponds to canonical parameter $\eta . \quad f=\psi^{-1}(\cdot)$

Example canonical response functions

Model	Canonical response function
Gaussian	$\mu=\eta$
Bernoulli	$\mu=1 /\left(1+e^{-\eta}\right)$
multinomial	$\mu_{i}=\eta_{i} / \sum_{j} e^{\eta_{j}}$
Poisson	$\mu=e^{\eta}$
gamma	$\mu=-\eta^{-1}$

MLE for GLIMs with natural response

- Log-likelihood

$$
\ell=\sum_{n} \log h\left(y_{n}\right)+\sum_{n}\left(\theta^{T} x_{n} y_{n}-A\left(\eta_{n}\right)\right)
$$

- Derivative of Log-likelihood

$$
\begin{aligned}
\frac{d \ell}{d \theta} & =\sum_{n}\left(x_{n} y_{n}-\frac{d A\left(\eta_{n}\right)}{d \eta_{n}} \frac{d \eta_{n}}{d \theta}\right) \\
& =\sum_{n}\left(y_{n}-\mu_{n}\right) x_{n} \\
& =X^{T}(y-\mu)
\end{aligned}
$$

This is a fixed point function because μ is a function of θ

- Online learning for canonical GLIMs
- Stochastic gradient ascent:

$$
\theta^{t+1}=\theta^{t}+\rho\left(y_{n}-\mu_{n}^{t}\right) x_{n}
$$

where $\mu_{n}^{t}=\left(\theta^{t}\right)^{T} x_{n}$ and ρ is a step size

Batch learning for canonical GLIMs

- The Hessian matrix

$$
\begin{aligned}
H & =\frac{d^{2} l}{d \theta d \theta^{T}}=\frac{d}{d \theta^{T}} \sum_{n}\left(y_{n}-\mu_{n}\right) x_{n}=\sum_{n} x_{n} \frac{d \mu_{n}}{d \theta^{T}} \\
& =-\sum_{n} x_{n} \frac{d \mu_{n}}{d \eta_{n}} \frac{d \eta_{n}}{d \theta^{T}} \\
& =-\sum_{n} x_{n} \frac{d \mu_{n}}{d \eta_{n}} x_{n}^{T} \text { since } \eta_{n}=\theta^{T} x_{n} \\
& =-X^{T} W X
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{X}=\left[\begin{array}{ccc}
-- & \mathbf{x}_{1} & -- \\
-- & \mathbf{x}_{2} & -- \\
\vdots & \vdots & \vdots \\
-- & \mathbf{x}_{n} & --
\end{array}\right] \\
& \bar{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
\end{aligned}
$$

where $X=\left\lfloor x_{n}^{\top}\right\rfloor$ is the design matrix and

$$
W=\operatorname{diag}\left(\frac{d \mu_{1}}{d \eta_{1}}, \ldots, \frac{d \mu_{N}}{d \eta_{N}}\right)
$$

which can be computed by calculating the $2^{\text {nd }}$ derivative of $\boldsymbol{A}\left(\eta_{n}\right)$

Iteratively Reweighted Least Squares (IRLS)

- Recall Newton-Raphson methods with cost function \mathcal{J}

$$
\theta^{t+1}=\theta^{t}-H^{-1} \nabla_{\theta} J
$$

- We now have
- Now:

$$
\begin{aligned}
\nabla_{\theta} J & =X^{T}(y-\mu) \\
H & =-X^{T} W X
\end{aligned}
$$

$$
\begin{aligned}
\theta^{t+1} & =\theta^{t}+H^{-1} \nabla_{\theta^{l}} \\
& =\left(X^{T} W^{t} X\right)^{-1}\left[X^{T} W^{t} X \theta^{t}+X^{T}\left(y-\mu^{t}\right)\right] \\
& =\left(X^{T} W^{t} X\right)^{-1} X^{T} W^{t} z^{t}
\end{aligned}
$$

$$
\theta^{*}=\left(X^{T} X\right)^{-1} X^{T} \stackrel{\rightharpoonup}{y}
$$

where the adjusted response is $z^{t}=X \theta^{t}+\left(W^{t}\right)^{-1}\left(y-\mu^{t}\right)$

- This can be understood as solving the following " Iteratively reweighted least squares " problem

$$
\theta^{t+1}=\arg \min _{\theta}(z-X \theta)^{T} W(z-X \theta)
$$

Example 1: logistic regression (sigmoid classifier)

- The condition distribution: a Bernoulli

$$
p(y \mid x)=\mu(x)^{y}(1-\mu(x))^{1-y}
$$

where μ is a logistic function

$$
\mu(x)=\frac{1}{1+e^{-\eta(x)}}
$$

a $p(y \mid x)$ is an exponential family function, with - mean:

$$
E[y \mid x]=\mu=\frac{1}{1+e^{-\eta(x)}}
$$

- and canonical response function $\quad \eta=\xi=\theta^{T} x$
- IRLS

$$
\begin{aligned}
& \frac{d \mu}{d \eta}=\mu(1-\mu) \\
& W=\left(\begin{array}{lll}
\mu_{1}\left(1-\mu_{1}\right) & & \\
& \ddots & \\
& & \mu_{N}\left(1-\mu_{N}\right)
\end{array}\right)
\end{aligned}
$$

Example 2: linear regression

- The condition distribution: a Gaussian

$$
\begin{aligned}
& p(y \mid x, \theta, \Sigma)=\frac{1}{(2 \pi)^{k / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(y-\mu(x))^{T} \Sigma^{-1}(y-\mu(x))\right\} \\
& \text { Rescale } \Rightarrow h(x) \exp \left\{-\frac{1}{2} \Sigma^{-1}\left(\eta^{T}(x) y-A(\eta)\right)\right\}
\end{aligned}
$$

where μ is a linear function

$$
\mu(x)=\theta^{T} x=\eta(x)
$$

- $p(y \mid x)$ is an exponential family function, with
- mean:

$$
E[y \mid x]=\mu=\theta^{T} x
$$

- and canonical response function

$$
\eta_{1}=\xi=\theta^{T} x
$$

- IRLS

$$
\begin{aligned}
\frac{d \mu}{d \eta}=1 \Rightarrow \quad \begin{aligned}
\theta^{t+1}= & \left(X^{T} W^{t} X\right)^{-1} X^{T} W^{t} z^{t} \\
= & \left(X^{T} X\right)^{-1} X^{T}\left(X \theta^{t}+\left(y-\mu^{t}\right)\right) \\
= & \theta^{t}+\left(X^{T} X\right)^{-1} X^{T}\left(y-\mu^{t}\right) \\
& \quad \text { Steepest descent }
\end{aligned} \text { 朝 }
\end{aligned}
$$

Simple GMs are the building blocks of complex GMs

- Density estimation
- Parametric and nonparametric methods
- Regression
- Linear, conditional mixture, nonparametric
- Classification
- Generative and discriminative approach
- Clustering

MLE for general BNs

- If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the log-likelihood function decomposes into a sum of local terms, one per node:

$$
\ell(\theta ; D)=\log p(D \mid \theta)=\log \prod_{n}\left(\prod_{i} p\left(x_{n, i} \mid \mathbf{x}_{n, \pi_{i}}, \theta_{i}\right)\right)=\sum_{i}\left(\sum_{n} \log p\left(x_{n, i} \mid \mathbf{x}_{n, \pi_{i}}, \theta_{i}\right)\right)
$$

Decomposable likelihood of a BN

a Consider the distribution defined by the directed acyclic GM:

$$
p(x \mid \theta)=p\left(x_{1} \mid \theta_{1}\right) p\left(x_{2} \mid x_{1}, \theta_{2}\right) p\left(x_{3} \mid x_{1}, \theta_{3}\right) p\left(x_{4} \mid x_{2}, x_{3}, \theta_{4}\right)
$$

- This is exactly like learning four separate small BNs, each of which consists of a node and its parents.

MLE for BNs with tabular CPDs

- Assume each CPD is represented as a table (multinomial) where

$$
\theta_{i j k} \stackrel{\operatorname{def}}{=} p\left(X_{i}=j \mid X_{\pi_{i}}=k\right)
$$

- Note that in case of multiple parents, \mathbf{x} will have a composite state, and the CPD will be a high-dimentisional table
- The sufficient statistics are counts of family configurations

- The log-likelihood is

$$
n_{i j k} \stackrel{\operatorname{def}}{=} \sum_{n} x_{n, i}^{j} x_{n, \pi_{i}}^{k}
$$

$$
\ell(\theta ; D)=\log \prod_{i, j, k} \theta_{i j k}^{n_{i j k}}=\sum_{i, j, k} n_{i j k} \log \theta_{i j k}
$$

- Using a Lagrange multiplier to enforce , we get:

$$
\sum_{j} \theta_{i j k}=1 \quad \theta_{i j k}^{M L}=\frac{n_{i j k}}{\sum_{j^{\prime}} n_{i j k}}
$$

Summary: Learning GM

- For fully observed BN, the log-likelihood function decomposes into a sum of local terms, one per node; thus learning is also factored
a Learning single-node GM - density estimation: exponential family dist.
- Typical discrete distribution
- Typical continuous distribution
- Conjugate priors
- Learning two-node BN: GLIM
- Conditional Density Est.
- Classification
- Learning BN with more nodes
- Local operations

ML Parameter Est. for partially observed GMs: EM algorithm

Partially observed GMs

- Speech recognition

Fig. 1.2 Isolated Word Problem

Partially observed GM

- Biological Evolution

Mixture Models

Mixture Models, con'd

- A density model $p(x)$ may be multi-modal.
- We may be able to model it as a mixture of uni-modal distributions (e.g., Gaussians).
- Each mode may correspond to a different sub-population (e.g., male and female).

Unobserved Variables

- A variable can be unobserved (latent) because:
- it is an imaginary quantity meant to provide some simplified and abstractive view of the data generation process
- e.g., speech recognition models, mixture models
- it is a real-world object and/or phenomena, but difficult or impossible to measure
- e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
a it is a real-world object and/or phenomena, but sometimes wasn't measured, because of faulty sensors, etc.
- Discrete latent variables can be used to partition/cluster data into subgroups.
- Continuous latent variables (factors) can be used for dimensionality reduction (factor analysis, etc).

Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components:

$$
p\left(x_{n} \mid \mu, \Sigma\right)=\sum_{k} \underbrace{\pi_{k} N(x, \mid}_{\text {mixture proportion }} \underbrace{\left.\mu_{k}, \Sigma_{k}\right)}_{\text {mixture component }}
$$

- This model can be used for unsupervised clustering.
- This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

Gaussian Mixture Models (GMMs)

- Consider a mixture of KGaussian components:
- Z is a latent class indicator vector:

$$
p\left(z_{n}\right)=\operatorname{multi}\left(z_{n}: \pi\right)=\prod_{k}\left(\pi_{k}\right)^{z_{n}^{k}}
$$

- $\quad X$ is a conditional Gaussian variable with a class-specific mean/covariance

$$
p\left(x_{n} \mid z_{n}^{k}=1, \mu, \Sigma\right)=\frac{1}{(2 \pi)^{m / 2}\left|\Sigma_{k}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(x_{n}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{n}-\mu_{k}\right)\right\}
$$

- The likelihood of a sample:

$$
\begin{aligned}
p\left(x_{n} \mid \mu, \Sigma\right) & =\sum_{k} p\left(z^{k}=1 \mid \pi\right) p\left(x, \mid z^{k}=1, \mu, \Sigma\right) \quad \text { mixture proportion } \\
& =\sum_{z_{n}} \prod_{k}\left(\left(\pi_{k}\right)^{z_{n}^{k}} N\left(x_{n}: \mu_{k}, \Sigma_{k}\right)^{z_{n}^{k}}\right)=\sum_{k} \pi_{k} N\left(x, \mid \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Why is Learning Harder?

- In fully observed iid settings, the log likelihood decomposes into a sum of local terms (at least for directed models).

$$
\ell_{c}(\theta ; D)=\log p(x, z \mid \theta)=\log p\left(z \mid \theta_{z}\right)+\log p\left(x \mid z, \theta_{x}\right)
$$

- With latent variables, all the parameters become coupled together via marginalization

$$
\ell_{c}(\theta ; D)=\log \sum p(x, z \mid \theta)=\log \sum p\left(z \mid \theta_{z}\right) p\left(x \mid z, \theta_{x}\right)
$$

Toward the EM algorithm

- Recall MLE for completely observed data
- Data log-likelihood

$$
\begin{aligned}
& \ell(\boldsymbol{\theta} ; D)= \log \prod_{n} p\left(z_{n}, x_{n}\right)=\log \prod_{n} p\left(z_{n} \mid \pi\right) p\left(x_{n} \mid z_{n}, \mu, \sigma\right) \\
&= \sum_{n} \log \prod_{k} \pi_{k}^{z_{n}^{k}}+\sum_{n} \log \prod_{k} N\left(x_{n} ; \mu_{k}, \sigma\right)^{z_{n}^{k}} \\
&= \sum_{n} \sum_{k} z_{n}^{k} \log \pi_{k}-\sum_{n} \sum_{k} z_{n}^{k} \frac{1}{2 \sigma^{2}}\left(x_{n}-\mu_{k}\right)^{2}+C \\
& \quad \hat{\pi}_{k, M L E}=\arg \max _{\pi} \ell(\boldsymbol{\theta} ; D), \\
& \quad \hat{\mu}_{k, M L E}=\arg \max _{\mu} \ell(\boldsymbol{\theta} ; D) \quad \Rightarrow \hat{\mu}_{k, M L E}=\frac{\sum_{n} z_{n}^{k} x_{n}}{\sum_{n} z_{n}^{k}} \\
& \quad \hat{\sigma}_{k, M L E}=\arg \max _{\sigma} \ell(\boldsymbol{\theta} ; D)
\end{aligned}
$$

- MLE
- What if we do not know z_{n} ?

Question

-"... We solve problem X using Expectation-Maximization ..."

- What does it mean?
- E
- What do we take expectation with?
- What do we take expectation over?
- M
- What do we maximize?
- What do we maximize with respect to?

Recall: K-means

$$
\begin{gathered}
z_{n}^{(t)}=\arg \max _{k}\left(x_{n}-\mu_{k}^{(t)}\right)^{T} \sum_{k}^{-1(t)}\left(x_{n}-\mu_{k}^{(t)}\right) \\
\mu_{k}^{(t+1)}=\frac{\sum_{n} \delta\left(z_{n}^{(t)}, k\right) x_{n}}{\sum_{n} \delta\left(z_{n}^{(t)}, k\right)}
\end{gathered}
$$

Expectation-Maximization

- Start:
- "Guess" the centroid μ_{k} and coveriance Σ_{k} of each of the K clusters
- Loop

E-step

- We maximize $\left\langle I_{c}(\theta)\right\rangle$ iteratively using the following iterative procedure:
- Expectation step: computing the expected value of the sufficient statistics of the hidden variables (i.e., z) given current est. of the parameters (i.e., π and μ).

$$
\tau_{n}^{k(t)}=\left\langle z_{n}^{k}\right\rangle_{q^{(t)}}=p\left(z_{n}^{k}=1 \mid x, \mu^{(t)}, \Sigma^{(t)}\right)=\frac{\pi_{k}^{(t)} N\left(x_{n}, \mid \mu_{k}^{(t)}, \Sigma_{k}^{(t)}\right)}{\sum_{i} \pi_{i}^{(t)} N\left(x_{n}, \mid \mu_{i}^{(t)}, \Sigma_{i}^{(t)}\right)}
$$

- Here we are essentially doing inference

M-step

- We maximize $\left\langle/_{c}(\theta)\right.$ iteratively using the following iterative procudure:
- Maximization step: compute the parameters under current results of the expected value of the hidden variables

$$
\begin{array}{rll}
\pi_{k}^{*}=\arg \max \left\langle l_{c}(\boldsymbol{\theta})\right\rangle, \quad & \Rightarrow \frac{\partial}{\partial \pi_{k}}\left\langle l_{c}(\boldsymbol{\theta})\right\rangle=0, \forall k, & \text { s.t. } \sum_{k} \pi_{k}=1 \\
& \Rightarrow \pi_{k}^{*}=\sum_{n}\left\langle z_{n}^{k}\right\rangle_{q^{(t)}} / N=\sum_{n} \tau_{n}^{k(t)} / N=\left\langle n_{k}\right\rangle / N \\
\mu_{k}^{*}=\arg \max \langle l(\boldsymbol{\theta})\rangle, \quad \Rightarrow & \mu_{k}^{(t+1)}=\frac{\sum_{n} n_{n}^{k(t)} x_{n}}{\sum_{n} \tau_{n}^{k(t)}} \\
\Sigma_{k}^{*}=\arg \max \langle l(\boldsymbol{\theta})\rangle, & \Rightarrow \sum_{k}^{(t+1)}=\frac{\sum_{n} \tau_{n}^{k(t)}\left(x_{n}-\mu_{k}^{(t+1)}\right)\left(x_{n}-\mu_{k}^{(t+1)}\right)^{T}}{\sum_{n} \tau_{n}^{k(t)}} & \frac{\text { Fact: }}{\frac{\partial \log \left|\mathrm{A}^{-1}\right|}{\partial \mathrm{A}^{-1}}}=\mathrm{A}^{\top} \\
\frac{\partial \mathbf{x}^{\top} \mathrm{Ax}}{\partial \mathrm{~A}}=\mathbf{x x}^{\top}
\end{array}
$$

- This is isomorphic to MLE except that the variables that are hidden are replaced by their expectations (in general they will by replaced by their corresponding "sufficient statistics")

Compare: K-means and EM

The EM algorithm for mixtures of Gaussians is like a "soft version" of the K-means algorithm.

- EM
- E-step

$$
z_{n}^{(t)}=\arg \max _{k}\left(x_{n}-\mu_{k}^{(t)}\right)^{T} \Sigma_{k}^{-1(t)}\left(x_{n}-\mu_{k}^{(t)}\right)
$$

- M-step

$$
\mu_{k}^{(t+1)}=\frac{\sum_{n} \delta\left(z_{n}^{(t)}, k\right) x_{n}}{\sum_{n} \delta\left(z_{n}^{(t)}, k\right)}
$$

- K-means
- In the K-means "E-step" we do hard assignment:

$$
\tau_{n}^{k(t)}=\left\langle z_{n}^{k}\right\rangle_{q^{(1)}}
$$

$$
=p\left(z_{n}^{k}=1 \mid x, \mu^{(t)}, \Sigma^{(t)}\right)=\frac{\pi_{k}^{(t)} N\left(x_{n}, \mid \mu_{k}^{(t)}, \Sigma_{k}^{(t)}\right)}{\sum_{i} \pi_{i}^{(t)} N\left(x_{n}, \mid \mu_{i}^{(t)}, \Sigma_{i}^{(t)}\right)}
$$

- In the K-means "M-step" we update the means as the weighted sum of the data, but now the weights are 0 or 1 :

$$
\mu_{k}^{(t+1)}=\frac{\sum_{n} \tau_{n}^{k(t)} x_{n}}{\sum_{n} \tau_{n}^{k(t)}}
$$

The EM Objective for Gaussian mixture model

- A mixture of K Gaussians:
- $\quad Z$ is a latent class indicator vector

$$
\begin{aligned}
& \text { lass indicator vector } \\
& p\left(z_{n}\right)=\operatorname{multi}\left(z_{n}: \pi\right)=\prod_{k}\left(\pi_{k}\right)^{z_{n}^{k}}
\end{aligned}
$$

- X is a conditional Gaussian variable with class-specific mean/covariance

$$
p\left(x_{n} \mid z_{n}^{k}=1, \mu, \Sigma\right)=\frac{1}{(2 \pi)^{m / 2}\left|\Sigma_{k}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(x_{n}-\mu_{k}\right)^{\top} \Sigma_{k}^{-1}\left(x_{n}-\mu_{k}\right)\right\}
$$

- The likelihood of a sample:

$$
\begin{aligned}
p\left(x_{n} \mid \mu, \Sigma\right) & =\sum_{k} p\left(z^{k}=1 \mid \pi\right) p\left(x, \mid z^{k}=1, \mu, \Sigma\right) \\
& =\sum_{z_{n}} \prod_{k}\left(\left(\pi_{k}\right)^{z_{n}^{k}} N\left(x_{n}: \mu_{k}, \Sigma_{k}\right)^{z_{n}^{k}}=\sum_{k} \pi_{k} N\left(x, \mid \mu_{k}, \Sigma_{k}\right)\right.
\end{aligned}
$$

- The expected complete log likelihood

$$
\begin{aligned}
\left\langle e_{c}(\boldsymbol{\theta} ; x, z)\right\rangle & =\sum_{n}\left\langle\log p\left(z_{n} \mid \pi\right)\right\rangle_{p(z \mid x)}+\sum_{n}\left\langle\log p\left(x_{n} \mid z_{n}, \mu, \Sigma\right)\right\rangle_{p(z \mid x)} \\
& =\sum_{n} \sum_{k}\left\langle z_{n}^{k}\right\rangle \log \pi_{k}-\frac{1}{2} \sum_{n} \sum_{k}\left\langle z_{n}^{k}\right\rangle\left(\left(x_{n}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{n}-\mu_{k}\right)+\log \left|\Sigma_{k}\right|+C\right)
\end{aligned}
$$

Theory underlying EM

- What are we doing?
- Recall that according to MLE, we intend to learn the model parameter that would have maximize the likelihood of the data.
- But we do not observe z, so computing
is difficult!

$$
\ell_{c}(\theta ; D)=\log \sum_{z} p(x, z \mid \theta)=\log \sum_{z} p\left(z \mid \theta_{z}\right) p\left(x \mid z, \theta_{x}\right)
$$

- What shall we do?

Complete \& Incomplete Log Likelihoods

- Complete log likelihood:

Let \boldsymbol{X} denote the observable variable(s), and \boldsymbol{Z} denote the latent variable(s).
If Z could be observed, then

$$
\ell_{c}(\theta ; x, z)=\log p(x, z \mid \theta)
$$

- Usually, optimizing $I_{c}()$ given both z and x is straightforward (c.f. MLE for fully observed models).
- Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, the parameter for each factor can be estimated separately.
- But given that \boldsymbol{Z} is not observed, $I_{c}()$ is a random quantity, cannot be maximized directly,
- Incomplete log likelihood

With z unobserved, our objective becomes the log of a marginal probability:

$$
\ell_{c}(\theta ; x)=\log p(x \mid \theta)=\log \sum_{z} p(x, z \mid \theta)
$$

- This objective won't decouple

Expected Complete Log Likelihood

- For any distribution $\boldsymbol{\phi}(z)$, define expected complete log likelihood:

$$
\left\langle l_{c}(\theta ; x, z)\right\rangle_{q} \stackrel{\text { def }}{=} \sum_{z} q(z \mid x, \theta) \log p(x, z \mid \theta)
$$

- A deterministic function of θ
- Linear in $I_{c}()$--- inherit its factorizabiility
- Does maximizing this surrogate yield a maximizer of the likelihood?
- Jensen's inequality

$$
\begin{aligned}
\ell(\theta ; x) & =\log p(x \mid \theta) \\
& =\log \sum_{z} p(x, z \mid \theta) \\
& =\log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}
\end{aligned}
$$

$$
\geq \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)} \quad \Rightarrow \quad e(\theta ; x) \geq\left\langle e_{c}(\theta ; x, z)\right\rangle_{q}+H_{q}
$$

Lower Bounds and Free Energy

- For fixed data x, define a functional called the free energy:

$$
F(q, \theta) \stackrel{\text { def }}{=} \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)} \leq \ell(\theta ; x)
$$

- The EM algorithm is coordinate-ascent on F :
- E-step:

$$
\begin{aligned}
& q^{t+1}=\arg \max _{q} F\left(q, \theta^{+}\right) \\
& \theta^{t+1}=\arg \max _{\theta} F\left(q^{\tau+1}, \theta^{+}\right)
\end{aligned}
$$

- M-step:

E-step: maximization of expected I_{c} w.r.t. q

- Claim:

$$
q^{t+1}=\arg \max _{q} F\left(q, \theta^{t}\right)=p\left(\boldsymbol{z} \mid \boldsymbol{x}, \theta^{t}\right)
$$

- This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).
- Proof (easy): this setting attains the bound $I(\theta ; x) \geq F q, \theta)$

$$
\begin{aligned}
F\left(p\left(z \mid x, \theta^{+}\right), \theta^{+}\right) & =\sum_{z} p\left(z \mid x, \theta^{+}\right) \log \frac{p\left(x, z \mid \theta^{+}\right)}{p\left(z \mid x, \theta^{\dagger}\right)} \\
& =\sum_{z} q(z \mid x) \log p\left(x \mid \theta^{+}\right) \\
& =\log p\left(x \mid \theta^{+}\right)=\ell\left(\theta^{+} ; x\right)
\end{aligned}
$$

- Can also show this result using variational calculus or the fact that

$$
\ell(\theta ; x)-F(q, \theta)=\operatorname{KL}(q \| p(z \mid x, \theta))
$$

E-step \equiv plug in posterior expectation of latent variables

- Without loss of generality: assume that $p(x, z \mid \theta)$ is a generalized exponential family distribution:

$$
\begin{aligned}
& \text { y distribution: } \\
& \left.p(x, z \mid \theta)=\frac{1}{Z(\theta)} h(x, z) \exp \left\{\sum_{i} \theta_{i} f_{i}(x, z)\right\},{ }^{2}\right\}
\end{aligned}
$$

- Special cases: if $p(X \mid Z)$ are GLIMs, then $f_{i}(x, z)=\eta_{i}^{\top}(z) \xi_{i}(x)$
- The expected complete log likelihood under

$$
q^{t+1}=p\left(z \mid x, \theta^{\dagger} \mathrm{i}\right.
$$

$$
\begin{aligned}
\left\langle e_{c}\left(\theta^{+} ; \boldsymbol{x}, \boldsymbol{z}\right)\right\rangle_{q^{+14}} & =\sum_{z} q\left(\boldsymbol{z} \mid \boldsymbol{x}, \theta^{+}\right) \log p\left(x, \boldsymbol{z} \mid \theta^{+}\right)-\boldsymbol{A}(\theta) \\
& =\sum_{i} \theta_{i}^{+}\left\langle f_{i}(x, z)\right\rangle_{q\left(z \mid x, \theta^{+}\right)}-\boldsymbol{A}(\theta) \\
& =\sum_{i}^{p \sim \text { GLIM }} \theta_{i} \theta_{i}^{+}\left\langle\eta_{i}(\boldsymbol{z})\right\rangle_{q\left(z \mid x, \theta^{+}\right)} \xi_{i}(x)-\boldsymbol{A}(\theta)
\end{aligned}
$$

M-step: maximization of expected I_{c} w.r.t. θ

- Note that the free energy breaks into two terms:

$$
\begin{aligned}
F(q, \theta) & =\sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)} \\
& =\sum_{z} q(z \mid x) \log p(x, z \mid \theta)-\sum_{z} q(z \mid x) \log q(z \mid x) \\
& =\left\langle l_{c}(\theta ; x, z)\right\rangle_{q}+H_{q}
\end{aligned}
$$

- The first term is the expected complete log likelihood (energy) and the second term, which does not depend on θ, is the entropy.
- Thus, in the M-step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$
\theta^{t+1}=\arg \max _{\theta}\left\langle l_{c}(\theta ; x, z)\right\rangle_{q^{t+1}}=\arg \max _{\theta} \sum_{z} q(z \mid x) \log p(x, z \mid \theta)
$$

- Under optimal q^{++1}, this is equivalent to solving a^{z} standard MLE of fully observed model $p(x, z \mid \theta)$, with the sufficient statistics involving z replaced by their expectations w.r.t. $p(z \mid x, \theta)$.

Summary: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:

1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
2. Using this "complete" data, find the maximum likelihood parameter estimates.

- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
- E-step:

$$
\begin{aligned}
& q^{t+1}=\arg \max _{q} F\left(q, \theta^{+}\right) \\
& \theta^{t+1}=\arg \max _{\theta} F\left(q^{++1}, \theta^{t}\right)
\end{aligned}
$$

- M-step:
- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.

Supplementary materials

I: Review of density estimation

- Can be viewed as single-node graphical models
- Instances of exponential family dist.
- Building blocks of general GM

GM:
(x.3) (2 $_{3}$ (x_{3} ㄱ, (x_{1} 1

- MLE and Bayesian estimate

Discrete Distributions

- Bernoulli distribution: $\operatorname{Ber}(p)$

$$
P(x)=\left\{\begin{array}{ll}
1-p & \text { for } x=0 \\
p & \text { for } x=1
\end{array} \quad \Rightarrow \quad P(x)=p^{x}(1-p)^{1-x}\right.
$$

- Multinomial distribution: Mult(1, θ)
- Multinomial (indicator) variable:

$$
\begin{aligned}
& P(X(j))=P\left(\left\{X_{j}=1 \text {, where } j \text { index the dice - face }\right\}\right) \\
& =\theta_{j}=\theta_{A}^{x_{A}} \times \theta_{C}^{x_{c}} \times \theta_{G}^{x_{G}} \times \theta_{T}^{x_{T}}=\prod_{k} \theta_{k}^{x_{k}}=\theta^{x}
\end{aligned}
$$

Discrete Distributions

- Multinomial distribution: Mult (n, θ)
- Count variable:

$$
\begin{aligned}
& n=\left[\begin{array}{c}
n_{1} \\
\vdots \\
n_{K}
\end{array}\right], \quad \text { where } \sum_{j} n_{j}=N \\
& p(n)=\frac{N!}{n_{1}!n_{2}!\cdots n_{K}!} \theta_{1}^{n_{1}} \theta_{2}^{n_{2}} \cdots \theta_{K}^{n_{K}}=\frac{N!}{n_{1}!n_{2}!\cdots n_{K}!} \theta^{n}
\end{aligned}
$$

Example: multinomial model

- Data:
- We observed N iíd die rolls (K-sided): $D=\{5,1, K, \ldots, 3\}$

GM:

$$
x_{n}=\left(\begin{array}{c}
x_{n, 1} \\
x_{n, 2} \\
\vdots \\
x_{n, K}
\end{array}\right), \quad \text { where } x_{n, k}=\{0,1\}, \text { and } \sum_{k=1}^{K} x_{n, k}=1
$$

$$
X_{n, k}=1 \text { w.p. } \theta_{k}, \text { and } \sum_{k \in\{1, \ldots K\}} \theta_{k}=1
$$

- How to write the likelihood of a single observation x_{n} ?

$$
\begin{aligned}
P\left(x_{i}\right) & =P\left(\left\{x_{n, k}=1, \text { where } k \text { index the die }- \text { side of the } n \text {th roll }\right\}\right) \\
& =\theta_{k}=\theta_{1}^{x_{n, 1}} \times \theta_{2}^{x_{n, 2}} \times \cdots \times \theta_{K}^{x_{n, K}}=\prod_{k=1}^{K} \theta_{k}^{x_{n, k}}
\end{aligned}
$$

- The likelihood of dataset $D=\left\{x_{1}, \ldots, x_{N}\right\}$:

$$
P\left(x_{1}, x_{2}, \ldots, x_{N} \mid \theta\right)=\prod_{n=1}^{N} P\left(x_{n} \mid \theta\right)=\prod_{n=1}^{N}\left(\prod_{k} \theta_{k}^{x_{n}, k}\right)=\prod_{k} \theta_{k}^{\sum_{k}^{N} x_{n+k}}=\prod_{k} \theta_{k}^{n_{k}}
$$

MLE: constrained optimization with Lagrange multipliers

- Objective function:

$$
\ell(\theta ; D)=\log P(D \mid \theta)=\log \prod_{k} \theta_{k}^{n_{k}}=\sum_{k} n_{k} \log \theta_{k}
$$

- We need to maximize this subject to the constrain $\sum_{k=1}^{k} \theta_{k}=1$
- Constrained cost function with a Lagrange multiplier

$$
\ell^{-}=\sum_{k} n_{k} \log \theta_{k}+\lambda\left(1-\sum_{k=1}^{k} \theta_{k}\right)
$$

- Take derivatives wrt θ_{k}

$$
\begin{aligned}
& \frac{\partial l}{\partial \theta_{k}}=\frac{n_{k}}{\theta_{k}}-\lambda=0 \\
& n_{k}=\lambda \theta_{k} \Rightarrow \sum_{k} n_{k}=N=\lambda \sum_{k} \theta_{k}=\lambda \\
& \text { it statistics }
\end{aligned} \quad \square \hat{\theta}_{k, M L E}=\frac{n_{k}}{N} \quad \text { or } \underset{\begin{array}{c}
\text { Frequency as } \\
\text { sample mean }
\end{array}}{\hat{\theta}_{k, M L E}=\frac{1}{N} \sum_{n} x_{n, k}}
$$

- Sufficient statistics
- The counts, $\vec{n}=\left(n_{1}, \cdots, n_{K}\right), n_{k}=\sum_{n} x_{n, k}$, are sufficient statistics of data $D_{\text {ontex, }}$

Bayesian estimation:

- Dirichlet distribution:

$$
P(\theta)=\frac{\Gamma\left(\sum_{k} \alpha_{k}\right)}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \prod_{k} \theta_{k}^{\alpha_{k}-1}=C(\alpha) \prod_{k} \theta_{k}^{\alpha_{k}-1}
$$

- Posterior distribution of θ :

$$
P\left(\theta \mid x_{1}, \ldots, x_{N}\right)=\frac{p\left(x_{1}, \ldots, x_{N} \mid \theta\right) p(\theta)}{p\left(x_{1}, \ldots, x_{N}\right)} \propto \prod_{k} \theta_{k}^{n_{k}} \prod_{k} \theta_{k}^{\alpha_{k}-1}=\prod_{k} \theta_{k}^{\alpha_{k}+n_{k}-1}
$$

- Notice the isomorphism of the posterior to the prior,
- such a prior is called a conjugate prior

Dirichlet parameters can be understood as pseudo-counts

- Posterior mean estimation:

$$
\theta_{k}=\int \theta_{k} p(\theta \mid D) d \theta=C \int \theta_{k} \prod_{k} \theta_{k}^{\alpha_{k}+n_{k}-1} d \theta=\frac{n_{k}+\alpha_{k}}{N+|\alpha|}
$$

More on Dirichlet Prior:

- Where is the normalize constant $C(\alpha)$ come from?

$$
\frac{1}{C(\alpha)}=\int \cdots \int \theta_{1}^{\alpha_{1}-1} \cdots \theta_{K}^{\alpha_{K}-1} d \theta_{1} \cdots d \theta_{K}=\frac{\prod_{k} \Gamma\left(\alpha_{k}\right)}{\Gamma\left(\sum_{k} \alpha_{k}\right)}
$$

- Integration by parts
- $\Gamma(\alpha)$ is the gamma function:

$$
\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t
$$

- For inregers,

$$
\Gamma(n+1)=n!
$$

- Marginal likelihood:

$$
p\left(\left\{x_{1}, \ldots, x_{N}\right\} \mid \vec{\alpha}\right)=p(\vec{n} \mid \vec{\alpha})=\int p(\vec{n} \mid \vec{\theta}) p(\vec{\theta} \mid \vec{\alpha}) d \vec{\theta}=\frac{C(\vec{\alpha})}{C(\vec{n}+\vec{\alpha})}
$$

- Posterior in closed-form:

$$
P\left(\bar{\theta} \mid\left\{x_{1}, \ldots, x_{N}\right\}, \bar{\alpha}\right)=\frac{p(\bar{n} \mid \theta) p(\theta \mid \bar{\alpha})}{p(\bar{n} \mid \bar{\alpha})}=C(\bar{n}+\bar{\alpha}) \prod_{k} \theta_{k}^{\alpha_{k}+n_{k}-1}=\operatorname{Dir}(\bar{n}+\bar{\alpha})
$$

- Posterior predictive rate:

Sequential Bayesian updating

- Start with Dirichlet prior

$$
P(\vec{\theta} \mid \vec{\alpha})=\operatorname{Dir}(\vec{\theta}: \vec{\alpha})
$$

- Observe N ' samples with sufficient statistics \bar{n}^{\prime}. Posterior becomes:

$$
P\left(\vec{\theta} \mid \vec{\alpha}, \vec{n}^{\prime}\right)=\operatorname{Dir}\left(\vec{\theta}: \vec{\alpha}+\vec{n}^{\prime}\right)
$$

- Observe another N " samples with sufficient statistics $\vec{n}^{\prime \prime}$. Posterior becomes:

$$
P\left(\vec{\theta} \mid \vec{\alpha}, \vec{n}^{\prime}, \vec{n}^{\prime \prime}\right)=\operatorname{Dir}\left(\vec{\theta}: \vec{\alpha}+\bar{n}^{\prime}+\bar{n}^{\prime \prime}\right)
$$

- So sequentially absorbing data in any order is equivalent to batch update.

Hierarchical Bayesian Models

- θ are the parameters for the likelihood $p(x \mid \theta)$
- α are the parameters for the prior $p(\theta \mid \alpha)$.
- We can have hyper-hyper-parameters, etc.
- We stop when the choice of hyper-parameters makes no difference to the marginal likelihood; typically make hyper-parameters constants.
- Where do we get the prior?
- Intelligent guesses
- Empirical Bayes (Type-II maximum likelihood)
\rightarrow computing point estimates of α :

$$
\hat{\vec{\alpha}}_{\text {MLE }}=\arg \max _{\bar{\alpha}}=p(\vec{n} \mid \vec{\alpha})
$$

Limitation of Dirichlet Prior:

The Logistic Normal Prior

$$
\begin{aligned}
& \theta \sim L N_{K}(\mu, \Sigma) \\
& \gamma \sim N_{K-1}(\mu, \Sigma) \quad \gamma_{K}=0 \\
& \theta_{i}=\exp \left\{\gamma_{i}-\log \left(1+\sum_{i=1}^{K-1} e^{\gamma_{i}}\right)\right\} \\
& C(\gamma)=\log \left(1+\sum_{i=1}^{K-1} e^{\gamma_{i}}\right)
\end{aligned}
$$

- Log Partition Function
- Normalization Constant
- Pro: co-variance structure
- Con: non-conjugate (we will discuss how to solve this later)

I/ Logistic Normal Densities

Continuous Distributions

- Uniform Probability Density Function

$$
\begin{aligned}
p(x) & =1 /(b-a) & & \text { for } a \leq x \leq b \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

- Normal (Gaussian) Probability Density Function

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

- The distribution is symmetric, and is often illustrated as a bell-shaped curve.

- Two parameters, μ (mean) and σ (standard deviation), determine the location and shape of the distribution.
- The highest point on the normal curve is at the mean, which is also the median and mode.
- The mean can be any numerical value: negative, zero, or positive.
- Multivariate Gaussian

$$
p(X ; \vec{\mu}, \Sigma)=\frac{1}{(\sqrt{2 \pi})^{1 / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(X-\vec{\mu})^{T} \Sigma^{-1}(X-\vec{\mu})\right\}
$$

MLE for a multivariate-Gaussian

- It can be shown that the MLE for μ and Σ is

$$
\begin{aligned}
& \mu_{M L E}=\frac{1}{N} \sum_{n}\left(x_{n}\right) \\
& \Sigma_{\text {MLE }}=\frac{1}{N} \sum_{n}\left(x_{n}-\mu_{M L}\right)\left(x_{n}-\mu_{M L}\right)^{T}=\frac{1}{N} S
\end{aligned}
$$

where the scatter matrix is

$$
S=\sum_{n}\left(x_{n}-\mu_{M L}\right)\left(x_{n}-\mu_{M L}\right)^{T}=\left(\sum_{n} x_{n} x_{n n}^{T}\right)-N \mu_{M L} \mu_{M L}^{T}
$$

- The sufficient statistics are $\Sigma_{n} x_{n}$ and $\Sigma_{n} x_{n} x_{n}{ }^{T}$.
- Note that $X^{T} X=\Sigma_{n} x_{n} x_{n}{ }^{T}$ may not be full rank (eg. if $N<D$), in which case $\Sigma_{M L}$ is not invertible

Bayesian parameter estimation for a Gaussian

- There are various reasons to pursue a Bayesian approach
- We would like to update our estimates sequentially over time.
- We may have prior knowledge about the expected magnitude of the parameters.
- The MLE for Σ may not be full rank if we don't have enough data.
- We will restrict our attention to conjugate priors.
- We will consider various cases, in order of increasing complexity:
- Known σ, unknown μ
- Known μ, unknown σ
- Unknown μ and σ

Bayesian estimation: unknown μ, known σ

- Normal Prior:

$$
P(\mu)=\left(2 \pi \tau^{2}\right)^{-1 / 2} \exp \left\{-\left(\mu-\mu_{0}\right)^{2} / 2 \tau^{2}\right\}
$$

- Joint probability:

$$
\begin{aligned}
P(x, \mu) & =\left(2 \pi \sigma^{2}\right)^{-N / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\} \\
& \times\left(2 \pi \tau^{2}\right)^{-1 / 2} \exp \left\{-\left(\mu-\mu_{0}\right)^{2} / 2 \tau^{2}\right\}
\end{aligned}
$$

- Posterior:

$$
\begin{aligned}
& P(\mu \mid x)=\left(2 \pi \tilde{\sigma}^{2}\right)^{-1 / 2} \exp \left\{-(\mu-\tilde{\mu})^{2} / 2 \tilde{\sigma}^{2}\right\} \\
& \text { where } \tilde{\mu}=\frac{N / \sigma^{2}}{N / \sigma^{2}+1 / \tau^{2}} \bar{x}+\underbrace{N / \sigma^{2}+1 / \tau^{2}}_{\text {Sample mean }} \mu_{0}, \text { and } \widetilde{\sigma}^{2}=\left(\frac{N}{\sigma^{2}}+\frac{1}{\tau^{2}}\right)^{-1}
\end{aligned}
$$

Bayesian estimation: unknown μ, known σ

$$
\mu_{N}=\frac{N / \sigma^{2}}{N / \sigma^{2}+1 / \sigma_{0}^{2}} \bar{x}+\frac{1 / \sigma_{0}^{2}}{N / \sigma^{2}+1 / \sigma_{0}^{2}} \mu_{0}, \quad \tilde{\sigma}^{2}=\left(\frac{N}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right)^{-1}
$$

- The posterior mean is a convex combination of the prior and the MLE, with weights proportional to the relative noise levels.
- The precision of the posterior $1 / \sigma_{N}^{2}$ is the precision of the prior $1 / \sigma_{0}^{2}$ plus one contribution of data precision $1 / \sigma^{2}$ for each observed data point.
- Sequentially updating the mean
- $\mu^{*}=0.8$ (unknown), $\left(\sigma^{2}\right) *=0.1$ (known)
- Effect of single data $\mu_{\mu_{1}}=\mu_{0}+\left(x-\mu_{0}\right) \frac{\text { pofnt }}{\sigma^{2}+\sigma_{0}^{2}}=x-\left(x-\mu_{0}\right) \frac{\sigma_{0}^{2}}{\sigma^{2}+\sigma_{0}^{2}}$
- Uninformativer, (vague/ flat) prior, $\sigma^{2}{ }_{0} \rightarrow \infty$

Other scenarios

- Known μ, unknown $\lambda=1 / \sigma_{2}$
- The conjugate prior for λ is a Gamma with chane a_{0} and rate (inverse scale) $b_{0} \quad p(\lambda \mid a, b)=\frac{1}{\Gamma(a)} b^{a} \lambda^{a-1} \exp (-b \lambda)$
- The conjugate prior f $\underset{I G\left(\sigma^{2} \mid a, b\right)}{n}=\frac{1}{\Gamma(a)} b^{a}\left(\sigma^{2}\right)^{-(a+1)} \exp \left(-b /\left(\sigma^{2}\right)\right)$
- Unknown μ and unknown σ_{2}
- The conjugate prior is

Normal-Inverse-Gamma

$$
\begin{aligned}
P\left(\mu, \sigma^{2}\right) & =P\left(\mu \mid \sigma^{2}\right) P\left(\sigma^{2}\right) \\
& =\mathcal{N}\left(\mu \mid m, \sigma^{2} V\right) \quad I G\left(\sigma^{2} \mid a, b\right)
\end{aligned}
$$

- Semi conjugate prior
- Multivariate case:
- The conjugate prior is

Normal-Inverse-Wishart

$$
\begin{aligned}
P(\mu, \Sigma) & =P(\mu \mid \Sigma) P(\Sigma) \\
& =\mathcal{N}\left(\mu \mid \mu_{0}, \frac{1}{\kappa_{0}} \Sigma\right) \operatorname{IW}\left(\Sigma \mid \Lambda_{0}^{-1}, \nu_{0}\right)
\end{aligned}
$$

II: Two node fully observed BNs

- Conditional mixtures
- Linear/Logistic Regression
- Classification
- Generative and discriminative approaches

Classification:

- Goal: Wish to learn f: $X \rightarrow Y$
- Generative:
- Modeling the joint distribution of all data
- Discriminative:
- Modeling only points at the boundary

Conditional Gaussian

- The data:

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}
$$

- Both nodes are observed:

- Y is a class indicator vector

$$
p\left(y_{n}\right)=\operatorname{multi}\left(y_{n}: \pi\right)=\prod_{k} \pi_{k}^{y_{n, k}}
$$

- X is a conditional Gaussian variable with a class-specific mean

$$
\begin{aligned}
p\left(x_{n} \mid y_{n, k}=1, \mu, \sigma\right) & \left.=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp -\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu_{k}\right)^{2}\right\} \\
p(x \mid y, \mu, \sigma) & =\prod_{n}\left(\prod_{k} N\left(x_{n}: \mu_{k}, \sigma\right)^{y_{n, k}}\right)
\end{aligned}
$$

MLE of conditional Gaussian

- Data log-likelihood

$$
\ell(\boldsymbol{\theta} ; D)=\log \prod_{n} p\left(x_{n}, y_{n}\right)=\log \prod_{n} p\left(y_{n} \mid \pi\right) p\left(x_{n} \mid y_{n}, \mu, \sigma\right)
$$

)
the fraction of
samples of class m
the average of samples of class m

Bsyesian estimation of conditional Gaussian

- Prior:

$$
\begin{aligned}
& P(\vec{\pi} \mid \vec{\alpha})=\operatorname{Dir}(\vec{\pi}: \vec{\alpha}) \\
& P\left(\mu_{k} \mid v\right)=\operatorname{Normal}\left(\mu_{k}: v, \tau\right)
\end{aligned}
$$

- Posterior mean (Bayesian est.)

$$
\begin{aligned}
& \pi_{k, \text { Bayes }}=\frac{N}{N+|\alpha|} \hat{\pi}_{k, M L}+\frac{|\alpha|}{N+|\alpha|} \frac{\alpha_{k}}{|\alpha|}=\frac{n_{k}+\alpha_{k}}{N+|\alpha|} \\
& \mu_{k, \text { Bayes }}=\frac{n_{k} / \sigma^{2}}{n_{k} / \sigma^{2}+1 / \tau^{2}} \hat{\mu}_{k, M L}+\frac{1 / \tau^{2}}{n_{k} / \sigma^{2}+1 / \tau^{2}} v, \quad \text { and } \sigma_{\text {Bayes }}^{2}=\left(\frac{N}{\sigma^{2}}+\frac{1}{\tau^{2}}\right)^{-1}
\end{aligned}
$$

Classification

- Gaussian Discriminative Analysis:
- The joint probability of a datum and it label is:

$$
\begin{aligned}
p\left(x_{n}, y_{n, k}=1 \mid \mu, \sigma\right) & =p\left(y_{n, k}=1\right) \times p\left(x_{n} \mid y_{n, k}=1, \mu, \sigma\right) \\
& =\pi_{k} \frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu_{k}\right)^{2}\right\}
\end{aligned}
$$

- Given a datum x_{n}, we predict its label using the conditional probability of the label given the datum:

$$
p\left(y_{n, k}=1 \mid x_{n}, \mu, \sigma\right)=\frac{\pi_{k} \frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu_{k}\right)^{2}\right\}}{\sum_{k^{\prime}} \pi_{k^{\prime}} \frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu_{k^{\prime}}\right)^{2}\right\}}
$$

- This is basic inference
- introduce evidence, and then normalize

Transductive classification

- Given X_{n}, what is its corresponding Y_{n} when we know the answer for a set of training data?
- Frequentist prediction:
- we fit π, μ and σ from data first, and then

GM:

$$
p\left(y_{n, k}=1 \mid x_{n}, \mu, \sigma, \pi\right)=\frac{p\left(y_{n, k}=1, x_{n} \mid \mu, \sigma, \pi\right)}{p\left(x_{n} \mid \mu, \sigma, \pi\right)}=\frac{\pi_{k} N\left(x_{n}, \mid \mu_{k}, \sigma\right)}{\sum_{k^{\prime}} \pi_{k^{\prime}} N\left(x_{n}, \mid \mu_{k^{\prime}}, \sigma\right)}
$$

- Bayesian:
- we compute the posterior dist. of the parameters first ...

Linear Regression

- The data:

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}
$$

- Both nodes are observed:
- X is an input vector
- Y is a response vector
(we first consider y as a generic continuous response vector, then we consider the special case of classification where y is a discrete indicator)
- A regression scheme can be used to model $p(y \mid x)$ directly, rather than $p(x, y)$

A discriminative probabilistic model

- Let us assume that the target variable and the inputs are related by the equation:

$$
y_{i}=\theta^{T} \mathbf{x}_{i}+\varepsilon_{i}
$$

where ε is an error term of unmodeled effects or random noise

- Now assume that ε follows a Gaussian $N(0, \sigma)$, then we have:

$$
p\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}}{2 \sigma^{2}}\right)
$$

- By independence assumption:

$$
L(\theta)=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i} ; \theta\right)=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left(-\frac{\sum_{i=1}^{n}\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}}{2 \sigma^{2}}\right)
$$

Linear regression

- Hence the log-likelihood is:

$$
l(\theta)=n \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{\sigma^{2}} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Do you recognize the last term?

$$
\text { Yes it is: } \quad J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{T} \theta-y_{i}\right)^{2}
$$

- It is same as the MSE!

A recap:

- LMS update rule

$$
\theta^{t+1}=\theta^{t}+\alpha\left(y_{n}-\mathbf{x}_{n}^{T} \theta^{t}\right) \mathbf{x}_{n}
$$

- Pros: on-line, low per-step cost
- Cons: coordinate, maybe slow-converging
- Steepest descent

$$
\theta^{t+1}=\theta^{t}+\alpha \sum_{i=1}^{n}\left(y_{n}-\mathbf{x}_{n}^{T} \theta^{t}\right) \mathbf{x}_{n}
$$

- Pros: fast-converging, easy to implement
- Cons: a batch,
- Normal equations $\quad \theta^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}$
- Pros: a single-shot algorithm! Easiest to implement.
- Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues (e.g., matrix is singular ..)

Bayesian linear regression

III: How to define parameter prior for general BN?

Assumptions (Geiger \& Heckerman 97,99):
> Complete Model Equivalence
> Global Parameter Independence
> Local Parameter Independence
, Likelihood and Prior Modularity defined by, e.g., multinomial parameters:

$$
p\left(x_{i}^{k} \mid \mathbf{x}_{\pi_{i}}^{j}\right)=\theta_{x_{i}^{k} \mid \mathbf{x}_{\pi_{i}}^{j}}
$$

Global \& Local Parameter Independence

- Global Parameter Independence

For every DAG model:

$$
p\left(\theta_{m} \mid G\right)=\prod_{i=1}^{M} p\left(\theta_{i} \mid G\right)
$$

■ Local Parameter Independence-
For every node:

$$
p\left(\theta_{i} \mid G\right)=\prod_{j=1}^{q_{i}} p\left(\theta_{x_{i}^{k} \mid \mathbf{x}_{\pi_{i}}^{j}} \mid G\right)
$$

Parameter Independence, Graphical View

Global Parameter
Independence

Provided all variables are observed in all cases, we can perform
Bayesian update each parameter independently !!!

Which PDFs Satisfy Our Assumptions? (Geiger \& Heckerman 97,99)

- Discrete DAG Models:

$$
x_{i} \mid \pi_{x_{i}}^{j} \sim \operatorname{Multi}(\theta)
$$

Dirichlet prior:

$$
P(\theta)=\frac{\Gamma\left(\sum_{k} \alpha_{k}\right)}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \prod_{k} \theta_{k}^{\alpha_{k}-1}=C(\alpha) \prod_{k} \theta_{k}^{\alpha_{k}-1}
$$

- Gaussian DAG Models:

$$
x_{i} \mid \pi_{x_{i}}^{j} \sim \operatorname{Normal}(\mu, \Sigma)
$$

Normal prior:

$$
p(\mu \mid v, \Psi)=\frac{1}{(2 \pi)^{n / 2}|\Psi|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mu-\nu)^{\prime} \Psi^{-1}(\mu-\nu)\right\}
$$

Normal-Wishart prior:

$$
\begin{aligned}
& p\left(\mu \mid \nu, \alpha_{\mu}, \mathbf{W}\right)=\operatorname{Normal}\left(\nu,\left(\alpha_{\mu} \mathbf{W}\right)^{-1}\right), \\
& p\left(\mathrm{~W} \mid \alpha_{w}, \mathrm{~T}\right)=\left.c\left(n, \alpha_{w}\right)\left|\mathrm{T}^{\alpha_{\mu} / 2}\right| \mathrm{W}\right|^{\left(\alpha_{w}-n-1\right) / 2} \exp \left\{\frac{1}{2} \operatorname{tr}\{\mathrm{TW}\}\right\}, \\
& \text { where } \mathbf{W}=\Sigma^{-1} .
\end{aligned}
$$

Parameter sharing

- Consider a time-invariant (stationary) $1^{\text {stt-order Markov model }}$
- Initial state probability vector:

$$
\pi_{k}=p\left(X_{1}^{k}=1\right)
$$

$$
A_{i j} \stackrel{\operatorname{def}}{=} p\left(X_{t}^{j}=1 \mid X_{t-1}^{i}=1\right)
$$

- The joint:
- The log-likelihood:

$$
\begin{aligned}
& p\left(X_{1: T} \mid \theta\right)=p\left(x_{1} \mid \pi\right) \prod_{t=2}^{T} \prod_{t=2} p\left(X_{t} \mid X_{t-1}\right) \\
& \quad \quad \quad(\theta ; D)=\sum_{\text {separatelv }} \log p\left(x_{n, 1} \mid \pi\right)+\sum_{n} \sum_{t=2}^{T} \log p\left(x_{n, t} \mid x_{n, t-1}, A\right)
\end{aligned}
$$

- Again, we optimize each parameter separately
- π is a multinomial frequency vector, and we've seen it before
- What about A ?

Learning a Markov chain transition matrix

- A is a stochastic matrix: $\quad \sum_{j} A_{i j}=1$
- Each row of A is multinomial distribution.
- So MLE of $A_{i j}$ is the fraction of transitions from i to j

$$
A_{i j}^{M L}=\frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=2}^{T} x_{n, t-1}^{i} x_{n, t}^{j}}{\sum_{n} \sum_{t=2}^{T} x_{n, t-1}^{i}}
$$

- Application:
- if the states X_{+}represent words, this is called a bigram language mode/
- Sparse data problem:
- If $i \rightarrow j$ did not occur in data, we will have $A_{i j}=0$, then any future sequence with word pair $i \rightarrow j$ will have zero probability.
- A standard hack: backoff smoothing or deleted interpolation

$$
\tilde{A}_{i \rightarrow 0}=\lambda \eta_{+}+(1-\lambda) A_{i \rightarrow 0}^{M L}
$$

Bayesian language model

- Global and local parameter independence

 acts like a multiplexer
- Assign a Dirichlet prior β_{i} to each row of the transition matrix:

$$
A_{i j}^{\text {Bayes }} \stackrel{\text { def }}{=} p\left(j \mid i, D, \beta_{i}\right)=\frac{\#(i \rightarrow j)+\beta_{i, k}}{\#(i \rightarrow \bullet)+\left|\beta_{i}\right|}=\lambda_{i} \beta_{i, k}^{\prime}+\left(1-\lambda_{i}\right) A_{i j}^{M L}, \text { where } \lambda_{i}=\frac{\left|\beta_{i}\right|}{\left|\beta_{i}\right|+\#(i \rightarrow \bullet)}
$$

- We could consider more realistic priors, e.g., mixtures of Dirichlets to account for types of words (adjectives, verbs, etc.)

IV: More on EM

Unsupervised ML estimation

a Given $x=x_{1} \ldots x_{N}$ for which the true state path $\boldsymbol{y}=y_{1} \ldots y_{N}$ is unknown,

- EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ :
1. Estimate $\boldsymbol{A}_{i j}, \boldsymbol{B}_{i k}$ in the training data

- How?

$$
A_{j j}=\sum_{n, t}\left\langle y_{n,-1}^{\prime}, y_{n, t}^{j}\right\rangle \quad B_{k}=\sum_{n, t}\left\langle y_{n, t}^{\prime}\right\rangle x_{n, t}^{k}
$$

2. Update θ according to $A_{i j}, B_{i k}$

- Now a "supervised learning" problem

3. Repeat $1 \& 2$, until convergence

This is called the Baum-Welch Algorithm
We can get to a provably more (or equally) likely parameter set θ each iteration

EM for general BNs

while not converged
\% E-step
for each node i
$E S S_{i}=0$ \% reset expected sufficient statistics
for each data sample n
do inference with $X_{n, H}$
for each node i
\% M-step
$E S S_{i}+=\left\langle S S_{i}\left(x_{n, i}, x_{n, \pi_{i}}\right)\right\rangle_{p\left(x_{n, H \mid} \mid x_{n,-H}\right)}$
for each node i
$\theta_{i}:=\operatorname{MLE}\left(E S S_{i}\right)$

Conditional mixture model: Mixture of experts

- We will model $p(Y \mid X)$ using different experts, each responsible for different regions of the input space.
- Latent variable Z chooses expert using softmax gating function:

$$
P\left(z^{k}=1 \mid x\right)=\operatorname{Softmax}\left(\xi^{\top} x\right)
$$

- Each expert can be a linear regression model: $P\left(y \mid x, z^{k}=1\right)=n\left(y ; \theta_{k}^{\top} x, \sigma_{k}^{2}\right)$
- The posterior expert responsibilities are

$$
P\left(z^{k}=1 \mid x, y, \theta\right)=\frac{p\left(z^{k}=1 \mid x\right) p_{k}\left(y \mid x, \theta_{k}, \sigma_{k}^{2}\right)}{\sum_{j} p\left(z^{j}=1 \mid x\right) p_{j}\left(y \mid x, \theta_{j}, \sigma_{j}^{2}\right)}
$$

EM for conditional mixture model

- Model:

$$
P(y \mid x)=\sum_{k} p\left(z^{k}=1 \mid x, \xi\right) p\left(y \mid z^{k}=1, x, \theta_{i}, \sigma\right)
$$

- The objective function

$$
\begin{aligned}
\left\langle e_{c}(\theta ; x, y, z)\right\rangle & =\sum_{n}\left\langle\log p\left(z_{n} \mid x_{n}, \xi\right)\right\rangle_{p(z \mid x, v)}+\sum_{n}\left\langle\log p\left(y_{n} \mid x_{n}, z_{n}, \theta, \sigma\right)\right\rangle_{p(z \mid x, v)} \\
& =\sum_{n} \sum_{k}\left\langle z_{n}^{k}\right\rangle \log \left(\operatorname{softmax}\left(\xi_{k}^{T} x_{n}\right)\right)-\frac{1}{2} \sum_{n} \sum_{k}\left\langle z_{n}^{k}\right\rangle\left(\frac{\left(y_{n}-\theta_{k}^{T} x_{n}\right)}{\sigma_{k}^{2}}+\log \sigma_{k}^{2}+C\right)
\end{aligned}
$$

- E-step:
- M-step:

$$
\tau_{n}^{k(t)}=P\left(z_{n}^{k}=1 \mid x_{n}, y_{n}, \boldsymbol{\theta}\right)=\frac{p\left(z_{n}^{k}=1 \mid x_{n}\right) p_{k}\left(y_{n} \mid x_{n}, \theta_{k}, \sigma_{k}^{2}\right)}{\sum_{j} p\left(z_{n}^{j}=1 \mid x_{n}\right) p_{j}\left(y_{n} \mid x_{n}, \theta_{j}, \sigma_{j}^{2}\right)}
$$

- using the normal equation for standard $\operatorname{LR} \theta=\left(X^{\top} X\right)^{-1} X^{\top} y$, but with the data re-weighted by τ (homework)
- IRLS and/or weighted IRLS algorithm to update $\left\{\xi_{k}, \theta_{k}, \sigma_{k}\right\}$ based on data pair (x_{n}, y_{n}), with weights $\tau_{n}^{k(t)}$ (homework?)

Hierarchical mixture of experts

- This is like a soft version of a depth-2 classification/regression tree.
- $\left.P Y \mid X, G_{1}, G_{2}\right)$ can be modeled as a GLIM, with parameters dependent on the values of \boldsymbol{G}_{1} and \boldsymbol{G}_{2} (which specify a "conditional path" to a given leaf in the tree).

Mixture of overlapping experts

- By removing the $X \rightarrow Z$ arc, we can make the partitions independent of the input, thus allowing overlap.
- This is a mixture of linear regressors; each subpopulation has a different conditional mean.

$$
P\left(z^{k}=1 \mid x, y, \theta\right)=\frac{p\left(z^{k}=1\right) p_{k}\left(y \mid x, \theta_{k}, \sigma_{k}^{2}\right)}{\sum_{j} p\left(z^{j}=1\right) p_{j}\left(y \mid x, \theta_{j}, \sigma_{j}^{2}\right)}
$$

Partially Hidden Data

- Of course, we can learn when there are missing (hidden) variables on some cases and not on others.
- In this case the cost function is:

$$
\ell_{c}(\theta ; \boldsymbol{D})=\sum_{n \in \text { Complete }} \log p\left(x_{n}, y_{n} \mid \theta\right)+\sum_{m \in \text { Missing }} \log \sum_{y_{m}} p\left(x_{m}, y_{m} \mid \theta\right)
$$

- Note that $\boldsymbol{Y}_{\mathrm{m}}$ do not have to be the same in each case --- the data can have different missing values in each different sample
- Now you can think of this in a new way: in the E-step we estimate the hidden variables on the incomplete cases only.
- The M-step optimizes the log likelihood on the complete data plus the expected likelihood on the incomplete data using the E-step.

EM Variants

- Sparse EM:

Do not re-compute exactly the posterior probability on each data point under all models, because it is almost zero. Instead keep an "active list" which you update every once in a while.

- Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even given the completed data. We can still make progress by doing an M-step that improves the likelihood a bit (e.g. gradient step). Recall the IRLS step in the mixture of experts model.

A Report Card for EM

- Some good things about EM:
- no learning rate (step-size) parameter
- automatically enforces parameter constraints
- very fast for low dimensions
- each iteration guaranteed to improve likelihood
- Some bad things about EM:
- can get stuck in local minima
- can be slower than conjugate gradient (especially near convergence)
- requires expensive inference step
- is a maximum likelihood/MAP method

