
Probabilistic Graphical Models

Parameter Estimation
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Lecture 5, January 29, 2020
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Learning Graphical Models

The goal:
q Given set of independent samples (assignments of random variables), 

find the best (the most likely?) Bayesian Network (both DAG and CPDs)

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)
……..
(B,E,A,C,R)=(F,T,T,T,F)
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Learning Graphical Models

q Scenarios:
q completely observed GMs

q directed
q undirected 

q partially or unobserved GMs
q directed
q undirected (an open research topic) 

q Estimation principles:
q Maximal likelihood estimation (MLE)
q Bayesian estimation
q Maximal conditional likelihood
q Maximal "Margin" 
q Maximum entropy

q We use learning as a name for the process of estimating the parameters, and in 
some cases, the topology of the network, from data.
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ML Parameter Est. for 
completely observed GMs of 

given structure

Z

X

l The data:
{ (z1,x1), (z2,x2), (z3,x3), ... (zN,xN)}
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Parameter Learning

q Assume G is known and fixed,
q from expert design
q from an intermediate outcome of iterative structure learning

q Goal: estimate  from a dataset of N independent, identically distributed 
(iid) training cases D = {x1, . . . , xN}.

q In general, each training case xn= (xn,1, . . . , xn,M) is a vector of M values, 
one per node,

q the model can be completely observable, i.e., every element in xn is known (no 
missing values, no hidden variables),

q or, partially observable, i.e., $i, s.t. xn,i is not observed.  
q In this lecture we consider learning parameters for a BN with given 

structure and is completely observable
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Review of density estimation

q Can be viewed as single-node GMs

q Instances of 
Exponential Family Dist.

q Building blocks of general GM

q MLE and Bayesian estimate

q See supplementary slides
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Estimation of conditional density

q Can be viewed as two-node graphical models

q Instances of GLIM (Generalized Linear Models)

q Building blocks of general GM

q MLE and Bayesian estimate 

q See supplementary slides
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Exponential family, a basic building block

q For a numeric random variable X

is an exponential family distribution with natural (canonical) parameter h

q Function T(x) is a sufficient statistic.
q Function A(h) = log Z(h) is the log normalizer.
q Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

© Eric Xing @ CMU, 2005-2015 8

{ }
{ })(exp)(

)(

)()(exp)()|(

xTxh
Z

AxTxhxp

T

T

h
h

hhh
1=

-=



Example: Multivariate Gaussian Distribution

q For a continuous vector random variable XÎRk:

q Exponential family representation

q Note: a k-dimensional Gaussian is a (d+d2)-parameter distribution with a (d+d2)-
element vector of sufficient statistics (but because of symmetry and positivity, 
parameters are constrained and have lower degree of freedom)
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Example: Multinomial distribution

q For a binary vector random variable 

q Exponential family representation
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Why exponential family?

q Moment generating property
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Moment estimation

q We can easily compute moments of any exponential family distribution 
by taking the derivatives of the log normalizer A(h).

q The qth derivative gives the qth centered moment.

q When the sufficient statistic is a stacked vector, partial derivatives need 
to be considered.
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Moment vs canonical parameters

q The moment parameter µ can be derived from the natural (canonical) 
parameter

q A(h) is convex since

q Hence we can invert the relationship and infer the canonical parameter from the 
moment parameter (1-to-1):

q A distribution in the exponential family can be parameterized not only by h - the canonical 
parameterization, but also by µ - the moment parameterization.
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MLE for Exponential Family

q For iid data, the log-likelihood is

q Take derivatives and set to zero:

q This amounts to moment matching.
q We can infer the canonical parameters using
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Sufficiency

q For p(x|q), T(x) is sufficient for q if there is no information in X regarding q
beyond that in T(x).

q We can throw away X for the purpose of inference w.r.t. q . 

q Bayesian view

q Frequentist view

q The Neyman factorization theorem
q T(x) is sufficient for q if  
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Examples

q Gaussian:

q Multinomial:

q Poisson:
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Generalized Linear Models (GLIMs)

q The graphical model
q Linear regression
q Discriminative linear classification
q Commonality: 

model Ep(Y)=µ=f(qTX)
q What is p()? the cond. dist. of Y.
q What is f()? the response function.

q GLIM
q The observed input x is assumed to enter into the model via a linear combination of its 

elements
q The conditional mean µ is represented as a function f(x) of x, where f is known as the response 

function
q The observed output y is assumed to be characterized by an exponential family distribution 

with conditional mean µ. 
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Recall Linear Regression

q Let us assume that the target variable and the inputs are related by the 
equation:

where ε is an error term of unmodeled effects or random noise

q Now assume that ε follows a Gaussian N(0,σ), then we have:

q We can use LMS algorithm, which is a gradient ascent/descent 
approach, to estimate the parameter
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Recall: Logistic Regression (sigmoid classifier, 
perceptron, etc.)

q The condition distribution: a Bernoulli

where µ is a logistic function

q We can used the brute-force gradient method as in LR

q But we can also apply generic laws by observing the p(y|x) is an 
exponential family function, more specifically, a generalized linear 
model!
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More examples: parameterizing graphical models

q Markov random fields
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Conditional Random Fields
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•Discriminative

•Xi’s are assumed as features that are inter-
dependent

•When labeling Xi future observations are 
taken into account

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Y1 Y2 Y5…

X1 … Xn



GLIM, cont.

q The choice of exp family is constrained by the nature of the data Y
q Example: y is a continuous vector à multivariate Gaussian

y is a class label à Bernoulli or multinomial  
q The choice of the response function

q Following some mild constrains, e.g., [0,1]. Positivity …
q Canonical response function:                 

q In this case qTx directly corresponds to canonical parameter h.
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Example canonical response functions 
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MLE for GLIMs with natural response

q Log-likelihood

q Derivative of Log-likelihood

q Online learning for canonical GLIMs
q Stochastic gradient ascent:
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Batch learning for canonical GLIMs

q The Hessian matrix

where               is the design matrix and

which can be computed by calculating the 2nd derivative of A(hn)
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Iteratively Reweighted Least Squares (IRLS)

q Recall Newton-Raphson methods with cost function J

q We now have

q Now: 

q

where the adjusted response is

q This can be understood as solving the following " Iteratively reweighted 
least squares " problem
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Example 1: logistic regression (sigmoid classifier)

q The condition distribution: a Bernoulli 

where µ is a logistic function

q p(y|x) is an exponential family function, with 
q mean:

q and canonical response function  

q IRLS
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Example 2: linear regression

q The condition distribution: a Gaussian 

where µ is a linear function

q p(y|x) is an exponential family function, with 
q mean:
q and canonical response function  

q IRLS
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Simple GMs are the building blocks of complex GMs

q Density estimation 
q Parametric and nonparametric  methods

q Regression
q Linear, conditional mixture, nonparametric

q Classification 
q Generative and discriminative approach

q Clustering 
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MLE for general BNs

q If we assume the parameters for each CPD are globally independent, 
and all nodes are fully observed, then the log-likelihood function 
decomposes into a sum of local terms, one per node:
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Decomposable likelihood of a BN

q Consider the distribution defined by the directed acyclic GM:

q This is exactly like learning four separate small BNs, each of which 
consists of a node and its parents.
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MLE for BNs with tabular CPDs

q Assume each CPD is represented as a table (multinomial) where

q Note that in case of multiple parents,      will have a composite 
state, and the CPD will be a high-dimensional table

q The sufficient statistics are counts of family configurations

q The log-likelihood is

q Using a Lagrange multiplier 
to enforce               , we get:
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Summary: Learning GM

q For fully observed BN, the log-likelihood function decomposes into a sum 
of local terms, one per node; thus learning is also factored

q Learning single-node GM – density estimation: exponential family dist.
q Typical discrete distribution
q Typical continuous distribution
q Conjugate priors

q Learning two-node BN: GLIM
q Conditional Density Est.
q Classification

q Learning BN with more nodes
q Local operations
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ML Parameter Est. for 
partially observed GMs: 

EM algorithm
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Partially observed GMs

q Speech recognition
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A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 



Partially observed GM

q Biological Evolution
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Mixture Models
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Mixture Models, con'd

q A density model p(x) may be multi-modal.
q We may be able to model it as a mixture of uni-modal distributions (e.g., 

Gaussians).
q Each mode may correspond to a different sub-population (e.g., male and 

female).
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Unobserved Variables

q A variable can be unobserved (latent) because:
q it is an imaginary quantity meant to provide some simplified and abstractive 

view of the data generation process
q e.g., speech recognition models, mixture models …

q it is a real-world object and/or phenomena, but difficult or impossible to 
measure

q e.g., the temperature of a star, causes of a disease, evolutionary ancestors …
q it is a real-world object and/or phenomena, but sometimes wasn’t measured, 

because of faulty sensors, etc.
q Discrete latent variables can be used to partition/cluster data into sub-

groups.
q Continuous latent variables (factors) can be used for dimensionality 

reduction (factor analysis, etc).
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Gaussian Mixture Models (GMMs)

q Consider a mixture of K Gaussian components:

q This model can be used for unsupervised clustering.
q This model (fit by AutoClass) has been used to discover new kinds of stars in 

astronomical data, etc.
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Gaussian Mixture Models (GMMs)

q Consider a mixture of K Gaussian components:
q Z is a latent class indicator vector:

q X is a conditional Gaussian variable with a class-specific mean/covariance

q The likelihood of a sample:
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Why is Learning Harder?

q In fully observed iid settings, the log likelihood decomposes into a sum of 
local terms (at least for directed models).

q With latent variables, all the parameters become coupled together via 
marginalization
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Toward the EM algorithm

q Recall MLE for completely observed data

q Data log-likelihood

q MLE

q What if we do not know zn?
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Question

q “ … We solve problem X using Expectation-Maximization …”
q What does it mean?

q E
q What do we take expectation with?
q What do we take expectation over?

q M
q What do we maximize?
q What do we maximize with respect to?
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Recall: K-means
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Expectation-Maximization

q Start: 
q "Guess" the centroid µk and coveriance Sk of each of the K clusters 

q Loop
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E-step

q We maximize           iteratively using the following iterative procedure:

─ Expectation step: computing the expected value of the sufficient statistics of the 
hidden variables (i.e., z) given current est. of the parameters (i.e., p and µ). 

q Here we are essentially doing inference
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M-step

q We maximize           iteratively using the following iterative procudure:
─ Maximization step: compute the parameters under current results of the expected 

value of the hidden variables

q This is isomorphic to MLE except that the variables that are hidden are replaced by 
their expectations (in general they will by replaced by their corresponding 
"sufficient statistics") 
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Compare: K-means and EM

q K-means
q In the K-means “E-step” we do hard 

assignment:

q In the K-means “M-step” we update the 
means as the weighted sum of the data, 
but now the weights are 0 or 1:
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The EM algorithm for mixtures of Gaussians is like a "soft 
version" of the K-means algorithm.
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The EM Objective for Gaussian mixture model

q A mixture of K Gaussians:
q Z is a latent class indicator vector

q X is a conditional Gaussian variable with class-specific mean/covariance

q The likelihood of a sample:

q The expected complete log likelihood
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Theory underlying EM

q What are we doing?

q Recall that according to MLE, we intend to learn the model parameter 
that would have maximize the likelihood of the data. 

q But we do not observe z, so computing 

is difficult!

q What shall we do?
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Complete & Incomplete Log Likelihoods

q Complete log likelihood:
Let X denote the observable variable(s), and Z denote the latent variable(s). 
If Z could be observed, then

q Usually, optimizing lc() given both z and x is straightforward (c.f. MLE for fully observed models).
q Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, the parameter for 

each factor can be estimated separately.
q But given that Z is not observed, lc() is a random quantity, cannot be maximized directly.

q Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

q This objective won't decouple 
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Expected Complete Log Likelihood

q For any distribution q(z), define expected complete log likelihood:

q A deterministic function of q
q Linear in lc() --- inherit its factorizabiility
q Does maximizing this surrogate yield a maximizer of the likelihood?

q Jensen’s inequality
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Lower Bounds and Free Energy

q For fixed data x, define a functional called the free energy:

q The EM algorithm is coordinate-ascent on F :
q E-step:

q M-step:
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E-step: maximization of expected lc w.r.t. q

q Claim: 

q This is the posterior distribution over the latent variables given the data and 
the parameters. Often we need this at test time anyway (e.g. to perform 
classification).

q Proof (easy): this setting attains the bound l(q;x)³F(q,q )

q Can also show this result using variational calculus or the fact that
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E-step º plug in posterior expectation of latent variables

q Without loss of generality: assume that p(x,z|q) is a generalized 
exponential family distribution:

q Special cases: if p(X|Z) are GLIMs, then 

q The expected complete log likelihood under                            is
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M-step: maximization of expected lc w.r.t. q

q Note that the free energy breaks into two terms:

q The first term is the expected complete log likelihood (energy) and the second term, 
which does not depend on q, is the entropy.

q Thus, in the M-step, maximizing with respect to q for fixed q we only need to 
consider the first term:

q Under optimal qt+1, this is equivalent to solving a standard MLE of fully observed 
model p(x,z|q), with the sufficient statistics involving z replaced by their expectations 
w.r.t. p(z|x,q).
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Summary: EM Algorithm

q A way of maximizing likelihood function for latent variable models. Finds 
MLE of parameters when the original (hard) problem can be broken up 
into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current parameters.
2. Using this “complete” data, find the maximum likelihood parameter estimates.

q Alternate between filling in the latent variables using the best guess 
(posterior) and updating the parameters based on this guess:

q E-step: 
q M-step: 

q In the M-step we optimize a lower bound on the likelihood. In the E-step 
we close the gap, making bound=likelihood.
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Supplementary materials



I: Review of density estimation

q Can be viewed as single-node graphical models

q Instances of exponential family dist.

q Building blocks of general GM

q MLE and Bayesian estimate 
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Discrete Distributions

q Bernoulli distribution: Ber(p)

q Multinomial distribution: Mult(1,q)
q Multinomial (indicator) variable:
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Discrete Distributions

q Multinomial distribution: Mult(n,q)

q Count variable:
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Example: multinomial model

q Data: 
q We observed N iid die rolls (K-sided): D={5, 1, K, …, 3}

q Representation:
Unit basis vectors:

q Model: 

q How to write the likelihood of a single observation xn? 

q The likelihood of datasetD={x1, …,xN}:
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MLE: constrained optimization with Lagrange multipliers

q Objective function: 

q We need to maximize this subject to the constrain

q Constrained cost function with a Lagrange multiplier

q Take derivatives wrt qk

q Sufficient statistics
q The counts,                                        are sufficient statistics of data D
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Bayesian estimation: 

q Dirichlet distribution:  

q Posterior distribution of q : 

q Notice the isomorphism of the posterior to the prior, 
q such a prior is called a conjugate prior

q Posterior mean estimation:
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More on Dirichlet Prior:

q Where is the normalize constant C(a) come from?

q Integration by parts 
q G(a) is the gamma function:
q For inregers,  

q Marginal likelihood:

q Posterior in closed-form:

q Posterior predictive rate:
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Sequential Bayesian updating

q Start with Dirichlet prior
q Observe N ' samples with sufficient statistics    . Posterior becomes:

q Observe another N " samples with sufficient statistics     . Posterior 
becomes:

q So sequentially absorbing data in any order is equivalent to batch 
update.
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Hierarchical Bayesian Models

q q are the parameters for the likelihood p(x|q)
q a are the parameters for the prior p(q|a) .
q We can have hyper-hyper-parameters, etc.
q We stop when the choice of hyper-parameters makes no difference to 

the marginal likelihood; typically make hyper-parameters constants.
q Where do we get the prior? 

q Intelligent guesses
q Empirical Bayes (Type-II maximum likelihood) 

à computing point estimates of a :
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Limitation of Dirichlet Prior:
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The Logistic Normal Prior
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Logistic Normal Densities
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Continuous Distributions

q Uniform Probability Density Function

q Normal (Gaussian) Probability Density Function

q The distribution is symmetric, and is often illustrated as a bell-shaped curve. 
q Two parameters, µ (mean) and s (standard deviation), determine the location and shape of the distribution.
q The highest point on the normal curve is at the mean, which is also the median and mode.
q The mean can be any numerical value: negative, zero, or positive.

q Multivariate Gaussian
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MLE for a multivariate-Gaussian

q It can be shown that the MLE for µ and Σ is

where the scatter matrix is

q The sufficient statistics are Snxn and Snxnxn
T.

q Note that XTX=Snxnxn
T may not be full rank (eg. if N <D), in which case ΣML is 

not invertible
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Bayesian parameter estimation for a Gaussian

q There are various reasons to pursue a Bayesian approach
q We would like to update our estimates sequentially over time.
q We may have prior knowledge about the expected magnitude of the 

parameters.
q The MLE for Σ may not be full rank if we don’t have enough data.

q We will restrict our attention to conjugate priors.

q We will consider various cases, in order of increasing complexity:
q Known σ, unknown µ
q Known µ, unknown σ
q Unknown µ and σ
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Bayesian estimation: unknown µ, known σ

q Normal Prior:  

q Joint probability: 

q Posterior:
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Bayesian estimation: unknown µ, known σ

q The posterior mean is a convex combination of the prior and the MLE, with 
weights proportional to the relative noise levels.

q The precision of the posterior 1/σ2
N is the precision of the prior 1/σ2

0 plus one 
contribution of data precision 1/σ2 for each observed data point.

q Sequentially updating the mean
q µ∗ = 0.8 (unknown),  (σ2)∗ = 0.1 (known)

q Effect of single data point

q Uninformative (vague/ flat) prior, σ2
0 →∞
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Other scenarios

q Known µ, unknown λ = 1/σ2
q The conjugate prior for λ is a Gamma with shape a0 and rate (inverse scale) 

b0

q The conjugate prior for σ2 is Inverse-Gamma

q Unknown µ and unknown σ2
q The conjugate prior is 

Normal-Inverse-Gamma
q Semi conjugate prior

q Multivariate case:
q The conjugate prior is 

Normal-Inverse-Wishart
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Q

X

Q

X

II: Two node fully observed BNs

q Conditional mixtures

q Linear/Logistic Regression  
q

q Classification
q Generative and discriminative approaches
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Classification:

q Goal: Wish to learn f: X ® Y

q Generative:
q Modeling the joint distribution 

of all data

q Discriminative:
q Modeling only points 

at the boundary
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Conditional Gaussian

q The data:

q Both nodes are observed:
q Y is a class indicator vector

q X is a conditional Gaussian variable with a class-specific mean

© Eric Xing @ CMU, 2005-2016 83

GM:
Yi

Xi
N

Õ==
k

y
knn

knyyp ,):(multi)( pp

{ }2
2
1

2/12, )-(-exp
)2(

1),,1|( 2 knknn xyxp µ
ps

sµ
s

==

Õ Õ ÷÷
ø

ö
çç
è

æ=
n k

y
kn

knxNyxp ,),:(),,|( sµsµ

{ }),(,),,(),,(),,( NN yxyxyxyx !332211



),,|()|(log),(log);( sµp nn
n

n
n

nn yxpypyxpD ÕÕ ==θl

 
                  

           ),;(max
,

,, N
n

N
y

Drga kn
kn

MLEkMLEk ===
å

pp
p

!! θl
the fraction of 
samples of class m

k

n
nkn

n
kn

n
nkn

MLEkMLEk n

xy

y

xy
D

å
å
å

===
,

,

,

,,        ),;(maxarg µµ !! θl the average of 
samples of class m

MLE of conditional Gaussian

© Eric Xing @ CMU, 2005-2016 84

GM:
Yi

Xi
N

q Data log-likelihood

q MLE 



Bsyesian estimation of conditional Gaussian

q Prior:

q Posterior mean (Bayesian est.)
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Classification

q Gaussian Discriminative Analysis:
q The joint probability of a datum and it label is:

q Given a datum xn, we predict its label using the conditional probability of the 
label given the datum:

q This is basic inference 
q introduce evidence, and then normalize
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Transductive classification

q Given Xn, what is its corresponding Yn
when we know the answer for 
a set of training data?

q Frequentist prediction:
q we fit p, µ and s from data first, and then …

q Bayesian:
q we compute the posterior dist. of the parameters first …  
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Linear Regression 

q The data:

q Both nodes are observed:
q X is an input vector
q Y is a response vector 

(we first consider y as a generic 
continuous response vector, then 
we consider the special case of 
classification where y is a discrete 
indicator)

q A regression scheme can be 
used to model p(y|x) directly,
rather than p(x,y)
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A discriminative probabilistic model

q Let us assume that the target variable and the inputs are related by the 
equation:

where ε is an error term of unmodeled effects or random noise

q Now assume that ε follows a Gaussian N(0,σ), then we have:

q By independence assumption:
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Linear regression

q Hence the log-likelihood is:

q Do you recognize the last term?

Yes it is: 

q It is same as the MSE!
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A recap:

q LMS update rule

q Pros: on-line, low per-step cost
q Cons: coordinate, maybe slow-converging

q Steepest descent

q Pros: fast-converging, easy to implement
q Cons: a batch, 

q Normal equations

q Pros: a single-shot algorithm! Easiest to implement.
q Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues (e.g., 

matrix is singular ..)
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Bayesian linear regression
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Earthquake

Radio

Burglary

Alarm

Call

III: How to define parameter prior for general BN?
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Assumptions (Geiger & Heckerman 97,99):

Ø Complete Model Equivalence
Ø Global Parameter Independence
Ø Local Parameter Independence
Ø Likelihood and Prior Modularity

Factorization:
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defined by, e.g., multinomial parameters:
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■ Global Parameter Independence
For every DAG model:

■ Local Parameter Independence
For every node:
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Global & Local Parameter Independence

© Eric Xing @ CMU, 2005-2020 94



Provided all variables are observed in all cases, we can perform 
Bayesian update each parameter independently !!!

sample 1

sample 2

!

q2|1q1 q2|1

X1 X2

X1 X2

Global Parameter
Independence

Local Parameter
Independence

Parameter Independence, Graphical View
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Which PDFs Satisfy Our Assumptions? (Geiger & Heckerman 97,99)

q Discrete DAG Models:

Dirichlet prior:

q Gaussian DAG Models:

Normal prior:

Normal-Wishart prior:
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Parameter sharing

q Consider a time-invariant (stationary) 1st-order Markov model
q Initial state probability vector: 
q State transition probability matrix:

q The joint:

q The log-likelihood:

q Again, we optimize each parameter separately
q p is a multinomial frequency vector, and we've seen it before
q What about A?
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Learning a Markov chain transition matrix

q A is a stochastic matrix: 
q Each row of A is multinomial distribution.
q So MLE of Aij is the fraction of transitions from i to j

q Application: 
q if the states Xt represent words, this is called a bigram language model

q Sparse data problem:
q If i à j did not occur in data, we will have Aij =0, then any future sequence with word 

pair i à j will have zero probability. 
q A standard hack: backoff smoothing or deleted interpolation
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Bayesian language model

q Global and local parameter independence

q The posterior of Aià· and Ai'à· is factorized despite v-structure on Xt, because Xt-1acts like a multiplexer
q Assign a Dirichlet prior bi to each row of the transition matrix:

q We could consider more realistic priors, e.g., mixtures of Dirichlets to account for types of words 
(adjectives, verbs, etc.)
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IV: More on EM
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Unsupervised ML estimation

q Given x = x1…xN for which the true state path y = y1…yN is unknown,

q EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters q:
1. Estimate Aij , Bik in the training data 

q How?                             , ,

2. Update q according to Aij , Bik
q Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set q each iteration
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EM for general BNs

while not converged
% E-step
for each node i
ESSi = 0 % reset expected sufficient statistics

for each data sample n
do inference with Xn,H
for each node i

% M-step
for each node i
qi := MLE(ESSi )

© Eric Xing @ CMU, 2005-2020 102

)|(,,
,,

),(   
HnHni xxpninii xxSSESS

-

=+ p



Conditional mixture model: Mixture of experts

q We will model p(Y |X) using different experts, each responsible for 
different regions of the input space.

q Latent variable Z chooses expert using softmax gating function: 

q Each expert can be a linear regression model:
q The posterior expert responsibilities are
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EM for conditional mixture model

q Model:

q The objective function

q EM:

q E-step:

q M-step:  

q using the normal equation for standard LR                          , but with the data re-weighted by t
(homework)

q IRLS and/or weighted IRLS algorithm to update {xk, qk, sk} based on data pair (xn,yn), with weights           
(homework?)
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Hierarchical mixture of experts

q This is like a soft version of a depth-2 classification/regression tree.
q P(Y |X,G1,G2) can be modeled as a GLIM, with parameters dependent on the values of 

G1 and G2 (which specify a "conditional path" to a given leaf in the tree).
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Mixture of overlapping experts

q By removing the X à Z arc, we can make the partitions independent of 
the input, thus allowing overlap.

q This is a mixture of linear regressors; each subpopulation has a different 
conditional mean.
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Partially Hidden Data

q Of course, we can learn when there are missing (hidden) variables on 
some cases and not on others.

q In this case the cost function is:

q Note that Ym do not have to be the same in each case --- the data can have 
different missing values in each different sample

q Now you can think of this in a new way: in the E-step we estimate the 
hidden variables on the incomplete cases only.

q The M-step optimizes the log likelihood on the complete data plus the 
expected likelihood on the incomplete data using the E-step.
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EM Variants

q Sparse EM:
Do not re-compute exactly the posterior probability on each data point 
under all models, because it is almost zero. Instead keep an “active list” 
which you update every once in a while.

q Generalized (Incomplete) EM: 
It might be hard to find the ML parameters in the M-step, even given the 
completed data. We can still make progress by doing an M-step that 
improves the likelihood a bit (e.g. gradient step). Recall the IRLS step in 
the mixture of experts model.
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A Report Card for EM

q Some good things about EM:
q no learning rate (step-size) parameter
q automatically enforces parameter constraints
q very fast for low dimensions
q each iteration guaranteed to improve likelihood

q Some bad things about EM:
q can get stuck in local minima
q can be slower than conjugate gradient (especially near convergence)
q requires expensive inference step
q is a maximum likelihood/MAP method
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