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% Learning Graphical Models

The goal:

o Given set of independent samples (assignments of random variables),
find the best (the most likely?) Bayesian Network (both DAG and CPDs)
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% Learning Graphical Models

o Scenarios:

o completely observed GMs
o directed
o undirected

o partially or unobserved GMs
o directed
o undirected (an open research topic)

o Estimation principles:
o Maximal likelihood estimation (MLE)
o Bayesian estimation
o Maximal conditional likelihood
o Maximal "Margin®
o Maximum entropy

o We use learning as a name for the process of estimating the parameters, and in
some cases, the topology of the network, from data.



@

-
ML Parameter Est. for

completely observed GMs of
given structure

e [he data:

{ (z1x)), (22X2), (23,X3), ... (ZpXN)



% Parameter Learning

o Assume G is known and fixed,
o from expert design
o from an intermediate outcome of iterative structure learning
o Goal: estimate from a dataset of Nindependent, identically distributed
(77d) training cases D = {x,, ..., xy}.
a In general, each training case x,= (x,, ;, . . ., X, ) IS @ vector of M values,

one per node,
o the model can be completely observable, i.e., every element in x, is known (no
missing values, no hidden variables),
a or, partially observable, i.e., 3i, s.t. x,,; is not observed.

a In this lecture we consider learning parameters for a BN with given
structure and is completely observable

¢ (9) D) - log p(D | 6) - logH(H p('xn,i ‘ Xn,ﬁ,— ? Hz)] - Z(Z log p('xn,i | Xn,ﬁ,- 2 91)]
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Review of density estimation

o Can be viewed as single-node GMs

o Instances of
Exponential Family Dist.

a Building blocks of general GM
o MLE and Bayesian estimate

o See supplementary slides

D =

P(x;) = P({x,, =1, where k index the die -side of the nth roll})

K
=0,=6""x6,"" xﬁx”*K:HHx’“k
P(x,, Xy, Xy | 0) = HP(x|6’)—H(HH j]‘[ekl =16
k k
o n,
——=_-1=0 - n, 1
O Ok :>6’k,MLE:Nk=NZx1/
Me=20,=>>n=N=21>0,=2
k k




Estimation of conditional density

a Can be viewed as two-node graphical models

Q

Q

Q

Instances of GLIM (Generalized Linear Models)
Building blocks of general GM
MLE and Bayesian estimate

See supplementary slides




% Exponential family, a basic building block

a For a numeric random variable X

p(x| 1) = h(x)exply  T(x)— A(n))|

- el T0)

Is an exponential family distribution with natural (canonical) parameter

a Function T{x) is a sufficient statistic.
a Function A(n) = log Z(n) is the log normalizer.
o Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...



% Example: Multivariate Gaussian Distribution

a For a continuous vector random variable XcR*:

1 1 .
/’lbz) - (272_)](/2‘2‘1/2 exp{_z(x_ﬂ)Tz l(x_/’l)
Moment parameter

— ! exp{ 1tr<2 XX )+,LlTZ x—g,UTz M= log‘Z‘}

(2x)"*
a Exponential family representation /“atura' parameter
0= u-1vec= )= [m, vee(, )] =2 pand n;=-1x
T (x) = [x, Vec(xx )]
A =4 1" p+logE| = — L tr(mm] ) - L log(—27,)
h(x) = ()"

p(x

o Note: a Adimensional Gaussian is a (a4 d?)-parameter distribution with a (a4 &?)-
element vector of sufficient statistics (but because of symmetry and positivity,
parameters are constrained and have lower degree of freedom)
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% Example: Multinomial distribution

o For a binary vector random variable x ~multi(x | 7),

p(x|m) =7y ok = exp{z x, Inzx,
k

(k-1 K-l K-l
= expA Zxk Inz, +(1—Zx,<jln[l—27zk
k=1 k=1

k=

1
(K—l ﬂk ( § j\
=expy ) X, In — +Inf1-> x
k=1 ‘ 1_ lejzll 7Z-k k=1 ' )

o Exponential family representation

1=z )0

T(x)=[x]
A(n) = —ln(l 5 ﬂk) = ln(i e’ j

h(x)=1

h'd




% Why exponential family?

o Moment generating property

d4_d |

d’? d’? (ﬂ)—%d— (17)
1 r
o jh(x)exp{ T(x)

h(x)exp n "T(x)|
=T dx

= E[T(x)]

h(x)expn T(x)d T h(x)exp{nTT(x)}d 1 dZ
e AT Zay 4 P
:E[Tz(x)] E’[T(x)]
= Var|T(x)]



% Moment estimation

o We can easily compute moments of any exponential family distribution
by taking the derivatives of the log normalizer A(n).

o The g derivative gives the g centered moment.

dA(n)
dn

d® A(n)
d 772

= mean

= variance

o When the sufficient statistic is a stacked vector, partial derivatives need
to be considered.



% Moment vs canonical parameters

o The moment parameter / can be derived from the natural (canonical)

parameter
dA def .
LD — Elreo]= u .
77 il
o A(n)is convex since
d* A(n) .,
ppe. = Var|T(x)|>0 N a
o Hence we can invert the relationship and infer the canonical parameter from the
moment parameter (1-to-1): o
n=y(u)

o A distribution in the exponential family can be parameterized not only by »n —the canonical
parameterization, but also by x# —the moment parameterization. g
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% MLE for Exponential Family

o For //ddata, the log-likelihood is
¢ (7; D) =log [ T h(x,)expln T (x,)— A(n)|

=Y log h(xn){??TZT(xn)J — NA(n7)
o Take derivatives and set to zero: '

0A(n7)
——ZT( )-N—X o =0

— 877 1
Hyir :NZT(XH)
a This amounts to moment matching.
o We can infer the canonical parameters using 7,,- =v (i)



% Sufficiency

a For p(X6), T(x) is sufficientfor @if there is no information in Xregarding &
beyond that in 7{x).

o We can throw away Xfor the purpose of inference w.r.t. 4.

2 Bayesian view p(0T(x).x) = p(0|T(x))
o Frequentist view . . . (x| T(x),0) = p(x| T(x))

o The Neyman factorization theorem

a RX) IS SUfﬂC/é/?l‘fOl’ 9”: ' ' '

p(X,T(X),Q) =Y (T(X),Q)WZ ()C, T()C))
= p(x|0)=g(T(x),0)h(x,T(x))



% Examples

o Gaussian:
o Multinomial:

o Poisson:

n= lZ’l,u;— 5 Vec(Z1 )J
T'(x)= [x; VGC(XXT )]
A(m) =% "7 u+$logl3]
h(x)=(27) "

=72 )0

T(x)=[x] ) K
) nge)

A(n) = —ln[l —
n=IlogAl

h(x)=1
T(x)=x

A =A=e'

h(x) = %

>

bl
||

1 1
—= Mk :NZE('X”) :ﬁzxn

1
= Hye :Nzxn

1
= Mg :Nzxn

©FE
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; Generalized Linear Models (GLIMs)

o The graphical model @

o Linear regression
o Discriminative linear classification

o Commonality:
model E,(V)=p=(" X) G
o What is p()? the cond. dist. of V. N
o  What is A)? the response function.

a GLIM

o The observed input xis assumed to enter into the model via a linear combination of its
elements

o The conditional mean u is represented as a function A &) of & where fis known as the response
function & = 0" x

o The observed output yis assumed to be characterized by an exponential family distribution
with conditional mean .




% Recall Linear Regression

o Let us assume that the target variable and the inputs are related by the
equation: y

. nT
where £is an error term of unmodeled effects or random noise

a Now assume that ¢ follows a Gaussian N(O,0), then we have ——

1 (y,—0"x,)*
. H — _ l l
p(yl |x19 ) \/EGCXPE 202
o We can use LMS algorithm, which is a gradient ascent/descent
approach, to estimate the parameter



Recall: Logistic Regression (sigmoid classifier,
perceptron, etc.)

o The condition distribution: a Bernoulli

| - p(y]x) = p(x) (1= p(x)
where i is a logistic function
1

H(x) = ;

1+
o We can used the brute-force gradient method as in LR

o But we can also apply generic laws by observing the p(y|x) is an
exponential family function, more specitically, a generalized linear
model!



% More examples: parameterizing graphical models

o Markov random fields | |
p(x) = 7 exp{— Z¢c (XC)} = 7 exp{— H(X)}

p(X)= %exp{ Z@XZ.XJ + Z@OXI}
i,jeN; i



% Restricted Boltzmann Machines

)")‘\"\

p(x, k| 6) =expl Y 04(x) > 0.8,(h)+ > .04 (x.h,)- A®) | "

hidden units

visible units




% Conditional Random Fields

G e Discriminative
|
%) (%) ... (x) pa(yIX)=Z(H,X)GXP{ZC:@JZ(XJJ}

« X.'s are assumed as features that are inter-

%)
dependent
) ) & .. &
it

*When labeling X; future observations are
taken into account



% GLIM, cont.

O—_  f W EXP
e
p(y 1) =h(y)expy’ (x)y—A()

= p(y|7,8) = h(y, ) expls (7 (x)y — 4());

o The choice of exp family is constrained by the nature of the data Y

o Example: vy is a continuous vector - multivariate Gaussian
y is a class label = Bernoulli or multinomial

o The choice of the response function

o Following some mild constrains, e.g., [0,1]. Positivity ...
o Canonical response function:
a Inthis case #"x directly corresponds to canonical parameter . =y ()



/
f Example canonical response functions

Model Canonical response function
(GGaussian [ =1

Bernoulli p=1/(14+e71)
multinomial i = mn;/ ZJ. ¢l
Poisson = ¢

gamina = —7/_l

© Eric Xing @ CMU, 2005-2015 24 g
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; MLE for GLIMs with natural response

o Log-likelihood
e—Zlogh<yn>+Z( x,v, —A(m,))

a Derivative of Log—llkehhood

de
d_sof ,_di,) dn,
- dn  do

. This is a fixed point function
=X (y-n) because u is a function of 4

a Online learning for canonical GLIMs
o Stochastic gradient ascent:

0" =0+ ply, - ' )x,
where ' = (Qt )Txn and p 1isa step size



Batch learning for canonical GLIMs

o Ihe Hessian matrix

X =
d°t d du
H _ _- j— n
40407 do7 Z R, Zx 40"
_ _Z du, dn, )
"dn, do’ y

=-) x, %x,f sincer, = 60" x,

n n

=-X'"WX

where X:[anj is the design matrix and
W = dlag(dﬂ1 ... ,d’u—Nj

dm, dny
which can be computed by calculating the 2n9 derivative of A(n,)

© Eric Xing @ CMU, 2005-2015
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Iteratively Reweighted Least Squares (IRLS)

Q

Q

Q

Recall Newton-Raphson methods with cost function J
et—l—l — 91 _H_IVQJ

We now have V,J=X"(y—u)
H=-X"WX
Now: 6 =0'+H'V ¢
=(xTw x| xTw x0 + X7 (y— i)
(W) X 0 =(x"x) X"
where the adjusted response is z' = X6 +(W’)_1(y—y’)
This can be understood as solving the following " lteratively reweighted

least squares " problem
0" =arg mgin(z—X&’)TW(z—Xé’)

—_—

Y



/
{/ Example 1: logistic regression (sigmoid classifier)

o The condition distribution: a Bernoulli
p(y|x)=pu(x)" A= pu(x)"

where i is a logistic function 1
lLl(x) — 1+e_77(x)
a p(Yx) is an exponential family function, with
o mean: Ely|x]=pu= T
o and canonical response function n=£=0"x
e _
o IRLS dn_'u(l 1)

(1= 1)
W - .

IL[ (1 —_ lL[ )} © Eric Xing @ CMU, 2005-2015 29
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7 f>§ Loy Yo,
4 Example 2: linear regression

o The condition distribthion: a Glaussian
Py, 0,2) =——— GXP{——(y—ﬂ(X))TE‘l(y—ﬂ(x))}
(27)" Y 2

Rescale — h(x)expi-12(" (1) —4(m))}
where i is a linear function
p(x)=0"x=n(x)
a p(Yx) is an exponential family function, with

o mean: Ely|x|=u=0"x
o and canonical response function m=E=0"x
. |R|_S d_,u :1 9t+1 Z(XTWz)l()—lXTWzZt o
dn = =x)'x"(xe +(y-u) = O=(X"X)'X"Y

w=1I =0+ (X" X)X (- ) g

Steepest descent Normal equatiopfxmsecm. mosans



Simple GMs are the building blocks of complex GMs

o Density estimation
o Parametric and nonparametric methods

o Regression
o Linear, conditional mixture, nonparametric

a Classification
o Generative and discriminative approach

a Clustering

W,c
O i
X X
X Y
@ O




% MLE for general BNs

a If we assume the parameters for each CPD are globally independent,
and all nodes are fully observed, then the log-likelihood function
decomposes into a sum of local terms, one per node:

(@) =tog p(010)= 08 1{ [Tt 13,000 | X[ Tt 3.0

;
X2
0 1

X1 0
X4q

0 1 |
X 0 -YSI N \
(x) ° ]
” 0
@ i s 1z
. & Xe-0bo 1
- (P
Al
|
e X3 /
X1 0 1
0 |

0
0 X5
X3 1

|




; Decomposable likelihood of a BN

a Consider the distribution defined by the directed acyclic GM:
p(x|0)=p(x; |60)p(x, | x,6,)p(x; | x,0,) p(x, | x,,%5,6,)

o This is exactly like learning four separate small BNs, each of which
consists of a node and its parents.

% ® g
% %
(%) (6) = @ @

(X £



% MLE for BNs with tabular CPDs

a Assume each CPD is represented as a table (multinomial) where
def

l]k p(X .] ‘ X — k) X1
o Note that in case of multiple parents, y will have a composite
state, and the CPD will be a high-dimerisional table X2
o The sufficient statistics are counts of family configurations

Z |
0
" nz n7z Xe

o The log-likelihood is Xo |

¢ (0;0)=log [ [ 0 = Z #1080,
i,J.k
o Using a Lagrange multiplier
to enforce , we get:
Zj efjk -1 QML i’

ijk n.
ij'k
© Eric Xing @ CMU, 2005-2020 35 g
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Summary: Learning GM

o For fully observed BN, the log-likelihood function decomposes into a sum
of local terms, one per node; thus learning is also factored

o Learning single-node GM — density estimation: exponential family dist.
o Typical discrete distribution
o Typical continuous distribution
o Conjugate priors
o Learning two-node BN: GLIM
o Conditional Density Est.
o Classification
o Learning BN with more nodes
o Local operations



ML Parameter Est. for
partially observed GMs:
EM algorithm



/
f Partially observed GMs

o Speech recognition

LCoocepr: a xiogle word

| -~

::::::

S e
—

i

Fig. 1.2 Isolated Word Problem




/
(/ Partially observed GM

o Biological Evolution

ancestor

T years




/
(/ Mixture Models




Mixture Models, con'd

a A density model p(x) may be multi-modal.

o We may be able to model it as a mixture of uni-modal distributions (e.g.,
Gaussians).

o Each mode may correspond to a different sub-population (e.g., male and
female).

we T o DU
°® :s ..o //\




; Unobserved Variables

a A variable can be unobserved (latent) because:
o it is an imaginary quantity meant to provide some simplified and abstractive
view of the data generation process
o e.qg., speech recognition models, mixture models ...
o it is a real-world object and/or phenomena, but difficult or impossible to
measure
o e.9., the temperature of a star, causes of a disease, evolutionary ancestors ...

o it is a real-world object and/or phenomena, but sometimes wasn’t measured,
because of faulty sensors, etc.
a Discrete latent variables can be used to partition/cluster data into sub-
groups.

a Continuous latent variables (factors) can be used for dimensionality
reduction (factor analysis, etc).



/
f Gaussian Mixture Models (GMMs)

a Consider a mixture of K Gaussian components:

ILl,Z) - Zkﬂ'kN(X,‘ lle?Zk)
e S —

mixture proportion  mixture component

p(x,

o This model can be used for unsupervised clustering.

o This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc. g



Gaussian Mixture Models (GMMs)

o Zis a latent class indicator vector:

o Consider a mixture of A Gaussian components: C?
p(z,)=multi(z, : 7) :H(ﬁk )’ @

o Xis a conditional Gaussian variable with a class-specific mean/covariance

1 B
p(xn |Zil; :19 /LlaZ) - (27[)’”/2‘2 ‘1/2 eXp{_%(‘xn _lle)Tzkl(xn _/le)}
k
o The likelihood of a sample:

mixture component
mixture proportion

1w,2) = p(z* =1|m)p(x,|z" =1, u,%) —
- Zzn Hk ((ﬂ-k )Zg N(x,: /ukﬂzk)zg ): Zk T N(x,| 1y ,2,)

p(x,

© Eric Xing @ CMU, 2005-2020
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% Why is Learning Harder?

o In fully observed iid settings, the log likelihood decomposes into a sum of

local terms (at least for directed models).
(0, D) =log p(x,z]0) =log p(z|,) +log p(x| z,0,)

o With latent variables, all the parameters become coupled together via
marginalization

¢.(6;D)=log ) p(x,z|0)=log ) p(z]6.)p(x|z6,)
Z 4 z Z




% Toward the EM algorithm

Q

Q

Q

Recall MLE for completely observed data

Data log-likelihood

¢ @:0)=log] [ p(z,x,) = loe [T (2, | 2)p(, |2, 10.0)

—ZIOgHﬂk +Zlogr N(xn;,uk,a)zﬁ
_ZZzn logm, — ZZZn > L(x,-u,) +C

Ty = argmax ¢ (0; D),

MLE .
Hi e =argmax , ¢ (0; D)
Oy up =argmax ¢ (0;D)
What if we do not know z,?

= Mg =

L




% Question

o ... We solve problem X using Expectation-Maximization ...”
o What does it mean?

o E
o What do we take expectation with?
o What do we take expectation over?

o M

o What do we maximize?
o What do we maximize with respect to?



/ Recall: K-means

s L
* ey
R N
a
¢ >
(t) _ O\ 5 -1(7) (t)
z, =argmax(x, —f4) 2,7 (X, — 44 )
(t)
e S,
koo T (1)
Zna(zn 9k)

.:: X ;':.}E X ’f::. ‘..o;.:'. ‘;o;:o "..0’;.5
e e t. R D . See
) R¥; X s X o & oA
S o + b + 5 LI + &

@) ) © @ @) M e w g



% Expectation-Maximization

o Start:
o 'Guess' the centroid i, and coveriance X, of each of the K clusters

o Loop




% E-step

a We maximize</c(9)> iteratively using the following iterative procedure:

— EXxpectation step: computing the expected value of the sufficient statistics of the
hidden variables (i.e., 2) given current est. of the parameters (i.e., zand u).

AN () 4 20)
NG, | 2)

0, =(z1) ., = Pz =1]x, 4", 2") =

o Here we are essentially doing inference

© Eric Xing @ CMU, 2005-2020 50 Lg



% M-step

a We maximize </ (O)Dteratively using the following iterative procudure:

— Maximization step: compute the parameters under current results of the expected
value of the hidden variables

7, :argmax<lc(0)>, = <l (0)> 0,Vk, s.t.z =1

k
. n zZ, / ZT(Z) nk

k(1) 3
,uZ:argmax<l(9)>, = "= an

Z z'k(’) Fact:
non dlog/A™|
k(1) t+1) (t+1)\T oAl
* Tn (xn - /’l )(xn - /’l )
¥, =argmax(/(0)), = X{"V= 2, ZkT o ' xX'Ax_

0A
o Thisis isomorphic to MLE except that the variables that are hidden are replaced by

their expectations (|n general they will by replaced by their corresponding
"sufficient statistics") %



% Compare: K-means and EM

The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.

o EM
o E-step

a K-means

o Inthe K-means “E-step” we do hard
assignment:

k k
Z-n (1) = <Zn >q(t)

=p(z =1|x,u",2") =

() —

n

-1
z,” =argmax(x, - 4) I (x, - ")

EIEI)N(XIH‘ lulgt)’zg{t))
27N G| 12
o Inthe K-means “M-step” we update the

o M-step means as the weighted sum of the data,
but now the weights are 0 or 1:

(1)
/,l(t+1) _ Zn 5(2” ’k)x" (t+1) Zn TI]:([)xn
ke () _n n TN
D 8z k) Hi Zn K0

n

© Eric Xing @ CMU, 2005-2020



% The EM Objective for Gaussian mixture model

a A mixture of K Gaussians: C%D
o Zis alatent class indicator vector .
p(z,)=multi(z, :7) =] [ (7, )" XD
k M
o Xis a conditional Gaussian variable with class-specific mean/covariance

1 .
p(Xn |znk - 19 luaz) - (27[)”7/2|2k|1/2 exp{-%(Xn _luk)rzkl(xn _luk)}

o The likelihood of a sample:
px, ) =Y, p(z* =1|m)p(x.| 2" =1, 1.5)

= Zz” Hk ((”k )Z"k N(x,: ﬂkazk)z”k @N(X’ @

o The expected complete log likelihood
(¢.(8;x,2)) = > (log p(z, | 7)), + D (log p(x, | 2,, 1,%))

p(z|x)

=X Y (2 logm — X 3 (24 x, — )7 3, — 1)+ loglE, [+
nok n k .

© Eric Xing @ CMU, 2005-2020 53 Lg



% Theory underlying EM

o What are we doing?

o Recall that according to MLE, we intend to learn the model parameter
that would have maximize the likelihood of the data.

o But we do not observe z, so computing

o ¢.(0;D)=log» p(x,z]0)=log > p(z]0.)p(x|z06,)
IS difficult! z z

o What shall we do?



% Complete & Incomplete Log Likelihoods

o Complete log likelihood:
Let X'denote the observable variable(s), and Z denote the latent variable(s).
If Zcould be observed, then it
(.(0;x,z)=log p(x,z|0)

o Usually, optimizing /() given both zand xis straightforward (c.f. MLE for fully observed models).

o Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, the parameter for
each factor can be estimated separately.

o But given that Z is not observed, /() is a random quantity, cannot be maximized directly.

o Incomplete log likelihooa
With Zzunobserved, our objective becomes the log of a marginal probability:

¢.(0;x)=log p(x|0)=log> p(x,z|6)

o This objective won't decouple

© Eric Xing @ CMU, 2005-2020 55



% Expected Complete Log Likelihood

a For any distribution ¢(z2), define expected complete log likelihood.

def

(t.(0:x,2)) =Y q(z | x.0)log p(x. 2| 0)

a A deterministic function of 4
o Linear in I() --- inherit its factorizabiility
o Does maximizing this surrogate yield a maximizer of the likelihood?

o Jensen’s inequality

¢ (0;x)=log p(x|0)
=log) p(x.z|0)

=log ¥ g(z| ) P01 /

= ((6;x)> <€C(¢9;X,2)>q +H,




% Lower Bounds and Free Energy

o For fixed data x, define a functional called the free energy:
def p(X’z | @)

F(g,0)=> qg(z|x)lo <¢ (6;x)
7.0)= 2.9 1X)l0e 0
a The EM algorithm is coordinate-ascent on F:
o E-step: 7”1=argmng(%9")
o M-step: (9”1:argm§1XF(q”1,¢9f)
e/\

Fl.e) 7

<

Qe



% E-step: maximization of expected /, w.r.t. ¢

a Claim: g :argmgXF(q,ﬁf)zp(ﬂX,&’f)

o This is the posterior distribution over the latent variables given the data and
the parameters. Often we need this at test time anyway (e.g. to perform
classification).

o Proof (easy): this setting attains the bound I(8x)>F g, )

N t p(x,z|60")
0"),0") = 0")1
F(p(z|x,0"),0") gp(z\x, )log PErTE

=Y g(z|x)log p(x|6")
=logp(x|0")=¢(0"; %)

o Can also show this result using variational calculus or the fact that
¢ (0;x)-F(g,0)=KL(g| p(z | x,0))
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% E-step = plug in posterior expectation of latent variables

a Without loss of generality: assume that p(x, 26) is a generalized
exponential family distribution:

1
p(x,z|0) = Z0) h(x,z) eXp{Z 0. (X, z)}

o Special cases: if p(X|2) are GLIMs, then ~ 7(X:2) =11/ (2)5,(x)

o The expected complete log likelihood under g =p(z|x,0%
<zc(9";x,z)>qm =>'g(z|x,0")log p(x,2|0") - A(6)

= Z 0; <7€(X9 z)>q(zx,0") —A©)

p~GLIM

= D002, 0, & (X) - AWB)

/



% M-step: maximization of expected /. w.r.t.

o Note that the free energy breaks into two terms:

F ,(9 — 1 p(X,Z|€)
(¢.0) §q<z|x> 8 0

= g(z | X)log p(x,2|0)- > g(z| x)logg(z| X)
=(t.(0;x,2)) +H,

o The first term is the expected complete log likelihood (energy) and the second term,
which does not depend on 6, is the entropy.

a Thus, in the M-step, maximizing with respect to @for fixed g we only need to
consider the first term:
0™ = arg mglx<éc (Q;X,Z)>qm = arg mngq(Z | x)log p(x,z|0)

o Under optimal ¢/, this is equivalent to solving & standard MLE of fully observed
model p(x,z| §), with the sufficient statistics involving zreplaced by their expectations
w.r.t. p(z] x,0).
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% Summary: EM Algorithm

o A way of maximizing likelihood function for latent variable models. Finds
MLE of parameters when the original (hard) problem can be broken up
Into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current parameters.
2. Using this “complete” data, find the maximum likelihood parameter estimates.

o Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

o E-step: qm :argm?xF(qﬁ’)
0 I\/I—Step: 67‘+1 _ argmgax F(qﬂl’g?‘)

o Inthe M-step we optimize a lower bound on the likelihood. In the E-step
we close the gap, making bound=likelihood.



Supplementary materials




/
{/ I: Review of density estimation

GM:
o Can be viewed as single-node graphical models

@ ® - @
o Instances of exponential family dist. !
a Building blocks of general GM ®N

o MLE and Bayesian estimate



% Discrete Distributions

a Bernoulli distribution: Ber(p)

P(X):{l—p forx =0

P forx =1 = /D(X):px(l_p)l—x

o Multinomial distribution: Mult(1, 6)

o Multinomial (indicator) variable:

where

XXX X X X

p(x(f)=Pl{X; =1,where j index the dice - face})
=0,=0,"x0," x0,% x0," =[]0, =6
k

© Eric Xing @ CMU, 2005-2016
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Discrete Distributions

“Arts” “Budgets” “Children” “Education”
. . . . . NEW MILLION CHILDREN SCHOOL
. FILM TAX WOMEN STUDENTS
a Multinomial distribution: Mult(s 5B B LB
L] j MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT

FIRST STATE FAMILY MANIGAT

o Count variable: om maY  wmmwe s

THEATER, PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center,

Metropolitan Opera Co., New York Philharmonic and Juilliard School. “Omr board

felt that we had a real opportunity to make a mark on the future of the performing

__ —_ arts with these grants am act every bit as impartant as our traditional areas of support
in health, wmedical research, edncation amd the social services” Hearst Foundation
n President Randolph A.Hearst said Monday inannomcing the grants. Lincoln Center’s
1 share will be $200,000 for its new building, which will honse young artists and provide
new public facilities. The Metropolitan Opera Co. and New York Philharmonic will

. receive $400,000 each. The Juilliard School, where music and the performing arts are
n — o Where n J— N tanght, will get $250,000. The Hearst Foundation, a leading supporter of the Lincaln
. 9 ] Center Comsolidated Corporate Find, will make its usnal annnal $100,000 donation,

too.

N' m 1y ng N'
p(n) = 0 0" Ot =

n!n,!---n,! n!n,!--n,!

911
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% Example: multinomial model

GM:
o Data:
2 We observed N jid die rolls (Ksided): D=15, 1,K, ..., 3)]| @@ ® - @
o Representation: Ko |
Xn,2 £
Unit basis vectors: x,=| " |, wherex,, ={0lj, and ;xn,k =1 @
Xn,k N
a Model: X,, =1 wp. 6,, and Z@k =1

kell,.. K}

o How to write the likelihood of a single observation x,?
P(x;) = P({x,, =1, where k index the die -side of the nth roll})

K
=0, =0, x0," x---x0, " = H@kx””k
k=1
o The likelihood of datasetD={x;, ..., xx}:

N N xn,
P(x, %y %y |0) = [ P(x, | 0) =H[H9k’“"=k] =117 =]]o"
n=1 n=l1 k k k



MLE: constrained optimization with Lagrange multipliers

a Objective function:
¢ (0;0)=1ogP(D|0) _1ogH9;;k :an 1og9

o We need to maximize this subject to the constrain Zﬁk =1
k=1

a Constrained cost function with a Lagr nge m ltiplier
¢ =) nlogh, +/1€1—Z¢9kj
k k=1

o Take demvahvgs wrt 6,
k

—=_"-1=0 ~ n ~ 1
=) k _
00 Ok ‘9/<,MLE - N or gk,MLE = Nzxn,k
Me=20,=>>m=N=21>6,=1 n
k k

o Sufficient statistics

Frequency as
sample mean

a The counts, 7i=(n,---,n,),n, = Z x,,.are sufficient statistics of data O



% Bayesian estimation:

o Dirichlet distribution: A GM: O
F(Zak)
PO) =[]0 =C)[] 6" @ f i - ®
k k l

Hr(ak)
a Posterior distribution of & _ f
PO\ x,....xy) = Py, Xy | 0) p(0) 6," (glftk—l _ (9kak+nk—1 @
CIETE S ) ocH H H

o Notice the isomorphism of the posterior to the prior,
o such a prior is called a conjugate prior

Dirichlet parameters
can be understood

o Posterior mean estimation: as pseudo-counts
n, +0(k
N+\a\

0, = [0,p(0| D)dO=C[0, [0 "do =
k



% More on Dirichlet Prior:

a Where is the normalize constant fa) come from?

[T
1 :j...jglarl 0740, O, = [, ()
Cla) Y, «)
o Integration by parts .
. . . a-1 _—t
o I'(a) is the gamma function: F(Ot)—jot e 'dt
o Forinregers, IF(n+1)=n!

o Marginal likelihood:

C(a)
C(ii+a)

o Posterior in closed-form:

PO {x,..x},a) = LELOPOIE) _ o ra)[om ™" =Dir(i+a)
p(i|@) i

o Posterior predictive rate:

DXy =i 15 },@) = [ C+ D[ [0 x 0 dg = V2 nra
k

C(ﬁ + & -+ XN) a ’ ]7[ ‘@-#ric|x@@|cmu,zoos 2016 69



Sequential Bayesian updating

Q

Q

Q

Start with Dirichlet prior P(0]a)=Dir(0:a)

Observe N' samples with sufficient statistics #'. Posterior becomes:

P@|a,n)=Dir(@:a+n")

Observe another N" samples with sufficient statistics #". Posterior
becomes:

P@|a,n',n")=Dir(@:a+A'+A")
So sequentially absorbing data in any order is equivalent to batch
update.



Hierarchical Bayesian Models

0 are the parameters for the likelihood p(x| 6)

a
o« are the parameters for the prior p(6| «) .
o We can have hyper-hyper-parameters, etc.
o We stop when the choice of hyper-parameters makes no difference to
the marginal likelihood; typically make hyper-parameters constants.
o Where do we get the prior? G
o Intelligent guesses
o Empirical Bayes (Type-Il maximum likelihood)
- computing point estimates of « : a

Oy = argmax = p(f | @)
o




Limitation of Dirichlet Prior:

Alpha =[2.00 2.00 2.00]

Alpha =[2.00 10.00 2.00]

Alpha =[10.00 10.00 10.00]

Alpha =[0.90 0.0 0.90]

.ol

© Eric Xing @ CMU, 2005-2016
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/
{/ The Logistic Normal Prior

HNLNK(IU,Z)

\Q)@
&

4

o Pro: co-variance structure

- Log Partition Function
- Normalization Constant

o Con: non-conjugate (we will discuss how to solve this later)

© Eric Xing @ CMU, 2005-2016
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4 Logistic Normal Densities

0.25

0.15

0.2

0.15

0.1

0.05

0.14
0.12
0.1

0.08
0.06
0.04

0.2

0.15

0.1

0.05 15

0.15

0.1

0.05

0.08

0.06

0.04

0.02
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4 Continuous Distributions

o Uniform Probability Density Function
p(x)=1/(b-a) fora<x<b

=0 elsewhere

o Normal (Gaussian) Probability Density Function

1 —(x-p)%/25°
X)=——E€
o The distribution is symmetric, and is often illustrated as a bell-shaped curve.
o ITwo parameters, u (mean) and o (standard deviation), determine the location and shape of the distribution.
o The highest point on the normal curve is at the mean, which is also the median and mode.
o The mean can be any numerical value: negative, zero, or positive. X2
o Multivariate Gaussian 1

2n 2

@, o
| @
p(X;4,5) = | 2;;)’1/2\2\“2 exp{—l(X -a) X —/7)} ‘4

Xy 2005-2016
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% MLE for a multivariate-Gaussian

a It can be shown that the MLE for i and > is U
1 el
Hyg = NZ” (xn) X,
1 1 ,
Zane =3 2006~ N6~ 1) =S o
where the scatter matrix Is r

S =3, = Yo, — s = (5,550, )- Mol

o The sufficient statistics are £ x, and Z x,x,”.

o Note that X’X=% x x,” may not be full rank (eg. if N <D), in which case 2,/ is
not invertible



Bayesian parameter estimation for a Gaussian

o There are various reasons to pursue a Bayesian approach
o We would like to update our estimates sequentially over time.

o We may have prior knowledge about the expected magnitude of the
parameters.

o The MLE for 2 may not be full rank if we don’t have enough data.

o We will restrict our attention to conjugate priors.

o We will consider various cases, in order of increasing complexity:
o Known g, unknown t/
o Known p, unknown o
o Unknown pand o



; Bayesian estimation: unknown p, known o

o Normal Prior:
P(u) = (27772 )_1/2 exp{— (14—t /272}

o Joint probability:
1 N

S R

expl-(u—1o)? 1272

1/2

X (2722'2 )_

o Posterior:

2 2
where 7 N/o _ 1/7 o and&zz(

= X +
N/o®+1/7° v\ga?‘ +1/7
Sample mean




% Bayesian estimation: unknown p, known o

N/o®  _ 1/0¢ 2 [N 1 jl
Hy =

N/02+1/0§x N/oc*? +1/02,u0, 7o

o The posterior mean is a convex combination of the prior and the MLE, with
weights proportional to the relative noise levels.

o The precision of the posterior 1/, is the precision of the prior 1/, plus one
contribution of data precision 1/ for each observed data point.

5

o Sequentially updating the mean

a u*= 0.8 (unknown), (&)#= 0.1 (known)
o Effect of smgle gata pegnt

H = Ho

2
(o
=x—(x—

Ho)—5— % 2"‘05

2 Uninformativevaguef flat) prior, 0% — l




% Other scenarios

o Known g, unknown A = 1/0,

a The conjugate prior for Ais a (Gamma with shane g, and rate (inverse scale)

|
t%) p(AkLb)::fiajb”A”_loxpC—bA)

Pan

o The conjugate prior f ]G(Ogylaﬂbl) = L pe(o?) =@+ D) (b /(02))

['(a)
o Unknown g and unknown o
o The conjugate prior is P(u,0?) = P(u|o?)P(o?)
Normal-Inverse-Gamma = N(u|m.o%V) IG(c2|a,b)
o Semi conjugate prior
o Multivariate case:
o The conjugate prior is P(u.Y) = P(u|2)P(X)

Normal-Inverse-Wishart — Nptlo,—%) TWEIAT L, ) g
R
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/
ﬁ lI: Two node fully observed BNs

a Conditional mixtures

o Linear/Logistic Regression
U

a Classification
o Generative and discriminative approaches




Classification:

o Goal: Wishtolearnf: X > Y

o Generative:

o Modeling the joint distribution
of all data

a Discriminative:
o Modeling only points
at the boundary

/ - = \
U ’ s \
1 4 - ~ \

! 4 \
! 1
1 I
\ \ \\ / ! !
\ 4
N O 7
~fe - 7’
’
~ -

RN



% Conditional Gaussian

o Ihe data: GM:

(00 905 (325 72)5 (X35 135+ (s V)

o Both nodes are observed:
o Yis a class indicator vector

p(y,)=multi(y, :7)=[ [z
k

o Xis a conditional Gaussian variable with a class-specific m
p('xn |yn,k - 19/170) - (272_02)1/2 eXp ?(Xn -luk)z

p(x|y,u,0)= H(H N(x, : ﬂkja)yn,kj

G

-



% MLE of conditional Gaussian

o Data log-likelihood

a MLE

¢ (8;D)=log| | p(x,.y,) =log] | (v, | 2)p(x, | ¥, 11,0)

Zyn,k
T iy = argmaxé (0;D), Ty =" 4 - n%\f

Hi e = argmaxe (0; D),

Zyn,kxn Zyn,kxn
n _ . n

M e = =
Z Yk ny
n

GM:

=
®N|

the fraction of
samples of class m

the average of
samples of class m

© Eric Xing @ CMU, 2005-2016
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Bsyesian estimation of conditional Gaussian

: GM:
a Prior: - S
P(z|a)=Dir(7:Q) )
P(uy |v)=Normal(z, :v,7)
| [ O
XD
. M
a Posterior mean (Bayesian est.)
N \Ot\ o, n, +ta
e — + =
Frss =N ol "M TN ol o] - N1
- n o U, v + /7 v, and o} :(ﬁ+ijl
Hicayes nk/02+1/2'2'uk’ML n /ot +1/7% paves 2 o



% Classification

o Gaussian Discriminative Analysis: Ci’D
o The joint probability of a datum and it label is:
P, Y =Hu,0)=p(y,, =Dxp(x, |y, =1 u,0) N
1

— 2
=7 Wexpizﬁ(% - M) }

a Given a datum x,, we predict its label using the conditional probability of the
label given the datum:

1
7Ty Wexp{-%iz(xn 'ﬂk)z}

p(yn,k:1|xn?ﬂ90): 1

pRA
kY

(2z0?)"? eXp{ 207 (% 'ﬂk')z}

o Thisis basic inference
o Introduce evidence, and then normalize



% Transductive classification

GM:
o Given X, what is its corresponding Y,

when we know the answer for ()

a set of training data”
> @) [T
o Frequentist prediction: XD N
o we fit 7z, # and o from data first, and then .|.

M

p(yn,k:17xn|ll’l9097z-): ﬂkN(xn9|lle96)
p(xn\,u,a,ﬂ) Zﬂk'N(xna|ﬂk'aa)
'

p(yn,k :1|xn9ﬂ9097z-):
o Bayesian:
o we compute the posterior dist. of the parameters first ...



/" Linear Regression

o [The data:

T
(00 905 (325 72)5 (X35 135+ (s V) é

o Both nodes are observed:
o XIS an input vector
o YIS aresponse vector

(we first consider y as a generic y
continuous response vector, then

we consider the special case of
classification where y is a discrete

indicator)

o A regression scheme can be
used to model p(y|x) directly,
rather than p(x,y)

-
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% A discriminative probabilistic model

o Let us assume that the target variable and the inputs are related by the
equation:
y.=0"x, +¢

where €is an error term of unmodeled effects or random noise

a Now assume that ¢ follows a Gaussian N(O,0), then we have:

1 .—QT . 2
Py | x;;0)= oo eXPE— L, ZGZXI) ]

o By independence assumption:

- ' " (y.—07x.)
L(9)=1_1[P(yi|x,-;«9)=( : jexp[ZM(yl x»]

J2ro 20°



% Linear regression

o Hence the log-likelihood is:

a Do you recognize the last term?
Yes itis: J(0) = %i(xf@—yi)z
i=1

o Itis same as the MSE!



% A recap:

o LMS update rule
0" =0 +a(y,—x, 6)x,

o Pros: on-line, low per-step cost
o Cons: coordinate, maybe slow-converging

o Steepest descent "
P 0" =0"+a) (y,-x, 0')x,
i=1
o Pros: fast-converging, easy to implement
o Cons: a batch,
' " —1 _
a Normal equations 0" — (XTX) X753

o Pros: a single-shot algorithm! Easiest to implement.

o Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues (e.q.,
matrix is singular ..)



% Bayesian linear regression




% lll: How to define parameter prior for general BN?

M
Factorization: p(X=x)=]]p(x |x,)
Local Distributions
defined by, e.g., multinomial parameters:

i
pOxf X)) =06,

ASSUMPLIONS (Geiger & Heckerman 97,99):
Complete Model Equivalence
Global Parameter Independence
Local Parameter Independence
Likelihood and Prior Modularity

vV V VYV V

© Eric Xing @ CMU, 2005-2020 g
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Global & Local Parameter Independence

m Global Parameter Independence
For every DAG model:

P, 16)=]]pr© 16

For every node:

|

|

qi :

pO|G) = Hp(ex{‘\x{[_ | G) :
J=1 l I

P(gCalHAlarm:YES )

|
|
|
independent of :
:
|

P(QCalHAlarm:NO)

—— TG @



% Parameter Independence, Graphical View

Global Parameter
Independence

Local Parameter
Independence

sample 1

|
—\:®/ sample 2

Provided all variables are observed in all cases, we can perform
Bayesian update each parameter independently !!!



% Which PDFs Satisfy Our Assumptions? (ceiger & Heckerman 97.99)

o Discrete DAG Models: X; | 75, ~ Multi(8)

F(Zak) : |
Dirichlet prior: P(e):mﬂaf =] 4
o Gaussian DAG Models: x,| 7} ~Normal(u,X)
Normal prior: D]y W) = (2;;)”/21| 7 exp{_%(ﬂ_v)'\yl(ﬂ_v)}

Normal-Wishart prior:

plulv,a,,W)= Normal(v, (oc#W)_1 ),
1

p(W |a,,T)=c(n,a, [T “|w[@ """ exp{E tr{TW}},

where W =371,



Parameter sharing

o Consider a time-invariant (stationary) 1jt;order Markov model
a Initial state probability vector: 7, = p(X{ =1)
. - . def ) .
o State transition probability matrix: A, = p(x! =1] X1, =1)
o The joint:

p(Xir 10)= p(x |7T)HHP(Xz | X 1)

t=2 =2 T
. ¢ (Q,D) = Zlogp(xn,l ‘ 7z)+2210gp(xn’[ | xn,t—laA)
o Again, we optimize each parameter geparately =

o xis a multinomial frequency vector, and we've seen it before
o What about A7

o The log-likelihood:

© Eric Xing @ CMU, 2005-2020
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% Learning a Markov chain transition matrix

o A is a stochastic matrix: 24 =1
a Each row of A is multinomial distribution.
o S0 MLE of 4 is the fraction of transitions from /7to j

T i )
o _HE> ) Y 3k axl,
lj #(l ~ .) Zn ZZT:Z x}i,t—l
o Application:

o if the states X;represent words, this is called a bigram language mode/

a Sparse data problem:
a If /= jdid not occur in data, we will have A;; =0, then any future sequence with word
pair /> J will have zero probability.
o A standard hack: backorf smoothing or deleted interpolation

A=A+ (1= 2D)AY,

7—e




% Bayesian language model

o Global and local parameter independence

o The posterior of 4; 5. and 4, . is factorized despite v-structure on X, because X;_;
acts like a multiplexer

o Assign a Dirichlet prior g, to each row of the transition matrix:

aesdef o] . #(l_)])—i_ﬁl
AP = p(jli,D, ) =— :
#Hi— o)+ /Bi

o We could consider more realistic priors, e.g., mixtures of Dirichlets to account for types of words
(adjectives, verbs, etc.)

p

B.lH#({A — o)

i

=0, +(1-21)4", where 4, =

1 9
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/
f IV: More on EM



% Unsupervised ML estimation

o Given x= x;...xy for which the true state path y = y;...ynis unknown,

o EXPECTATION MAXIMIZATION

o. Starting with our best guess of a model M, parameters ¢
1. Estimate A;;, B, in the training data

U )
o How? , . ,
A/J' - ZM <y/;,f—1)/nJ,f> B/k - zn,, <y/;,r >Xnk,f

2. Update #according to A;;, B

o Now a "supervised learning" problem
3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set 8 each iteration



% EM for general BNs

while not converged

% E-step
for each node /

£S5S,=0 % reset expected sufficient statistics
for each data sample #

do inference with X,

for each node /

E‘S‘S; T= <55;(X,7 7sXn n)>

% M-step ’ L p (X | Xn )
for each node /

0;,:= MLE(£SS))



; Conditional mixture model: Mixture of experts

X”

Yy

N

a We will model p( Y| X) using different experts, each responsible for
different regions of the input space.
o Latent variable Zchooses expert using soft Ta>j gating function:
&' X

P(z* =1|x)=Softmax

o Each expert can be a linear regression model: P(y\x,zk =1) =7 (y;ﬁer,a/f)
o The posterior expert responsibilities are

P(z"=1x,y,0)=

p(z* =1x)p,(y|x.0,.0%)

> pz' =1x)p,(y|x.0,.0%)



% EM for conditional mixture model

a Model:
P(}/‘X):ka(zk :1|X»§)P(Y|Zk :15’\/96/96) z,

o The objective function

<€c (O;X, Vs Z)> = Z<10g p(zn | xn’§)>p(z|x ) Z<10gp(y” | x”’ n G)>p(2x,y)

n

_ZZ< >10g<softmax(§k xn))—_zz< >((yn

%) +10g0k +Cj

o EM: o
o E-step: . 2
T:(f):p(z”kzl‘xmyﬂ’e) (Z I‘X )pk(yn‘ ‘9/(9(7/()

d M‘Step z p(z./ _l‘X )p‘/(yn‘ 3 J’

o using the normal equation for standard LR g = (X" X)' X7y , but with the data re-weighted by
(homework)
o |IRLS and/or weighted IRLS algorithm to update {&, 64 o based on data pair (X, y,), with weights rk(”

homework?
( ) © Eric Xing @ CMU, 2005-2020 104 Lg



% Hierarchical mixture of experts

A twe level Dalanced Hierarchical Mixturey of Experty wmeodel ax . . .

o medular Nevwwal Net ... Bayesicwy Net

Gy
¥
Gate Eﬁnl Igzu e G2
Hetwrork Hetwork
S211 Sz
xT Ay Ao Ay L Tx
Expert Expert Expert Expert
Hetaork Metaork Mebarork Hetarork
@ X X xT xT @

o This is like a soft version of a depth-2 classification/regression tree.

o RY|X 6y,65) can be modeled as a GLIM, with parameters dependent on the values of
&, and ég (which specify a "conditional path" to a given leaf in the tree).



; Mixture of overlapping experts

Xll
A

X
—Ix y X
X X X

X X

X X X
X

Z"
X
X
X X
X X < X X

Y,
N X X

-

o By removing the X' = Zarc, we can make the partitions independent of

the input, thus allowing overlap.
o Thisis a mixture of linear regressors; each subpopulation has a different

conditional mean.
p* =D p(ylx.6.57)
>, Pz =1)p;(ylx.0,.07)

P(z" =1x,y,0)=



Partially Hidden Data

Of course, we can learn when there are missing (hidden) variables on
some cases and not on others.

In this case the cost function is:
(.(0:0)=" D logp(x,.y, 10+ Y, logd p(X,.y¥,|0)
Ym

neComplete meMissing

o Note that ¥, do not have to be the same in each case --- the data can have
different missing values in each different sample

Now you can think of this in a new way: in the E-step we estimate the
hidden variables on the incomplete cases only.

The M-step optimizes the log likelihood on the complete data plus the
expected likelihood on the incomplete data using the E-step.



% EM Variants

o Sparse EM:

Do not re-compute exactly the posterior probability on each data point
under all models, because it is almost zero. Instead keep an “active list”
which you update every once in a while.

o Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even given the
completed data. We can still make progress by doing an M-step that
improves the likelihood a bit (e.g. gradient step). Recall the IRLS step in
the mixture of experts model.



; A Report Card for EM

o Some good things about EM:
o no learning rate (step-size) parameter
o automatically enforces parameter constraints
o very fast for low dimensions
o each iteration guaranteed to improve likelihood
o Some bad things about EM:
can get stuck in local minima
can be slower than conjugate gradient (especially near convergence)
requires expensive inference step

Q
Q
Q
a IS a maximum likelihood/MAP method



