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Summary

q Last time
q Conditional independence between two random variables
q Conditional independence graph (CIG): 

q absence of an edge ("#, "%) => "# ⊥ "%|)*+,
q Today

q How can we read-off conditional independences from CIG?
q What is the class of distributions represented by CIG?
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Notation

q Variable, value and index 

q Random variable

q Random vector

q Random matrix

q Parameters
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Undirected graphical models (UGM)

q Pairwise (non-causal) relationships
q Can write down model, and score specific configurations of the graph, 

but no explicit way to generate samples
q Contingency constrains on node configurations
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A Canonical Example: understanding complex scene …
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A Canonical Example

q The grid model

q Naturally arises in image processing, lattice physics, etc.
q Each node may represent a single "pixel", or an atom

q The states of adjacent or nearby nodes are "coupled" due to pattern continuity or electro-magnetic force, etc.
q Most likely joint-configurations usually correspond to a  "low-energy" state  
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Social networks
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Protein interaction networks
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Modeling Go
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Information retrieval 
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Representation

q Defn: an undirected graphical model represents a distribution P(X1 ,…,Xn) 
defined by an undirected graph H, and a set of positive potential functions yc
associated with the cliques of H, s.t.

where Z is known as the partition function:

q Also known as Markov Random Fields, Markov networks …
q The potential function can be understood as an contingency function of its 

arguments assigning "pre-probabilistic" score of their joint configuration.   
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I. Quantitative Specification: Cliques

q For G={V,E}, a complete subgraph (clique) is a subgraph G'={V'ÍV,E'ÍE} such 
that nodes in V' are fully interconnected

q A (maximal) clique is a complete subgraph s.t. any superset V"ÉV' is not 
complete.

q A sub-clique is a not-necessarily-maximal clique.

q Example: 
q max-cliques = {A,B,D}, {B,C,D}, 
q sub-cliques = {A,B}, {C,D}, …à all edges and singletons 

q Why Cliques: a basic unit that “all dependencies” are possible, and not to be 
missed
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Gibbs Distribution and Clique Potential

q Defn: an undirected graphical model represents a distribution P(X1 ,…,Xn) 
defined by an undirected graph H, and a set of positive potential functions yc
associated with cliques of H, s.t.

where Z is known as the partition function:

q Also known as Markov Random Fields, Markov networks …
q The potential function can be understood as an contingency function of its 

arguments assigning "pre-probabilistic" score of their joint configuration.   
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Interpretation of Clique Potentials

q The model implies X^Z|Y. This independence statement implies (by definition) 
that the joint must factorize as:

q We can write this as:                                            , but

q cannot have all potentials be marginals
q cannot have all potentials be conditionals

q The positive clique potentials can only be thought of as general "compatibility", 
"goodness" or "happiness" functions over their variables, but not as probability 
distributions.
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Example UGM – using max cliques 

q For discrete nodes, we can represent P(X1:4) as two 3D tables instead of 
one 4D table
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Example UGM – using subcliques 

q We can represent P(X1:4) as 5 2D tables instead of one 4D table
q Pair MRFs, a popular and simple special case
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Example UGM – canonical representation 

q Most general, subsume P' and P" as special cases
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II: Independence properties:

q Now let us ask what kinds of distributions, in terms of the set of 
independence relationships between variables, can be represented by 
undirected graphs (ignoring the details of the particular 
parameterization).

q Defn: the global Markov properties of a UG H are
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I-maps

q Defn : Let P be a distribution over X. We define I(P) to be the set of 
independence assertions of the form (X ^ Y | Z) that hold in P (no matter 
how we set the parameter-values).

q Defn : Let K be any graph object associated with a set of 
independencies I(K). We say that K is an I-map for a set of 
independencies I, if I(K) Í I.

q We now say that G is an I-map for P if G is an I-map for I(P), where we 
use I(G) as the set of independencies associated.

© Eric Xing @ CMU, 2005-2016 19



Facts about I-map

q For G to be an I-map of P, it is necessary that G does not mislead us 
regarding independencies in P: 

any independence that G asserts must also hold in P. Conversely, P may 
have additional independencies that are not reflected in G

q (Perhaps unintuitive) Example: 
q Two variables: (X, Y)
q P(X, Y) = P(X) P(Y)
q G = full graph
q Is G an I-map of P?
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Global Markov Independencies

q Let H be an undirected graph:

q B separates A and C if every path from a node in A to a node in C passes 
through a node in B:

q A probability distribution satisfies the global Markov property if for any disjoint 
A, B, C, such that B separates A and C, A is independent of C given B:
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Local Markov independencies 

q For each node Xi Î V, there is unique Markov blanket of Xi, denoted 
MBXi, which is the set of neighbors of Xi in the graph (those that share an 
edge with Xi)

q Defn: 
The local Markov independencies associated with H is:

Iℓ(H): {Xi ^ V – {Xi } – MBXi | MBXi : " i),

In other words, Xi is independent of the rest of the nodes in the graph given its immediate 
neighbors
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Soundness and completeness of global Markov property

q Defn: An UG H is an I-map for a distribution P if I(H) Í I(P), i.e., P entails 
I(H).

q Defn: P is a Gibbs distribution over H if it can be represented as

q Thm (soundness): If P is a Gibbs distribution over H, then H is an I-map 
of P.

q Thm (completeness): If ¬sepH(X; Z |Y), then X ^P Z |Y in some P that 
factorizes over H.
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Other Markov properties

q For undirected graphs, we defined I-maps in terms of global Markov 
properties, and will now derive local independence.

q For directed graphs, we defined I-maps in terms of local Markov 
properties, and derived global independence.

q Defn: The pairwise Markov independencies associated with UG H = 
(V;E) are

q e.g., 
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Hammersley-Clifford Theorem

q If arbitrary potentials are utilized in the following product formula for 
probabilities, 

then the family of probability distributions obtained is exactly that set 
which respects the qualitative specification (the conditional 
independence relations) described earlier 

q Thm : Let P be a positive distribution over V, and H a Markov network 
graph over V. If H is an I-map for P, then P is a Gibbs distribution over H.
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Perfect maps

q Defn: A Markov network H is a perfect map for P if for any X; Y;Z we 
have that

q Thm: not every distribution has a perfect map as UGM.
q See next lecture for proof.
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Exponential Form

q Constraining clique potentials to be positive could be inconvenient (e.g., the 
interactions between a pair of atoms can be either attractive or repulsive). We 
represent a clique potential yc(xc)  in an unconstrained form using a real-value 
"energy" function fc(xc):

For convenience, we will call fc(xc) a potential when no confusion arises from the context.
q This gives the joint a nice additive strcuture

where the sum in the exponent is called the "free energy":

q In physics, this is called the "Boltzmann distribution".
q In statistics, this is called a log-linear model. © Eric Xing @ CMU, 2005-2020 28
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Example: Boltzmann machines

q A fully connected graph with pairwise (edge) potentials on binary-valued 
nodes (for                                  ) is called a Boltzmann machine

q Hence the overall energy function has the form:
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Ising models

q Nodes are arranged in a regular topology (often a regular packing grid) and 
connected only to their geometric neighbors.

q Same as sparse Boltzmann machine, where qij¹0 iff i,j are neighbors.
q e.g., nodes are pixels, potential function encourages nearby pixels to have similar 

intensities.
q Potts model: multi-state Ising model.
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hidden units

visible units
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Restricted Boltzmann Machines
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Restricted Boltzmann Machines
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The Harmonium  (Smolensky –’86)

hidden units

visible units
History:
Smolensky (’86), Proposed the architechture.
Freund & Haussler (’92), The “Combination Machine” (binary), learning with projection pursuit.
Hinton (’02), The “Restricted Boltzman Machine” (binary), learning with contrastive divergence. 
Marks & Movellan (’02), Diffusion Networks (Gaussian).
Welling, Hinton, Osindero (’02), “Product of Student-T Distributions” (super-Gaussian)
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Properties of RBM

q Factors are marginally dependent.

q Factors are conditionally independent given 
observations on the visible nodes. 

q Iterative Gibbs sampling.

q Learning with contrastive divergence 
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how do we couple them?
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A Constructive Definition
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jh

They map to the RBM random field:
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A Constructive Definition
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An RBM for Text Modeling
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Conditional Random Fields
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q Discriminative

q Doesn’t assume that features are 
independent

q When labeling Xi future observations are 
taken into account

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Y1 Y2 Y5…

X1 … Xn



Conditional Models

q Conditional probability P(label sequence y | observation sequence x)
rather than joint probability P(y, x)

q Specify the probability of possible label sequences given an observation sequence

q Allow arbitrary, non-independent features on the observation sequence 
X

q The probability of a transition between labels may depend on past and
future observations

q Relax strong independence assumptions in generative models
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Conditional Distribution

q If the graph G = (V, E) of Y is a tree, the conditional distribution over the 
label sequence Y = y, given X = x, by the Hammersley Clifford theorem 
of random fields is:

─ x is a data sequence
─ y is a label sequence 
─ v is a vertex from vertex set V = set of label random variables
─ e is an edge from edge set E over V
─ fk and gk are given and fixed. gk is a Boolean vertex feature; fk is a Boolean edge feature
─ k is the number of features
─ are parameters to be estimated
─ y|e is the set of components of y defined by edge e
─ y|v is the set of components of y defined by vertex v
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Conditional Distribution (cont’d)

q CRFs use the observation-dependent normalization Z(x) for the 
conditional distributions:

q Z(x) is a normalization over the data sequence x
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Conditional Random Fields
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q Allow arbitrary dependencies on input

q Clique dependencies on labels

q Use approximate inference for general 
graphs

41



X

Y1 Y2

Summary: Conditional Independence Semantics in an MRF
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q Structure: an undirected graph
q Meaning: a node is conditionally 

independent of every other node in the 
network given its Directed neighbors

q Local contingency functions (potentials) 
and the cliques in the graph completely 
determine the joint dist. 

q Give correlations between variables, but 
no explicit way to generate samples



Summary

q Undirected graphical models capture “relatedness”, “coupling”, “co-occurrence”, 
“synergism”, etc. between entities

q Local and global independence properties identifiable via graph separation criteria
q Defined on clique potentials

q Can be used to define either joint or conditional distributions
q Generally intractable to compute likelihood due to presence of “partition function”

q Therefore not only inference, but also likelihood-based learning is difficult in general
q Important special cases:

q Ising models
q RBM
q CRF

q Learning GM structures: 
q the Chow-Liu Algorithm

© Eric Xing @ CMU, 2005-2020 43



Supplementary:
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Where is the graph structure come from?

The goal:
q Given set of independent samples (assignments of random variables), 

find the best (the most likely?) graphical model topology

ML Structural Learning for completely observed GMs 
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(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)

……..     
(B,E,A,C,R)=(F,T,T,T,F)



Information Theoretic Interpretation of ML

© Eric Xing @ CMU, 2005-2020
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Information Theoretic Interpretation of ML (con'd)
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Structural Search

q How many graphs over n nodes?

q How many trees over n nodes?

q But it turns out that we can find exact solution of an optimal tree (under 
MLE)!

q Trick: in a tree each node has only one parent!
q Chow-liu algorithm

© Eric Xing @ CMU, 2005-2020
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Chow-Liu tree learning algorithm

q Objection function:

q Chow-Liu:
q For each pair of variable xi and xj

q Compute empirical distribution:

q Compute mutual information:

q Define a graph with node x1,…, xn
q Edge (I,j) gets weight 
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Chow-Liu algorithm (con'd)

q Objection function:

q Chow-Liu:
Optimal tree BN
q Compute maximum weight spanning tree
q Direction in BN: pick any node as root, do breadth-first-search to define 

directions
q I-equivalence:

© Eric Xing @ CMU, 2005-2020
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Structure Learning for general graphs

q Theorem:
q The problem of learning a BN structure with at most d parents is 

NP-hard for any (fixed) d≥2

q Most structure learning approaches use heuristics
q Exploit score decomposition 
q Two heuristics that exploit decomposition in different ways

q Greedy search through space of node-orders

q Local search of graph structures
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