
10-708 PGM (Spring 2020): Homework 3

Andrew ID: [your Andrew ID]
Name: [your first and last name]

Collaborators: [Andrew IDs of all collaborators, if any]

1 LSTM-CRF (Xun) (40 points)

In Homework 1, we have implemented the EM updates for HMM, including the forward-backward message
passing algorithm for exact posterior inference of the latent states. But everything were discrete, linear,
and Gaussian, i.e., boring. We will see a much more interesting version of it, where the features (potential
functions) are learned from deep learning.

This time, we are concerned with the supervised sequence tagging problem. In particular, we are provided
with the sequence of observations x1:T and its corresponding labels (tags) z1:T for training. Our goal is to be
able to predict the tags z1:T for unseen sequence of observations x1:T at test time.

For instance, consider the named entity recognition (NER) problem. We would like to locate and label named
entities mentioned in the unstructured text as predefined categories such as “name of the person” or “name
of the place”. An example sentence and tagging would be:

Jim bought 300 shares of Acme Corp. in 2006.

B-Person O O O O B-Org I-Org O B-Time

where three categories considered are {Person, Org, Time}, and the {B, I, O} follows the IOB2 format. For
further information, please refer to the Wikipedia page on inside–outside–beginning. But you can solve this
problem without knowing what IOB2 is.

A workhorse in sequence tagging is the conditional random field (CRF) model. For this problem, consider a
linear chain CRF with T time steps, M discrete states, and K-dimensional observations, where zt ∈ {0, 1}M ,
‖zt‖ = 1, xt ∈ RK for t ∈ [T].

The reduced graph for the conditional is again a simple chain:

z1 z2 · · · zT

with corresponding Gibbs distribution given by

p(z1:T |x1:T) =
1

Z(x1:T)
· p̃(z1:T), (1)

p̃(z1:T) = ψ1(z1) ·
T∏
t=2

ψt(zt−1, zt) · ψT+1(zT), (2)

Z(x1:T) =
∑
z1:T

p̃(z1:T) (3)

1

where the clique potentials are

ψ1(z1) = φ1(z1,x1:T) (4)

ψt(zt−1, zt) = φt(zt,x1:T)ηt(zt−1, zt) t = 2, . . . , T (5)

ψT+1(zT) = 1 (6)

In the CRF nomenclature, φt is the feature function and ηt is the transition score. In the good old days, humans
used to design various rules to generate feature functions. For instance, one intuition is that whether the first
character of a word is capitalized is correlated with whether the word is a name of a person. Then a hand-crafted
feature function would simply be φ(zt,x1:T) = w · 1{zt = Person, first character of xt capitalized},
with the linear coefficient w measuring the strength of this feature. Learning the CRF is essentially estimating
these parameters given training data.

However, it’s 2020 and it is not hard to imagine an obvious way of automatically generating features: neural
networks. In particular, for this problem, we will use a bi-directional word-level LSTM, whose input is the
sequence x1:T and output is the singleton potentials φ1:T . The entire LSTM and CRF model will then be
trained jointly using stochastic gradient descent with gradients computed by automatic differentiation.

Let θ be the set of parameters of {φ1:T } and {η1:T }. The MLE is then given by

min
θ

1

n

n∑
i=1

− log pθ(z
(i)
1:T |x

(i)
1:T) (7)

Similar to HMM, this requires computing the log-partition function, i.e., inference on z1:T . Also similar to
HMM, the reduced graph is a tree, hence belief propagation can perform efficient exact inference.

At test time, we would like to find the best tags for a given observation sequence:

max
z1:T

log pθ(z1:T |x1:T) (8)

Again, this max-decoding problem can be solved efficiently using the message passing algorithm.

In this problem, we will implement both log-partition function and max-decoding. You should convince
yourself that the algorithm can be derived as below. (No need to show.) Please complete the provided code
template and submit to Gradescope. The template has a toy problem to play with. The submitted code will
be tested against randomly generated problem instances.

2

Algorithm 1 Negative log-likelihood for CRF

1. Forward messages in log-scale:

logα(z1) = log φ1(z1,x1:T) (9)

logα(zt) = log φt(zt,x1:T) + log
∑
zt−1

exp{log ηt(zt−1, zt) + logα(zt−1)} t = 2, . . . , T (10)

2. Log-partition function:

logZ(x1:T) = log
∑
zT

exp{logα(zT)} (11)

3. Unnormalized density in log-scale:

log p̃θ(z1:T ,x1:T) = log φ1(z1,x1:T) +

T∑
t=2

(log φt(zt,x1:T) + log ηt(zt−1, zt)) (12)

4. Negative log-likelihood:

− log pθ(z1:T |x1:T) = logZ(x1:T)− log p̃θ(z1:T ,x1:T) (13)

Algorithm 2 Viterbi decoding for CRF

1. Forward max-product messages in log-scale (and optimal indices):

logα∗(z1) = log φ1(z1,x1:T) (14)

logα∗(zt) = log φt(zt,x1:T) + max
zt−1

{log ηt(zt−1, zt) + logα∗(zt−1)}, t = 2, . . . , T (15)

α+(zt) = argmax
zt−1

{log ηt(zt−1, zt) + logα∗(zt−1)}, t = 2, . . . , T (16)

2. Max score:

max
z1:T

{log p̃(z1:T ,x1:T)} = max
zT

{logα∗(zT)} (17)

z∗T = argmax
zT

{logα∗(zT)} (18)

3. Backward decoding:

z∗t−1 = α+(z∗t), t = T, . . . , 2 (19)

3

2 Consistency of Lasso (Haohan) (20 points)

Before going into graphical lasso, let’s first consider a linear regression problem, with covariates X ∈ Rn×p
and response y ∈ Rn. In the high-dimensional setting n� p, the ordinary least squares (OLS) regression will
not generalize, so we need a regularized least squares as our model. We consider one of the most prominent
regularized regression models, namely the Lasso, as our main tool in this homework problem. Lasso estimates
the regression coefficients as

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1 (20)

where λ is a hyperparameter that governs the strength of the regularization and controls the sparsity of the
coefficients identified.

The attachment contains the training data (Xtrain, ytrain) and the test data (Xtest, ytest). You can use your
favorite Lasso implementation, such as sklearn.linear model.Lasso or glmnet in R. We will use mean
squared error (MSE) as the main evaluation metric.

2.1 Warm-up (5 points)

Let’s do some warm-ups.

1. First trial (2 points). Fit a Lasso model with (Xtrain, ytrain) and test it with (Xtest, ytest), report
MSEtrain and MSEtest. You should observe a generalization gap.

2. Hyperparameter tuning (3 points). Tuning hyperparameters to improve the performance has seemingly
become a controversial strategy nowadays. Nonetheless, let’s experiment with some choices of λ and
check the performance. Please repeat the basic experiment above with 10 choices of λs evenly spaced
on a log scale from 10−5 to 105. Report one plot showing both the MSEtrain and MSEtest as a function
of λ.

2.2 Weak Irrepresentatble Condition (5 points)

You should notice that there is always a generalization gap between training and testing, and the gap seems
larger than what can be expected from the measurement errors. Is it some property of the data that has
trapped us from closing the generalization gap? The answer is yes.

The data is indeed generated from a linear Gaussian model as follows:

y(i) = X(i)β∗ + ε(i), ε(i) ∼ N(0, 1), i = 1, . . . , n (21)

However, with some caveats:

• Only q covariates (q < p) are active, i.e., associated with the response. In other words, the true β∗ ∈ Rp
has q nonzeros.

• For each active covariate j, β∗j ∼ U(0, 5) and X
(i)
j ∼ N(0, 1) for i = 1, . . . , n.

• What about the rest of the p − q features? In Xtrain, they are duplicates of the active covariates.
However, Xtest is not constructed as so.

Let Xa be the active covariates of Xtrain and Xb be the remaining. We now offer a theoretical tool: if Lasso
can correctly identify the active covariates, then

|CbaC−1
aa 1| < 1 (22)

where Cba = 1
nX

T
b Xa, Caa = 1

nX
T
a Xa, 1 denotes a vector of ones, and the inequality holds element-wise.

Show that Lasso cannot correctly identify the active covariates with the data generated as above. It is not
required, but please refer to (Zhao and Yu, 2006) for further information.

4

2.3 Improving the Performance (10 points)

It looks like a vanilla Lasso will never solve our problem. Fortunately, we have more knowledge of data. In
this section, we will design better methods that take advantage of the knowledge of the data and hopefully
get better MSE.

For all the following two questions, please emphasize the design rationale of the method. Regarding empirical
performance, please report it in a single plot showing both MSEtrain and MSEtest as a function of the
hyperparameter. You do not have to stick with Lasso, but please limit yourself within, vaguely, the family of
regularized least squares. The grading will significantly value the rationale of the methods than the actual
empirical performance since random trial-and-error may also lead to good performance due to the simplicity
of the data.

1. Heterogeneity of the samples (5 points). There are rarely truly iid data in the real world and the
heterogeneity of the samples often create some spurious signals identified by the model. We offer an
extra piece of knowledge of the data:

• For the remaining p − q covariates of Xtrain, when we create them by duplicating the active
covariates, we did not duplicate for every sample, but only 90% of the samples.

Please take advantage of this message, design a method, test it, and report the performance. Please be
creative, but if one needs some inspiration, (Meinshausen and Bühlmann, 2010) may offer some.

2. Structure of the features (5 points). Another perspective is to take advantage of the knowledge of
features, which can often be introduced by some intuitive understanding of the problem in reality. We
offer another piece of knowledge of the data:

• If the ith covariate is active and the jth covariate is its duplicate, then i < j.

Please take advantage of this message, design a method, test it, and report the performance. Please be
creative, but if one needs some inspiration, “stepwise selection” may offer some.

3 Estimation of Graph (Haohan) (40 points)

In Homework 1, we have shown that if a random vector X ∈ Rp is jointly Gaussian X ∼ N(0,Σ), then
(Σ−1)ij = 0 if and only if Xi ⊥ Xj | X−ij . In this problem, we will use this fact to estimate the conditional
independence graph from observations of X using Graphical Lasso (Friedman et al., 2008).

The attachment contains the n× p data matrix. You can use your favorite Graphical Lasso implementation,
such as sklearn.covariance.GraphicalLasso or glasso in R.

1. Logdet program (8 points). Let S ∈ Rp×p be the empirical covariance matrix. Show that the MLE is
given by the following optimization problem:

min
Θ�0

tr(SΘ)− log det Θ (23)

2. First run (8 points). Similar to Lasso, in the high-dimensional setting we would like to add an L1

regularizer, leading to the Graphical Lasso estimate:

min
Θ�0

tr(SΘ)− log det Θ + λ‖Θ‖1 (24)

Fit Graphical Lasso on the data for λ = {10−5, 10−4, 10−3, 10−2, 10−1}, and report the performance in
precision and recall compared to the following ground truth graph:

5

X1 X2

X3 X4

3. Consistency condition (8 points). You probably find that the graphical lasso cannot effectively estimate
the graph even if we have 1 million data points for just 4 nodes, and there is no noise in the data at all.
Now let’s see what’s happening.

Again, we offer a theoretical tool to help: it is known that Graphical Lasso can only estimate the graph
consistently when the following condition is met:

max
e∈SC

‖(Σ⊗ Σ)e,S(Σ⊗ Σ)−1
S,S‖1 < 1 (25)

where ⊗ stands for Kronecker product, S is the support set of the precision matrix (edges in the graph),
SC is the complement of S, and (Σ⊗ Σ)e,S is indexing into a p2 × p2 matrix with the first dimension
being e and the second dimension being S, resulting in a 1× |S| vector.

The data is generated according to the following covariance matrix:

Σ =


1 c c 2c2

c 1 0 c
c 0 1 c

2c2 c c 1

 (26)

with some c > 0. Obviously, we must have c < 1/
√

2 to make sure Σ � 0. Now, since graphical lasso
cannot estimate this graph, find a tighter bound of c through numerical experiments.

4. D-trace loss (8 points). Graphical Lasso is not the only way to obtain sparse conditional independence
graphs. In fact, the log-determinant term can be computationally demanding. Here’s an alternative
estimate that does not involve log-det term:

min
Θ�0,diag(Θ)=0

1

2
〈Θ2, S〉 − tr(Θ) + λ‖Θ‖1 (27)

Show that this new cost function is convex and has a unique minimizer at Θ̂ = Σ−1, when λ = 0.

5. Consistency condition (8 points). The corresponding condition for this cost function is that:

max
e∈SC

‖Γe,SΓ−1
S,S‖1 < 1 (28)

where Γ = (Σ⊕ Σ)/2 and ⊕ stands for Kronecker sum. If the provided data satisfies this condition but
not the Graphical Lasso condition, find a tighter bound of c through numerical experiments.

This entire section is constructed based on (Meinshausen, 2008; Ravikumar et al., 2011; Zhang and
Zou, 2014).

6

References
J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3):432–441, 2008.

N. Meinshausen. A note on the lasso for graphical gaussian model selection. Statistics and Probability Letters,
78(7):880–884, 2008.

N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 72(4):417–473, 2010.

P. Ravikumar, M. J. Wainwright, G. Raskutti, B. Yu, et al. High-dimensional covariance estimation by
minimizing l1-penalized log-determinant divergence. Electronic Journal of Statistics, 5:935–980, 2011.

T. Zhang and H. Zou. Sparse precision matrix estimation via lasso penalized d-trace loss. Biometrika, 101(1):
103–120, 2014.

P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine learning research, 7(Nov):
2541–2563, 2006.

7

	LSTM-CRF (Xun) (40 points)
	Consistency of Lasso (Haohan) (20 points)
	Warm-up (5 points)
	Weak Irrepresentatble Condition (5 points)
	Improving the Performance (10 points)

	Estimation of Graph (Haohan) (40 points)

