Machine Learning

10-701/15-781, Spring 2008

Spectral Clustering

Reading:
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Data Clustering

e Two different criteria
e Compactness, e.g., k-means, mixture models
e Connectivity, e.g., spectral clustering

Compactness Connectivity
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Spectral Clustering
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Weighted Graph Partitioning

e Some graph terminology
e Objects (e.g., pixels, data points)

;

ie | = vertices of graph G

o Edges (ij) = pixel pairs with W;; >0 @

e Similarity matrix W = [ W; ] A

d; = Zics S

dy,=3%,.,d; degree of A cG B
e Assoc(AB)= ZigAzjéB Wij
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Cuts in a Graph :
\
e (edge) cut = set of edges whose removal makes a graph
disconnected
e weight of a cut:
cut( A, B ) = Z;_,Z; g W;=Assoc(A,B)
e Normalized Cut criteria: minimum cut(A,A)
NCUt(A, B) = cut(A,B) N cut(A,B)
dy dg
More generally:
d Z.e JeV\A WIJ k ,7
Ncut(Al,AZ...Ak)_;{ zi:“kvw” _;(Cut(:: A)]
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Graph-based Clustering :

e Data Grouping

G ={V,E}

Affinity matrix: W = [Wi,j]
Degree matrix: D = diag(di)
Laplacian matrix: L = D —-\W
(bipartite) partition vector:

—[11,.1-1-1,...~1]
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Affinity Function

—Hxi—XjHi

o Affinities grow as o grows -

e How the choice of G value affects the results =

Q0

e What would be the optimal choice for G?

0
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Clustering via Optimizing
Normalized Cut H

e The normalized cut:
cut(A, B) N cut(A, B)
d, dg

e Computing an optimal normalized cut over all possible y (i.e.,
partition) is NP hard

Ncut(A,B) =

e Transform Ncut equation to a matrix form (Shi & Malik 2000):

.
. . D-W
min, Ncut(x) =min, u
y Dy B
Subjectto: Y E{l,—b}n Rayleigh quotient
y'D1=0
o Stillan NP hard problem Neut(A,B) = ShAB) | CUl(AB)

deg(A) deg(B)

_ @' (O=8)+0) , 4=0'(O=5)a-1). | _ LnPOD
- k1" D1 @-kp'pr " > D(i.i)
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Relaxation H
min, Ncut(x):minyw
y Dy

Rayleigh quotient

Subject to: Y e{l,-b}"

y'D1=0
e Instead, relax into the continuous domain by solving generalized eigenvalue
system: _ . ;
min, y (D-W)y, st y Dy=1
o Which gives: (D-W)y = ADy Rayleigh quotient theorem

o Notethat (D—W)1=0 so, the first eigenvector is y,=1 with eigenvalue 0.

e The second smallest eigenvector is the real valued solution to this problem!!

Algorithm s

1. Define a similarity function between 2 nodes. i.e.:
Hxo %l
W =¢e X
2. Compute affinity matrix (W) and degree matrix (D).

3. Solve (D-W)y = ADy

. Do singular value decomposition (SVD) of the graph Laplacian L =D -W
L=VTAV = Y
4. Use the eigenvector with the second smallest eigenvalue, Y, to
bipartition the graph.
° For each threshold Kk, A= i | y; among k largest element of y*}
B,={i | y; among n-k smallest element of y*}
° Compute Ncut(A,,By)
e Output k" =argmax Ncut(A,, B,) and A.,B.
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Ideally ...

-
Ncut (A, B):&E‘)S)y, with y. e {l,-b}, y"D1=0.
y

y

L] (D=S)y=ADY |
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Example

input affinity matrix affinity matrix reordered according to solution vector

the partition according to the solution vector
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Poor features can lead to poor sels
outcome (xing et al 2002) o
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Cluster vs. block matrix °e

cut(A,B) . cut(A,B)

Ncut(A,B) =
(n8)==0 .

r--o7~o (I [
Ncut(A, B};cutgdA, B)II+|cutdg A BZ .
A 1 B

R -
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Compare to Minimum cut

e Criterion for partition:
min cut(A, B) = min DWW,

"7 ieA, jeB
Problem!

Weight of cut is directly proportional
to the number of edges in the cut. ﬂ
eo0 |® ©

0o ® ([ ] Cuts with

XX | lesser weight
PY o than the

/ ideal cut

Ideal Cut First proposed by Wu and Leahy
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Points of two clusters Points of two clusters
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e K-means and Gaussian mixture methods are biased toward
convex clusters
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Ncut IS superior in certain cases o
\
Points of two clusters Points of two clusters
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Why? :
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General Spectral Clustering
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Representation .o

e Partition matrix X:

segments

100

(== = R

|

e Pair-wise similarity matrix W: W (i, j) = aff (i, j)

Degree matrix D:  D(i,i) = Zj W, |

Laplacian matrix L: L =D -W
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Eigenvectors and blocks

e Block matrices have block eigenvectors:

=2 A=2 Ag=0
1{1]o0]o 71 0 A4=0
1l1]o0]o 71 0
olof1]1 0 71
olof1]1 0 71

e Near-block matrices have near-block eigenvectors:
V=202 2,202 Ag=-0.02

1l1]2]o0 7 0 A=-0.02
1 1 0 ]-2 69 -14
2 0 1 1 14 69
0 ]-2 1 1 0 71
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Spectral Space :
e Can put items into blocks by eigenvectors:
€1
1 1 .2 71
1 1 - < 50 14 >/—’
2 1|1 < 69 e
211 |1 q

—
71
- ]
€1 €;

e Clusters clear regardless of row ordering:

€
1|21 71
211 1 q 4 69
1 1] -2 »( 69 -14 » e,
— — :\/
€y e, 2
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Spectral Clustering

\
e Algorithms that cluster points using eigenvectors of matrices

derived from the data

e Obtain data representation in the low-dimensional space that
can be easily clustered

e Variety of methods that use the eigenvectors differently (we
have seen an example)

e Empirically very successful

e Authors disagree:
e Which eigenvectors to use
e How to derive clusters from these eigenvectors

e Two general methods
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Method #1

e Partition using only one eigenvector at a time
e Use procedure recursively

e Example: Image Segmentation
e Uses 2" (smallest) eigenvector to define optimal cut
e Recursively generates two clusters with each cut
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Method #2

e Use k eigenvectors (k chosen by user)

e Directly compute k-way partitioning

e Experimentally has been seen to be “better”
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Spectral Clustering Algorithm sect
Ng, Jordan, and Weiss 2003 4
e Given a set of points S={s,,...s}
dsi-sil;
o Form the affinity matrix ~ w;, ; =e L viz i, w;=0
e Define diagonal matrix D;= 2 &
e Form the matrix L=DvYawp1?

e Stack the k largest eigenvectors of L to for the columns of the new
matrix X: | | |

X=X X - X

e Renormalize each of X’s rows to have unit length and get new
matrix Y. Cluster rows of Y as points in R
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VS Kmeans °
Points of three clusters Clustering Results (K-means)
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Why it works? '
e K-means in the spectrum space !
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More formally ... :
e Recall generalized Ncut
D Wi | & cut(ALA)
Ncut(A, A, ... A) = A JA T [ '
;[ Zl(A"J(\/W” r=l dA‘
e Minimizing this is equivalent to spectral clustering
min Ncut(Al,Az...Ak)i[m(?”M]
" h segments
100
min Y D VAWD %y 10 ok
st YTY = Yolo1of
010
00 1J
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Images from Matthew Brand (TR-2002-42)
Eric Xing 30

15



[ X X ]
0000
0000
o0
’ : (X
User’'s Prerogative c
e Choice of k, the number of clusters
e Choice of scaling factor
e Realistically, search over ¢§° ~and pick value that gives the tightest clusters
e Choice of clustering method: k-way or recursive bipartite
e Kernel affinity matrix
W= K(Swsj)
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Conclusions :
e Good news:
e Simple and powerful methods to segment images.
e Flexible and easy to apply to other clustering problems.
e Bad news:
e High memory requirements (use sparse matrices).
e Very dependant on the scale factor for a specific problem.
2
Axo-Xwl,
wai, j=e (9
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