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Reading: 
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Data Clustering

Compactness Connectivity

Two different criteria 
Compactness, e.g., k-means, mixture models
Connectivity, e.g., spectral clustering
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Spectral Clustering

Data Similarities
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Some graph terminology
Objects (e.g., pixels, data points)  
i∈ I = vertices of graph G

Edges (ij)  = pixel pairs with Wij > 0

Similarity matrix W = [ Wij ]

Degree 
di = Σj∈G Sij

dA = Σi∈A di degree of A    G

Assoc(A,B) = Σi∈AΣj∈B Wij

⊆

Wij
i

j
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A
B

Weighted Graph Partitioning
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(edge) cut = set of edges whose removal makes a graph 
disconnected

weight of a cut:      
cut( A, B ) = Σi∈AΣj∈B Wij=Assoc(A,B) 

Normalized Cut criteria: minimum cut(A,Ā)

More generally:

Cuts in a Graph
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Graph-based Clustering
Data Grouping

Image sigmentation
Affinity matrix:
Degree matrix:
Laplacian matrix:
(bipartite) partition vector:

ijW
G = {V,E}
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Affinity Function

Affinities grow as  σ grows 

How the choice of σ value affects the results?

What would be the optimal choice for σ?
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Clustering via Optimizing 
Normalized Cut

The normalized cut:

Computing an optimal normalized cut over all possible y (i.e., 
partition) is NP hard

Transform Ncut equation to a matrix form (Shi & Malik 2000):

Still an NP hard problem
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Instead, relax into the continuous domain by solving generalized eigenvalue
system:

Which gives:

Note that                             so, the first eigenvector is y0=1 with eigenvalue 0.

The second smallest eigenvector is the real valued solution to this problem!!

Relaxation 
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Rayleigh quotient theorem
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Algorithm
1. Define a similarity function between 2 nodes. i.e.:

2. Compute affinity matrix (W) and degree matrix (D).

3. Solve

Do singular value decomposition (SVD) of the graph Laplacian

4. Use the eigenvector with the second smallest eigenvalue,   , to 
bipartition the graph.

For each threshold k, Ak={i | yi among k largest element of y*}
Bk={i | yi among n-k smallest element of y*}

Compute Ncut(Ak,Bk)
Output 
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Ideally …
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Example
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Poor features can lead to poor 
outcome (xing et al 2002)
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Cluster vs. block matrix
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Criterion for partition:

Compare to Minimum cut
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First proposed by Wu and Leahy
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Ideal Cut

Cuts with 
lesser weight
than the 
ideal cut

Problem! 
Weight of cut is directly proportional 
to the number of edges in the cut.

Problem! Problem! 
Weight of cut is directly proportional 
to the number of edges in the cut.
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Superior performance?

K-means and Gaussian mixture methods are biased toward 
convex clusters 
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Ncut is superior in certain cases
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Why?
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General Spectral Clustering

Data Similarities
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Representation

[ ]KXXX ,...,1=
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Partition matrix X:

Pair-wise similarity matrix W:

Degree matrix D:

Laplacian matrix L:
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Eigenvectors and blocks
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Block matrices have block eigenvectors:

Near-block matrices have near-block eigenvectors:
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Spectral Space
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Can put items into blocks by eigenvectors:

Clusters clear regardless of row ordering:
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Spectral Clustering
Algorithms that cluster points using eigenvectors of matrices 
derived from the data

Obtain data representation in the low-dimensional space that 
can be easily clustered

Variety of methods that use the eigenvectors differently (we 
have seen an example)

Empirically very successful

Authors disagree:
Which eigenvectors to use
How to derive clusters from these eigenvectors

Two general methods
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Method #1
Partition using only one eigenvector at a time
Use procedure recursively
Example:  Image Segmentation

Uses 2nd (smallest) eigenvector to define optimal cut 
Recursively generates two clusters with each cut
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Method #2
Use k eigenvectors (k chosen by user)

Directly compute k-way partitioning

Experimentally has been seen to be “better”
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Given a set of points S={s1,…sn}

Form the affinity matrix

Define diagonal matrix Dii= Σκ aik

Form the matrix 

Stack the k largest eigenvectors of L to for the columns of the new 
matrix X: 

Renormalize each of X’s rows to have unit length and get new 
matrix Y. Cluster rows of Y as points in R k

Spectral Clustering Algorithm 
Ng, Jordan, and Weiss 2003
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SC vs Kmeans
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Why it works?

K-means in the spectrum space !
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More formally …
Recall generalized Ncut

Minimizing this is equivalent to spectral clustering
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Toy examples

Images from Matthew Brand (TR-2002-42)
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User’s Prerogative
Choice of k, the number of clusters

Choice of scaling factor
Realistically, search over         and pick value that gives the tightest clusters

Choice of clustering method: k-way or recursive bipartite

Kernel affinity matrix

2σ

),(, jiji SSKw =
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Conclusions

Good news:
Simple and powerful methods to segment images.
Flexible and easy to apply to other clustering problems.

Bad news:
High memory requirements (use sparse matrices).
Very dependant on the scale factor for a specific problem.
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