
15-820A, Spring 2003

Solutions to Homework 1

1 Coloring a Graph with k-colors

The goal of this homework is to gain familiarity with SAT. We will encode an
interesting graph problem into a SAT problem and use modern SAT solvers
like GRASP and Chaff to solve them.

The k-coloring problem is defined as follows:

Given an undirected graph G(V,E) and a natural number k, is
there an assignment color : V → {1, 2, . . . , k} such that ∀(u, v) ∈
E.color(u) 6= color(v)? Informally, is it possible to assign one
of k colors to each node such that no two adjacent nodes are
assigned the same color? If the answer is positive, we say that
the graph is k-colorable.

As an aside, the map coloring problem, where you have to color each pair
of adjacent countries with separate color, is just a special instance of this
problem. All the maps that you can draw on a piece of paper make a planar
graph. The famous four-color theorem says that all planar graphs can be
colored with four colors.

With regards to this problem, answer the following questions.

1. Show a fomulation of the k-coloring problem as a satisfiability problem,
i.e., for a given graph G(V,E) and k, derive a CNF formula ϕ such
that ϕ is satisfiable if and only if G is k-colorable. How many CNF
variables and clauses does your CNF formula have in terms of the
number of nodes |V | and the number of edges |E|?
Solution: There are at least two ways to encode the color information
for each node in the graph. In the simplest encoding, we assign one
boolean variable each node and color pair. Thus the variable xi,j , 1 ≤
i ≤ |V |, 1 ≤ j ≤ k is true iff the node vi is assigned the color # j. This

1

generates k|V | variables. We need to place three kinds of constraints
on these variables for valid solutions.

At least one color: We want at least one color to be assigned to
each node, thus out of all color variables, at least one should
be true. This generates one clause for each node, a total of |V |
clauses. The clause for the node vi looks like

xi,1 ∨ xi,2 ∨ . . . ∨ xi,k

At most one color: The SAT checker might come up with a true
assignment for more than one color variable for a given node.
This means that that node was assigned more than one color. To
prevent this, we have to generate CNF clauses for the constraint
saying a node can be assigned at most one color. We can assert
this by saying that if a node vi is assigned the color c, then it
should not be assigned another color d, c 6= d. This gives rise to a
simple two literal clause like so: (xi,c → ¬xi,d) ≡ (¬xi,c ∨ ¬xi,d).
Thus for k colors, there are k(k − 1)/2 pairs of different colors,
giving rise to k(k − 1)/2 clauses. This adds |V |k(k − 1)/2 to the
database. The clauses for a node xi look like as follows.∧

1≤c<k

∧
c+1≤d≤k

(¬xi,c ∧ ¬xi,d)

Note that this constraint is strictly not required, as we are putting
the constraint for different colors for two nodes connected by an
edge. If a node is assigned multiple colors, we will just have to
pick one color, as they will all satisfy the edge constraint.

Different colors: This is the most important constraint. It says
that two nodes connected by an edge should have different col-
ors. Thus for every edge (vi, vj) ∈ E, if vi is colored with
c, then vj should not be colored with c. Which is the clause
(xi,c → ¬xj,c) ≡ (¬xi,c ∨ ¬xj,c). We have to place this constraint
for each color c, thus an edge has a total of c such clauses, to-
talling to cE clauses for all edges. All the clauses for the edge
(vi, vj) are listed below.∧

1≤c≤k
(¬xi,c ∨ ¬xj,c)

2

It should be clear that the total number of variables generated are |V |k
and the total number of clauses generated are |V |+ |V |k(k−1)/2+cE.

Note that the constraint for at most one color is not strictly required.
Without this constraint, the SAT checker might come up with a multi-
ple color assignment, but all these assignments will be consistent with
the edge constraint. However, there are two reasons to introduce these
constraints. On one hand, they reduce the amount of post-processing
required to infer color assignment from SAT checker outputs. On the
other hand, they restrict the search space of the SAT checker. So if a
graph does not have color assignment, then this will lead to faster con-
flict generation. Placing these constraints however clearly add a large
number of clauses, and the SAT checker might spend more timing an
assignment if there is any.

2. Write a program that accepts a textual representation of a graph
G(V,E) and the value k, and converts it to a CNF formula. The
formats of the input files, CNF files and output files are described
below.

Solution: The program should be fairly simple, which shouldn’t re-
quire storage of the whole graph, since every edge and vertex gener-
ates new set of clauses. I chose to write the program in a simple Perl
script, graph2cnf.pl. Another Perl script (grasp2sol.pl reads a
grasp dump, along with the number of colors and the number of nodes,
and generates the corresponding color assignment file. GRASP/Chaff
require the variables to be consequently numbered from 1 to the # of
variables, |V |k in our case. We use the following mapping to map a
node number i and a color number c to a variable number.

varid(i, c) = (i− 1)k + c

The mapping from a variable number v to the node number and the
color number is a dual.

nodeid(v) = bv/kc+ 1
colorid(v) = v%k + 1

3. Download from the course web page the 5 sample graphs. For each one
of them, generate a SAT problem and check whether it is satisfiable
with the help of a modern SAT solver (e.g. GRASP, Chaff, etc.). If
the formula is satisfiable, write a table showing the color assignment

3

in a text file, whose format is described ahead. Beware: SAT solvers
might take a long time to run, and in some cases, blow out of memory.
If your SAT solver doesn’t come up with a satisfying assignment within
3 hours, stop the process and report it as a time out.

Solution: I ran the SAT checker on the cnf files for the graphs 4,7,6,2,3
and 1 successfully. Both GRASP and Chaff failed to produce any
answer for graph 5 even after 24 hours on a machine with 1GB memory.
Graphs 7,2 and 3 did have a k coloring, while graphs 4, 6 and 1 did
not have a valid k coloring. The following Table 1 summarizes the
experiments.

Graph SAT? k |V | |E| # vars # clauses runtime
GRASP Chaff

graph4 N 3 11 20 33 104 0 0
graph7 Y 11 64 728 704 11592 4 0
graph6 N 8 74 301 592 4554 820 1
graph2 Y 19 179 3328 3211 92300 90 1
graph3 Y 53 128 3216 6784 346960 721 4
graph1 N 10 74 301 740 6414 - 61
graph5 ? 20 864 18707 17280 539164 - -

Table 1: Summary of experimental results. The runtimes are rounded to the
nearest second. GRASP ran out of resources for graph1 and both GRASP
and Chaff ran out of resource for graph5.

We can see that Chaff is significantly faster than GRASP for all the graphs.

4

