15-820-a Assignment 4 Partial Order Reduction

Due Mar. 19, 2003

1 LTL and Stuttering Equivalence

An LTL formula $\mathbf{A} f$ is invariant under stuttering if and only if for each pair of paths π and π' such that $\pi \sim_{st} \pi'$,

 $\pi \models f$ if and only if $\pi' \models f$.

We denote the subset of the logic LTL without the next time operator by LTL_{-X} .

Show the theorem on page 21 of the handouts:

Any LTL_{-X} property is invariant under stuttering.

2 Stuttering Equivalent Structures

Without loss of generality, assume that M has initial state s_0 and that M' has initial state s'_0 .

Then the two structures M and M' are stuttering equivalent if and only if

- For each path σ of M that starts in s₀ there is a path σ' of M' starting in s'₀ such that σ ∼_{st} σ'.
- For each path σ' of M' that starts in s₀ there is a path σ of M starting in s₀ such that σ' ∼_{st} σ.

Show the theorem on page 22 of the handouts:

Let M and M' be two stuttering equivalent structures. Then, for every LTL_{-X} property $\mathbf{A}\,f$

$$M, s_0 \models \mathbf{A} f$$
 if and only if $M', s'_0 \models \mathbf{A} f$.