
15-440 Distributed Systems
Midterm SOLUTION

Name:

Andrew: ID

October 18, 2011

• Please write your name and Andrew ID above before starting this exam.

• This exam has 18 pages, including this title page. Please confirm that all pages are
present.

• This exam has a total of 100 points.

Question Points Score

1 24

2 9

3 8

4 15

5 13

6 14

7 16

8 1

Total: 100

1



True/False

1. (24 points) Grading is +2 points for a correct answer and 0 points for either blank or
incorrect. In other words, at the end of the exam, if you don’t know the answer to any
of these, guess, because you’ll get more points in expectation. If you want to be nice to
the course staff, mark the ones you guessed on with a “G” so that we have a better idea
of what material to go over. We won’t penalize you.

(a) NFS version 1 (the network file system) tries to keep as much state as possible on
the server for things like file read positions, in case the client crashes and restarts.
© True

√
False

(b) The checksum portion of an IP packet allows the receiver to both detect and correct
a single-bit error in the packet © True

√
False

Solution: Checksums can be used to detect errors, but not to correct them.

(c) TCP’s reliable in-order byte stream abstraction can add unpredictable latency to
messages under high packet loss.

√
True © False

(d) When creating a UDP connection to a server, the client and server will engage in a
handshake protocol. © True

√
False

Solution: There is no setup phase with UDP

(e) In a send/acknowledge protocol, such as LSP in Project 1, the bandwidth of a
connection when sending a series of packets, each having B bytes of data, is lim-
ited to at most B/2L, where L is the one-directional message latency.

√
True

© False

(f) In the synchronous network model, messages may be delayed, lost, and reordered
arbitrarily. © True

√
False

Solution: Synchronous networks must have uniform delay.

(g) Using a condition variable can eliminate the need for a mutex when protecting
shared resources. © True

√
False

Solution: A condition variable must always have an associated mutex.

(h) When making a synchronous RPC call, the caller will not return until after the re-
quested operation has been completed, assuming no error is encountered.

√
True

© False

(i) If the Lamport clock of event e1 is less than the Lamport clock of event e2, then
there must be a chain of causal events by which e1 precedes e2 © True

√
False

Page 2



Solution: Lamport clocks do not capture the case when two events are un-
ordered.

(j) Global Position System (GPS) satellites use the Network Time Protocol (NTP) to
keep their clocks synchronized. © True

√
False

Solution: GPS satellites have their own atomic clocks. NTP would not provide
sufficient accuracy.

(k) Lamport’s distributed mutual exclusion algorithm will fail if one of its participants
fails

√
True © False

(l) In a transaction processing system, if a process releases one of its locks before
completing all of its state updates, then the isolation property of ACID might be
violated.

√
True © False

Page 3



Short Answers

2. (9 points) In the following, keep your answers brief and to the point.

(a) One way in which AFS improves upon NFS, the Network File System, is by granting
clients leases to files. Briefly (1 sentence) answer: What complication does this
addition cause in the event that the server crashes?

Solution: The server must contact all clients to find out which ones have leases
for which files, or it must wait until the maximum lease duration has expired
before issuing further leases.

(b) Cosmic rays and other phenomenon that can add energy to a system may cause
memory modules to periodically experience “bit-flips” or soft-memory errors. What
is one type of mechanism that is widely commercially available that can seamlessly
detect and correct single-bit errors?

Solution: Error Correction Codes (ECC)

(c) What is the name of the protocol that provides atomicity for distributed transac-
tions, and ensures that all participants in a transaction agree on whether it should
be commited or not?

Solution: Two-phase commit protocol

Page 4



Concurrency and Synchronization

3. (8 points) The “dining philosophers” is a classic synchronization problem: Five philoso-
phers sit at a table around a bowl of rice. Between each pair of adjacent philosophers
there is a single chopstick. The philosophers think, and from time to time they pause
and eat. In order to eat, a philosopher needs two chopsticks: the one to its right, and
the one to its left. Each philosopher can pick up an adjacent chopstick, when available,
and put it down, when holding it. These are separate actions: chopsticks must be picked
up and put down one by one. Since there are only five chopsticks in total, it is clear that
at most two philosophers can eat at the same time—they contend for chopsticks, hence
the need for synchronization.

Figure 1: The dining philosophers

Below, we present an implementation in Go, using channels. Each philosopher is repre-
sented by a goroutine, and, if we imagine that each chopstick is placed on a chopstick-
holder while on the table, each chopstick-holder is also represented by a goroutine.
Chopsticks correspond to “chopstick” tokens that are passed through channels. Every
chopstick-holder has two channels: one through which it provides the chopstick to one
of the philosophers, and one through which a philosopher returns the chopstick.

type chopstick string

func ChopstickHolder(taker, giver chan chopstick) {

for {

taker <- "chopstick" // wait for philosopher to grab chopstick

<-giver // wait for chopstick to come back

}

}

Page 5



func Philosopher(grabLeft, putLeft, grabRight, putRight chan chopstick) {

for {

//hungry

<-grabLeft

<-grabRight

//eating

time.Sleep(1e8)

//done eating

putLeft <- "chopstick"

putRight <- "chopstick"

//thinking

time.Sleep(1e8)

}

}

func main(){

grabInitial := make(chan chopstick)

putInitial := make(chan chopstick)

go ChopstickHolder(grabInitial, putInitial)

grabLeft := grabInitial

putLeft := putInitial

for i := 1; i < 5; i++ {

grabRight := make(chan chopstick)

putRight := make(chan chopstick)

go Philosopher(grabLeft, putLeft, grabRight, putRight)

go ChopstickHolder(grabRight, putRight)

grabLeft = grabRight

putLeft = putRight

}

go Philosopher(grabLeft, putLeft, grabInitial, putInitial)

time.Sleep(1e10) //wait a while

}

(a) Explain the problem with this synchronization algorithm.

Solution: It can reach deadlock if all philosophers grab the chopsticks to their
left at the same time.

(b) Suggest a simple fix (you don’t have to write code). Hint: You don’t need other
synchronization mechanisms. Instead, you could change something in the behavior
of one or all of the philosophers.

Page 6



Solution: One of the philosophers has to first reach for the chopstick to the
right whenever he wants to eat.

Page 7



Optimizing an LSP-based Password Cracker

4. (15 points) Let’s examine the performance of a password cracker such as you imple-
mented for Project 1, with crack clients, worker clients, and a server, all communicating
via the live sequence protocol (LSP). Consider the following three parameters that you
could control in your system:

δ: Time between epochs (seconds)

K: Number of epochs that can elapse without receiving any message from the other end
of a connection before having the connection time out.

w: Typical size of a password cracking job assigned to a worker (seconds).

For each of the following performance goals, and each of the three parameters, fill in
the following table indicating how that parameter should be set to achieve that goal, as
follows:

H: The parameter should be set to a high value.

L: The parameter should be set to a low value.

X: The value of the parameter would have little effect on that aspect of the performance.

Page 8



Goal δ K w

Minimize message traffic in an environment where the
clients and the network are highly reliable

H X H

High δ minimizes the overhead of epoch events; connec-
tions are unlikely to time out; want to minimize traffic to
start and finish jobs

Minimize time to detect crashed worker L L X

Want frequent epoch events and a low timeout threshold

Minimize wasted effort caused by crashed cracker client L L L

Want frequent epoch events, a low timeout threshold, and
minimum work done on behalf of crashed clients

Minimize chance of prematurely disconnecting one of the
clients from the server

H H X

Want infrequent epoch events and a high timeout thresh-
old

Minimize impact of dropped packets without increasing
chances of disconnecting clients from the server

L H H

Want frequent epoch events, but must then raise the time-
out threshold. Also want to minimize traffic between
server and workers

Page 9



Transactions

5. (13 points) Explain how each of the following three implementations of a transaction
breaks the ACID properties in a distributed transactional system: explain what is the
problem, and identify which ACID property/properties are violated.

You must assume that:

• The given code is run by multiple participants in a distributed transactional system
that employs the Two Phase Commit protocol for distributed agreement.

• All the participants run the exact same code, but on different data. The purpose is
for each to subtract the value of its copy of variable var B from its copy of variable
var A, but only if var A > var B is true for everyone.

• There are potentially other transactions running on the same machines that read
and write the same copies of variables var A and var B as do some of the transac-
tions participating in this transaction.

• The convention for lock ordering on each machine is to follow the lexicographical
ordering of the lock names.

(a) (warmup) What do the four letters in ACID stand for?

Solution: Atomicity, Consistency, Isolation, Durability

(b) start:

if (var_A > var_B) {

vote commit

} else {

vote abort

}

commit:

lock(var_A)

lock(var_B)

var_A = var_A - var_B

unlock(var_B)

unlock(var_A)

abort:

<empty>

Solution: C, I because we are reading var A and var B outside of the critical
section, so other transactions may modify them before we lock.

Page 10



(c) start:

lock(var_A)

lock(var_B)

if (var_A > var_B) {

var_A = var_A - var_B

vote commit

} else {

vote abort

}

commit:

unlock(var_B)

unlock(var_A)

abort:

unlock(var_B)

unlock(var_A)

Solution: A, because we may modify var A on some machines and not on the
others.

Page 11



(d) start:

lock(var_A)

lock(var_B)

local_gt = var_A > var_B

local_tmp = var_A - var_B

unlock(var_B)

unlock(var_A)

if (local_gt == true) {

vote commit

} else {

vote abort

}

commit:

lock(var_A)

var_A = local_tmp

unlock(var_A)

abort:

<empty>

Solution: D, because var A may have been modified by another transaction
in the meantime.

Page 12



Logical Clocks

6. (14 points) Three computers at CMU, A, B, and C communicate using a protocol that
implements the idea of lamport clocks (they include their clock time stamp in messages).

For reference, if you need a reminder, recall that the three rules of Lamport’s algorithm
are:

1. At process i, increment Li before each event

2. To send message m at process i, apply rule 1 and then include the current local
time in the message, i.e., send(m, Li).

3. To receive a message (m, t) at process j, set Lj = max(Lj, t) and then apply rule 1
before time-stamping the receive event.

At the beginning of time, all three computers begin with their logical clock set to zero
(0). Later, the following sequence of events occurs:

• A sends message M1 to B: “hi”.

• After receiving M1, B sends message M2 to C: “A told me hi”

• After receiving M2, C sends message M3 to A: “B is boring”

(a) Indicate the time included with the messages as they are sent at each step.

Send (M1, )
Send (M2, )
Send (M3, )

Solution:

Send (M1, 1)
Send (M2, 3)
Send (M3, 5)

(b) Maintaining all clock states from the previous question, three ADDITIONAL mes-
sages are sent:

• After receiving M3, A sends message M4 to B: “C is kind of random!”

• After receiving M4, B sends message M5 to A: “C is boring”

• A receives message M5

After all of these messages have been sent and received, what time does each com-
puter think it is?

A
B
C

Page 13



Solution: A=10, B=9, C=5.

(Remember, receiving and sending are different events!)

(c) Is this a relatively or totally ordered system?

Solution: This is a relatively ordered system.

Page 14



Reset all clocks to zero. This time:

• A sends message M1 to B.

• The user of machine A is talking on the phone with the user of machine B. She
tells him “I just sent you a message online. Please send a message to C right
now.”

• B sends message M2 to C.

(d) Once all of the messages have been sent and received, what times might C’s clock
be set to under which circumstance?

Solution: If B received the message before sending the message to C, then C’s
clock would read 4.

Otherwise, C’s clock would read 2.

(e) Explain briefly why the scenarios above could happen even though the events must
have happened sequentially in real-time.

Solution: Because the communication over the cell phones was not times-
tamped using the lamport clock protocol. Therefore, the protocol did not know
that the message from A to B had to have happened before the message from
B to C.

(f) Which of your two answers for C’s clock is more likely to arise? Briefly (1 sentence)
justify why.

Solution: It’s more likely to be 5. Most of the time, the communication latency
between two computers at CMU is likely to be in the few milliseconds range,
which is much faster than the two humans can communicate commands in words.
Therefore, message M1 is likely to reach machine B well before the user instructs
it to send a message to C.

Page 15



RAID

7. (16 points) You’re building a storage array for videos of cats riding Roombas. You’ve
decided to use really cheap disks with a Mean-Time-To-Failure (MTTF) of 10,000 hours
(' 1.1 years). The drives have the following performance characteristics:

MTTF 10,000 hours
Sequential read/write speed 50 MB/sec
Capacity 500 GB
Seek time 10 ms

(a) Assume you have built a RAID 1 (“mirrored” – each disk has a copy of all data)
system using two disks. Without any humans around to replace dead drives, what
is the expected mean time to data loss of this simple RAID 1 system? (Keep your
answer simple, using the most simple model of MTTF we discussed).

Solution:

1

2
MTTF + 1 MTTF =

1.5MTTF =

1.5 ∗ 10, 000hours = 15, 000hours

(b) If one disk fails, how long (in seconds) will it take to rebuild the array by copying
all data onto a new disk?

Solution: 500 GB
50 MB/second

= 500000 GB
50 MB/second

= 10, 000 seconds

(c) Again, using the simplest model, what are the chances of the second disk dying
during this rebuild?

Solution: 10,000 seconds / 10,000 hours MTTF is 1/3600

(d) In practice, the chances are probably higher than the simple calculation above would
suggest. Give two reasons why this is the case:

Solution:

1. The load on the disks is higher during repair, which can increase the
chances of a failure.

2. Failures are often correlated because they share the same cause—vibration,
power fluctuations, etc.

Page 16



3. Disks do not have a flat lifetime curve. If the disks are approaching the
end of their lifetime, the “bathtub curve” will start ramping up sharply, so
both disks are much more likely to die than a simple mean would indicate.

(e) You decide instead to build your array using Flash-memory based solid state drives.
These drives are fast and silent, but Flash memory behaves differently from disks:
It suffers “wear-out.” Each time you write to flash memory, it loses a small amount
of its lifetime. As soon as you exceed its rated number of writes, the flash is roughly
guaranteed to die. However, Flash is often more reliable than disk is before the end
of its lifetime.

What problem does this cause for your RAID 1 array?

Solution: When one disk dies, the other is extremely likely to die soon.

(f) You decide to fix this problem by giving new instructions to the system administra-
tor for he or she should replace or repair disks in the RAID array. What do you tell
them to do in order to drastically reduce the chances of having the whole system
fail?

Solution: 1: You could tell them to pre-emptively replace the SSDs, one at a
time, before their lifetime ends.

2: You could tell them to create the RAID array using staggered generations of
disks, so that neither disk is ever totally at the end of its lifetime.

3: Something else clever here.

Page 17



Anonymous Feedback

8. (1 point) Tear this sheet off to receive one bonus point. We’d love it if you handed it in
either at the end of the exam or, if time is lacking, to the course secretary.

(a) Please list one thing you’d like to see improved in this class in the current or a
future version.

Solution:

(b) Please list one good thing you’d like to make sure continues in the current or future
versions of the class.

Page 18


