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Time and synchronization 

(“There’s never enough time…”) 

Today’s outline 
  Global Time 
  Time in distributed systems 

– A baseball example 
  Synchronizing real clocks 

– Cristian’s algorithm 
– The Berkeley Algorithm 
– Network Time Protocol (NTP) 

  Logical time 
  Lamport logical clocks 
  Vector Clocks 
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Why Global Timing? 

  Suppose there were a globally consistent 
time standard 
  Would be handy 

– Who got last seat on airplane? 
– Who submitted final auction bid before 

deadline? 
– Did defense move before snap? 

Time Standards 
  UT1 

–  Based on astronomical observations 
–  “Greenwich Mean Time” 

  TAI 
–  Started Jan 1, 1958 
–  Each second is 9,192,631,770 cycles of radiation 

emitted by Cesium atom 
–  Has diverged from UT1 due to slowing of earth’s 

rotation 
  UTC 

–  TAI + leap seconds to be within 800ms of UT1 
–  Currently 35 
–  Most recent: June 30, 2012 
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Comparing Time Standards 

UT1 −	
  UTC 

Distributed time 
  Premise 

– The notion of time is well-defined (and 
measurable) at each single location 

– But the relationship between time at different 
locations is unclear 
  Can minimize discrepancies, but never eliminate 
them 

  Reality 
– Stationary GPS receivers can get global time 

with < 1µs error 
– Few systems designed to use this 
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A baseball example 
  Four locations:  pitcher’s mound, first base, home plate, 

and third base 
  Ten events: 

e1:  pitcher throws ball to home 
e2:  ball arrives at home 
e3:  batter hits ball to pitcher 
e4:  batter runs to first base 
e5:  runner runs to home 
e6:  ball arrives at pitcher 
e7:  pitcher throws ball to first base 
e8:  runner arrives at home 
e9:  ball arrives at first base 
e10:  batter arrives at first base 

A baseball example 

  Pitcher knows e1 happens before e6, 
which happens before e7 
  Home plate umpire knows e2 is before e3, 
which is before e4, which is before e8, … 
  Relationship between e8 and e9 is unclear 
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Ways to synchronize 

  Send message from first base to home? 
– Or to a central timekeeper 
– How long does this message take to arrive?  

  Synchronize clocks before the game? 
– Clocks drift 

  million to one => 1 second in 11 days 

  Synchronize continuously during the 
game? 
– GPS, pulsars, etc 

Perfect networks 

  Messages always arrive, with propagation 
delay exactly d 

  Sender sends time T in a message 
  Receiver sets clock to T+d  

– Synchronization is exact 
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Synchronous networks 

  Messages always arrive, with propagation 
delay at most D 

  Sender sends time T in a message 
  Receiver sets clock to T + D/2 

– Synchronization error is at most D/2 

Synchronization in the real world 

  Real networks are asynchronous 
– Propagation delays are arbitrary 

  Real networks are unreliable 
– Messages don’t always arrive 
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Cristian’s algorithm 

  Request time, get reply 
– Measure actual round-trip time d 

  Sender’s time was T between t1 and t2 

  Receiver sets time to T + d/2 
– Synchronization error is at most d/2 

  Can retry until we get a relatively small d 

The Berkeley algorithm 

  Master uses Cristian’s algorithm to get 
time from many clients 
– Computes average time 
– Can discard outliers 

  Sends time adjustments back to all clients 
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The Network Time Protocol (NTP) 

  Uses a hierarchy of time servers 
– Class 1 servers have highly-accurate clocks 

  connected directly to atomic clocks, etc. 

– Class 2 servers get time from only Class 1 and 
Class 2 servers 

– Class 3 servers get time from any server 
  Synchronization similar to Cristian’s alg. 

– Modified to use multiple one-way messages 
instead of immediate round-trip 

  Accuracy: Local ~1ms, Global ~10ms 

Real synchronization is imperfect 

  Clocks never exactly synchronized 
  Often inadequate for distributed systems 

– might need totally-ordered events 
– might need millionth-of-a-second precision 
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Logical time 

  Capture just the “happens before” 
relationship between events 
– Discard the infinitesimal granularity of time 
– Corresponds roughly to causality 

  Time at each process is well-defined 
– Definition (→i):  We say e →i e’ if e happens 

before e’ at process i 

Global logical time 

  Definition (→):  We define e → e’ using 
the following rules: 
– Local ordering:  e → e’ if e →i e’ for any 

process i 
– Messages:  send(m) → receive(m) for any 

message m 
– Transitivity:  e → e’’ if e → e’ and e’ → e’’ 

  We say e “happens before” e’ if e → e’ 
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Concurrency 

  → is only a partial-order 
– Some events are unrelated 

  Definition (concurrency):  We say e is 
concurrent with e’ (written e║e’) if neither 
e → e’ nor e’ → e 

The baseball example revisited 
  e1 → e2 

–  by the message rule 
  e1 → e10, because 

–  e1 → e2, by the message rule 
–  e2 → e4, by local ordering at home plate 
–  e4 → e10, by the message rule 
–  Repeated transitivity of the above relations 

  e8║e9, because 
–  No application of the → rules yields either e8 → e9 or 

e9 → e8 
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Lamport logical clocks 
  Lamport clock L orders events consistent with 

logical “happens before” ordering 
–  If e → e’, then L(e) < L(e’) 

  But not the converse 
–  L(e) < L(e’) does not imply e → e’ 

  Similar rules for concurrency 
–  L(e) = L(e’) implies e║e’ (for distinct e,e’) 
–  e║e’ does not imply L(e) = L(e’) 

  i.e., Lamport clocks arbitrarily order some 
concurrent events 

Lamport’s algorithm 
  Each process i keeps a local clock, Li 
  Three rules: 

1.  At process i, increment Li before each event 
2.  To send a message m at process i, apply rule 1 and 

then include the current local time in the message:  
i.e., send(m,Li) 

3.  To receive a message (m,t) at process j, set Lj = 
max(Lj,t) and then apply rule 1 before time-stamping 
the receive event 

  The global time L(e) of an event e is just its 
local time 

–  For an event e at process i, L(e) = Li(e) 
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Lamport on the baseball example 

  Initializing each local clock to 0, we get 
  L(e1) = 1  (pitcher throws ball to home) 
  L(e2) = 2  (ball arrives at home) 
  L(e3) = 3  (batter hits ball to pitcher) 
  L(e4) = 4  (batter runs to first base) 
  L(e5) = 1  (runner runs to home) 
  L(e6) = 4  (ball arrives at pitcher) 
  L(e7) = 5  (pitcher throws ball to first base) 
  L(e8) = 5  (runner arrives at home) 
  L(e9) = 6  (ball arrives at first base) 
  L(e10) = 7  (batter arrives at first base) 

  For our example, Lamport’s algorithm says that 
the run scores! 

Total-order Lamport clocks 

  Many systems require a total-ordering of 
events, not a partial-ordering 
  Use Lamport’s algorithm, but break ties 
using the process ID 
– L(e) = M * Li(e) + i 

  M = maximum number of processes 
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Vector Clocks 

  Goal 
– Want ordering that matches causality 
– V(e) < V(e’) if and only if e → e’ 

  Method 
– Label each event by vector V(e) [c1, c2 …, cn] 

  ci = # events in process i that causally precede e 

Vector Clock Algorithm 

  Initially, all vectors [0,0,…,0] 
  For event on process i, increment own ci 
  Label message sent with local vector 
  When process j receives message with 
vector  [d1, d2, …, dn]: 
– Set local each local entry k to max(ck, dk) 
–  Increment value of cj 
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Vector clocks on the baseball example 
Event Vector Action 
e1 [1,0,0,0] pitcher throws ball to home 
e2 [1,0,1,0] ball arrives at home 
e3 [1,0,2,0] batter hits ball to pitcher 
e4 [1,0,3,0] batter runs to first base) 
e5 [0,0,0,1] runner runs to home 
e6 [2,0,2,0] ball arrives at pitcher 
e7 [3,0,2,0] pitcher throws ball to 1st base 
e8 [1,0,4,1] runner arrives at home 
e9 [3,1,2,0] ball arrives at first base 
e10 [3,2,3,0] batter arrives at first base 

  Vector: [p,f,h,t] 

Important Points 

  Physical Clocks 
– Can keep closely synchronized, but never 

perfect 
  Logical Clocks 

– Encode causality relationship 
– Lamport clocks provide only one-way 

encoding 
– Vector clocks provide exact causality 

information 


