

Time and synchronization

(“There’s never enough time...”)

Today’s outline

- Global Time
- Time in distributed systems
 - A baseball example
- Synchronizing real clocks
 - Cristian’s algorithm
 - The Berkeley Algorithm
 - Network Time Protocol (NTP)
- Logical time
- Lamport logical clocks
- Vector Clocks

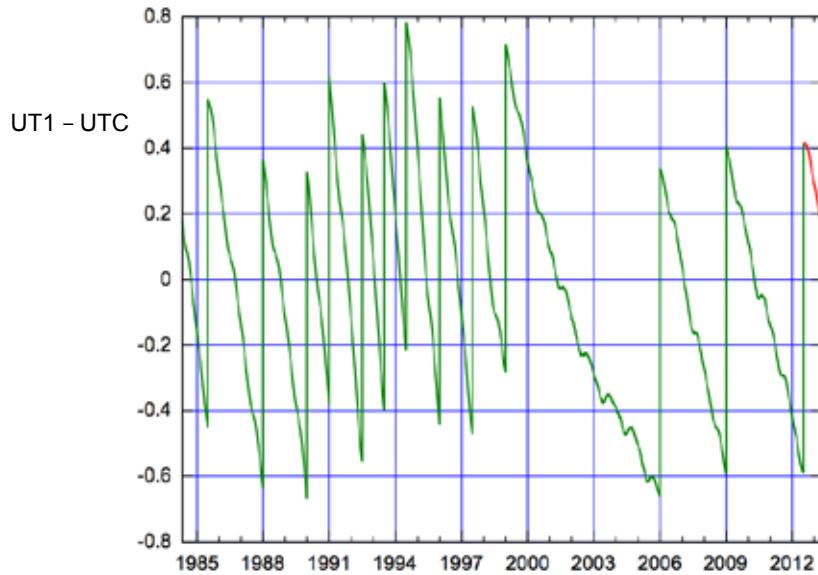
Why Global Timing?

- Suppose there were a globally consistent time standard
- Would be handy
 - Who got last seat on airplane?
 - Who submitted final auction bid before deadline?
 - Did defense move before snap?

Time Standards

- UT1
 - Based on astronomical observations
 - “Greenwich Mean Time”
- TAI
 - Started Jan 1, 1958
 - Each second is 9,192,631,770 cycles of radiation emitted by Cesium atom
 - Has diverged from UT1 due to slowing of earth’s rotation
- UTC
 - TAI + leap seconds to be within 800ms of UT1
 - Currently 35
 - Most recent: June 30, 2012

Comparing Time Standards



Distributed time

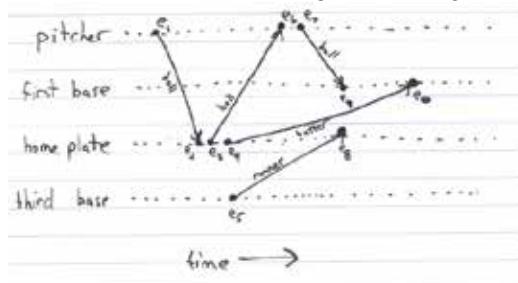
- Premise
 - The notion of time is well-defined (and measurable) at each single location
 - But the relationship between time at different locations is unclear
 - Can minimize discrepancies, but never eliminate them
- Reality
 - Stationary GPS receivers can get global time with $< 1\mu\text{s}$ error
 - Few systems designed to use this

A baseball example

- Four locations: pitcher's mound, first base, home plate, and third base
- Ten events:
 - e_1 : pitcher throws ball to home
 - e_2 : ball arrives at home
 - e_3 : batter hits ball to pitcher
 - e_4 : batter runs to first base
 - e_5 : runner runs to home
 - e_6 : ball arrives at pitcher
 - e_7 : pitcher throws ball to first base
 - e_8 : runner arrives at home
 - e_9 : ball arrives at first base
 - e_{10} : batter arrives at first base

A baseball example

- Pitcher knows e_1 happens before e_6 , which happens before e_7
- Home plate umpire knows e_2 is before e_3 , which is before e_4 , which is before e_8 , ...
- Relationship between e_8 and e_9 is unclear

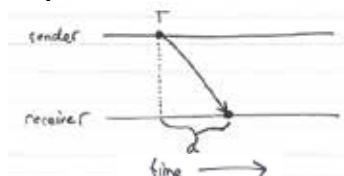


Ways to synchronize

- Send message from first base to home?
 - Or to a central timekeeper
 - How long does this message take to arrive?
- Synchronize clocks before the game?
 - Clocks drift
 - million to one => 1 second in 11 days
- Synchronize continuously during the game?
 - GPS, pulsars, etc

Perfect networks

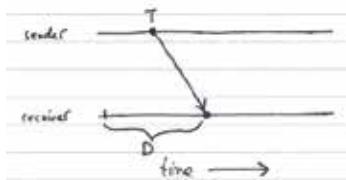
- Messages always arrive, with propagation delay exactly d



- Sender sends time T in a message
- Receiver sets clock to $T+d$
 - Synchronization is exact

Synchronous networks

- Messages always arrive, with propagation delay *at most* D



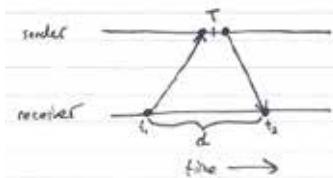
- Sender sends time T in a message
- Receiver sets clock to $T + D/2$
 - Synchronization error is at most $D/2$

Synchronization in the real world

- Real networks are asynchronous
 - Propagation delays are arbitrary
- Real networks are unreliable
 - Messages don't always arrive

Cristian's algorithm

- Request time, get reply
 - Measure actual round-trip time d



- Sender's time was T between t_1 and t_2
- Receiver sets time to $T + d/2$
 - Synchronization error is at most $d/2$
- Can retry until we get a relatively small d

The Berkeley algorithm

- Master uses Cristian's algorithm to get time from many clients
 - Computes average time
 - Can discard outliers
- Sends time adjustments back to all clients

The Network Time Protocol (NTP)

- Uses a hierarchy of time servers
 - Class 1 servers have highly-accurate clocks
 - connected directly to atomic clocks, etc.
 - Class 2 servers get time from only Class 1 and Class 2 servers
 - Class 3 servers get time from any server
- Synchronization similar to Cristian's alg.
 - Modified to use multiple one-way messages instead of immediate round-trip
- Accuracy: Local ~1ms, Global ~10ms

Real synchronization is imperfect

- Clocks never exactly synchronized
- Often inadequate for distributed systems
 - might need totally-ordered events
 - might need millionth-of-a-second precision

Logical time

- Capture just the “happens before” relationship between events
 - Discard the infinitesimal granularity of time
 - Corresponds roughly to causality
- Time at each process is well-defined
 - Definition (\rightarrow_i): We say $e \rightarrow_i e'$ if e happens before e' at process i

Global logical time

- Definition (\rightarrow): We define $e \rightarrow e'$ using the following rules:
 - Local ordering: $e \rightarrow e'$ if $e \rightarrow_i e'$ for any process i
 - Messages: $\text{send}(m) \rightarrow \text{receive}(m)$ for any message m
 - Transitivity: $e \rightarrow e''$ if $e \rightarrow e'$ and $e' \rightarrow e''$
- We say e “happens before” e' if $e \rightarrow e'$

Concurrency

- \rightarrow is only a partial-order
 - Some events are unrelated
- Definition (concurrency): We say e is concurrent with e' (written $e \parallel e'$) if neither $e \rightarrow e'$ nor $e' \rightarrow e$

The baseball example revisited

- $e_1 \rightarrow e_2$
 - by the message rule
- $e_1 \rightarrow e_{10}$, because
 - $e_1 \rightarrow e_2$, by the message rule
 - $e_2 \rightarrow e_4$, by local ordering at home plate
 - $e_4 \rightarrow e_{10}$, by the message rule
 - Repeated transitivity of the above relations
- $e_8 \parallel e_9$, because
 - No application of the \rightarrow rules yields either $e_8 \rightarrow e_9$ or $e_9 \rightarrow e_8$

Lamport logical clocks

- Lamport clock L orders events consistent with logical “happens before” ordering
 - If $e \rightarrow e'$, then $L(e) < L(e')$
- But not the converse
 - $L(e) < L(e')$ does not imply $e \rightarrow e'$
- Similar rules for concurrency
 - $L(e) = L(e')$ implies $e \parallel e'$ (for distinct e, e')
 - $e \parallel e'$ does not imply $L(e) = L(e')$
- i.e., Lamport clocks arbitrarily order some concurrent events

Lamport's algorithm

- Each process i keeps a local clock, L_i
- Three rules:
 1. At process i , increment L_i before each event
 2. To send a message m at process i , apply rule 1 and then include the current local time in the message: i.e., $send(m, L_i)$
 3. To receive a message (m, t) at process j , set $L_j = \max(L_j, t)$ and then apply rule 1 before time-stamping the receive event
- The global time $L(e)$ of an event e is just its local time
 - For an event e at process i , $L(e) = L_i(e)$

Lamport on the baseball example

- Initializing each local clock to 0, we get

$L(e_1) = 1$	(pitcher throws ball to home)
$L(e_2) = 2$	(ball arrives at home)
$L(e_3) = 3$	(batter hits ball to pitcher)
$L(e_4) = 4$	(batter runs to first base)
$L(e_5) = 1$	(runner runs to home)
$L(e_6) = 4$	(ball arrives at pitcher)
$L(e_7) = 5$	(pitcher throws ball to first base)
$L(e_8) = 5$	(runner arrives at home)
$L(e_9) = 6$	(ball arrives at first base)
$L(e_{10}) = 7$	(batter arrives at first base)

- For our example, Lamport's algorithm says that the run scores!

Total-order Lamport clocks

- Many systems require a total-ordering of events, not a partial-ordering
- Use Lamport's algorithm, but break ties using the process ID
 - $L(e) = M * L_i(e) + i$
 - M = maximum number of processes

Vector Clocks

- Goal
 - Want ordering that matches causality
 - $V(e) < V(e')$ if and only if $e \rightarrow e'$
- Method
 - Label each event by vector $V(e) [c_1, c_2 \dots, c_n]$
 - $c_i = \#$ events in process i that causally precede e

Vector Clock Algorithm

- Initially, all vectors $[0,0,\dots,0]$
- For event on process i , increment own c_i
- Label message sent with local vector
- When process j receives message with vector $[d_1, d_2, \dots, d_n]$:
 - Set local each local entry k to $\max(c_k, d_k)$
 - Increment value of c_j

Vector clocks on the baseball example

Event	Vector	Action
e_1	[1,0,0,0]	pitcher throws ball to home
e_2	[1,0,1,0]	ball arrives at home
e_3	[1,0,2,0]	batter hits ball to pitcher
e_4	[1,0,3,0]	batter runs to first base)
e_5	[0,0,0,1]	runner runs to home
e_6	[2,0,2,0]	ball arrives at pitcher
e_7	[3,0,2,0]	pitcher throws ball to 1 st base
e_8	[1,0,4,1]	runner arrives at home
e_9	[3,1,2,0]	ball arrives at first base
e_{10}	[3,2,3,0]	batter arrives at first base

- Vector: [p,f,h,t]

Important Points

- Physical Clocks
 - Can keep closely synchronized, but never perfect
- Logical Clocks
 - Encode causality relationship
 - Lamport clocks provide only one-way encoding
 - Vector clocks provide exact causality information