
9/25/12

1

Time and synchronization

(“There’s never enough time…”)

Today’s outline
  Global Time
  Time in distributed systems

– A baseball example
  Synchronizing real clocks

– Cristian’s algorithm
– The Berkeley Algorithm
– Network Time Protocol (NTP)

  Logical time
  Lamport logical clocks
  Vector Clocks

9/25/12

2

Why Global Timing?

  Suppose there were a globally consistent
time standard
  Would be handy

– Who got last seat on airplane?
– Who submitted final auction bid before

deadline?
– Did defense move before snap?

Time Standards
  UT1

–  Based on astronomical observations
–  “Greenwich Mean Time”

  TAI
–  Started Jan 1, 1958
–  Each second is 9,192,631,770 cycles of radiation

emitted by Cesium atom
–  Has diverged from UT1 due to slowing of earth’s

rotation
  UTC

–  TAI + leap seconds to be within 800ms of UT1
–  Currently 35
–  Most recent: June 30, 2012

9/25/12

3

Comparing Time Standards

UT1 −	
 UTC

Distributed time
  Premise

– The notion of time is well-defined (and
measurable) at each single location

– But the relationship between time at different
locations is unclear
  Can minimize discrepancies, but never eliminate
them

  Reality
– Stationary GPS receivers can get global time

with < 1µs error
– Few systems designed to use this

9/25/12

4

A baseball example
  Four locations: pitcher’s mound, first base, home plate,

and third base
  Ten events:

e1: pitcher throws ball to home
e2: ball arrives at home
e3: batter hits ball to pitcher
e4: batter runs to first base
e5: runner runs to home
e6: ball arrives at pitcher
e7: pitcher throws ball to first base
e8: runner arrives at home
e9: ball arrives at first base
e10: batter arrives at first base

A baseball example

  Pitcher knows e1 happens before e6,
which happens before e7
  Home plate umpire knows e2 is before e3,
which is before e4, which is before e8, …
  Relationship between e8 and e9 is unclear

9/25/12

5

Ways to synchronize

  Send message from first base to home?
– Or to a central timekeeper
– How long does this message take to arrive?

  Synchronize clocks before the game?
– Clocks drift

  million to one => 1 second in 11 days

  Synchronize continuously during the
game?
– GPS, pulsars, etc

Perfect networks

  Messages always arrive, with propagation
delay exactly d

  Sender sends time T in a message
  Receiver sets clock to T+d

– Synchronization is exact

9/25/12

6

Synchronous networks

  Messages always arrive, with propagation
delay at most D

  Sender sends time T in a message
  Receiver sets clock to T + D/2

– Synchronization error is at most D/2

Synchronization in the real world

  Real networks are asynchronous
– Propagation delays are arbitrary

  Real networks are unreliable
– Messages don’t always arrive

9/25/12

7

Cristian’s algorithm

  Request time, get reply
– Measure actual round-trip time d

  Sender’s time was T between t1 and t2

  Receiver sets time to T + d/2
– Synchronization error is at most d/2

  Can retry until we get a relatively small d

The Berkeley algorithm

  Master uses Cristian’s algorithm to get
time from many clients
– Computes average time
– Can discard outliers

  Sends time adjustments back to all clients

9/25/12

8

The Network Time Protocol (NTP)

  Uses a hierarchy of time servers
– Class 1 servers have highly-accurate clocks

  connected directly to atomic clocks, etc.

– Class 2 servers get time from only Class 1 and
Class 2 servers

– Class 3 servers get time from any server
  Synchronization similar to Cristian’s alg.

– Modified to use multiple one-way messages
instead of immediate round-trip

  Accuracy: Local ~1ms, Global ~10ms

Real synchronization is imperfect

  Clocks never exactly synchronized
  Often inadequate for distributed systems

– might need totally-ordered events
– might need millionth-of-a-second precision

9/25/12

9

Logical time

  Capture just the “happens before”
relationship between events
– Discard the infinitesimal granularity of time
– Corresponds roughly to causality

  Time at each process is well-defined
– Definition (→i): We say e →i e’ if e happens

before e’ at process i

Global logical time

  Definition (→): We define e → e’ using
the following rules:
– Local ordering: e → e’ if e →i e’ for any

process i
– Messages: send(m) → receive(m) for any

message m
– Transitivity: e → e’’ if e → e’ and e’ → e’’

  We say e “happens before” e’ if e → e’

9/25/12

10

Concurrency

  → is only a partial-order
– Some events are unrelated

  Definition (concurrency): We say e is
concurrent with e’ (written e║e’) if neither
e → e’ nor e’ → e

The baseball example revisited
  e1 → e2

–  by the message rule
  e1 → e10, because

–  e1 → e2, by the message rule
–  e2 → e4, by local ordering at home plate
–  e4 → e10, by the message rule
–  Repeated transitivity of the above relations

  e8║e9, because
–  No application of the → rules yields either e8 → e9 or

e9 → e8

9/25/12

11

Lamport logical clocks
  Lamport clock L orders events consistent with

logical “happens before” ordering
–  If e → e’, then L(e) < L(e’)

  But not the converse
–  L(e) < L(e’) does not imply e → e’

  Similar rules for concurrency
–  L(e) = L(e’) implies e║e’ (for distinct e,e’)
–  e║e’ does not imply L(e) = L(e’)

  i.e., Lamport clocks arbitrarily order some
concurrent events

Lamport’s algorithm
  Each process i keeps a local clock, Li
  Three rules:

1.  At process i, increment Li before each event
2.  To send a message m at process i, apply rule 1 and

then include the current local time in the message:
i.e., send(m,Li)

3.  To receive a message (m,t) at process j, set Lj =
max(Lj,t) and then apply rule 1 before time-stamping
the receive event

  The global time L(e) of an event e is just its
local time

–  For an event e at process i, L(e) = Li(e)

9/25/12

12

Lamport on the baseball example

  Initializing each local clock to 0, we get
 L(e1) = 1 (pitcher throws ball to home)
 L(e2) = 2 (ball arrives at home)
 L(e3) = 3 (batter hits ball to pitcher)
 L(e4) = 4 (batter runs to first base)
 L(e5) = 1 (runner runs to home)
 L(e6) = 4 (ball arrives at pitcher)
 L(e7) = 5 (pitcher throws ball to first base)
 L(e8) = 5 (runner arrives at home)
 L(e9) = 6 (ball arrives at first base)
 L(e10) = 7 (batter arrives at first base)

  For our example, Lamport’s algorithm says that
the run scores!

Total-order Lamport clocks

  Many systems require a total-ordering of
events, not a partial-ordering
  Use Lamport’s algorithm, but break ties
using the process ID
– L(e) = M * Li(e) + i

  M = maximum number of processes

9/25/12

13

Vector Clocks

  Goal
– Want ordering that matches causality
– V(e) < V(e’) if and only if e → e’

  Method
– Label each event by vector V(e) [c1, c2 …, cn]

  ci = # events in process i that causally precede e

Vector Clock Algorithm

  Initially, all vectors [0,0,…,0]
  For event on process i, increment own ci
  Label message sent with local vector
  When process j receives message with
vector [d1, d2, …, dn]:
– Set local each local entry k to max(ck, dk)
–  Increment value of cj

9/25/12

14

Vector clocks on the baseball example
Event Vector Action
e1 [1,0,0,0] pitcher throws ball to home
e2 [1,0,1,0] ball arrives at home
e3 [1,0,2,0] batter hits ball to pitcher
e4 [1,0,3,0] batter runs to first base)
e5 [0,0,0,1] runner runs to home
e6 [2,0,2,0] ball arrives at pitcher
e7 [3,0,2,0] pitcher throws ball to 1st base
e8 [1,0,4,1] runner arrives at home
e9 [3,1,2,0] ball arrives at first base
e10 [3,2,3,0] batter arrives at first base

  Vector: [p,f,h,t]

Important Points

  Physical Clocks
– Can keep closely synchronized, but never

perfect
  Logical Clocks

– Encode causality relationship
– Lamport clocks provide only one-way

encoding
– Vector clocks provide exact causality

information

