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ABSTRACT

Hidden code dependencies are responsible for many complications
in maintenance tasks. With the introduction of variable features in
configurable systems, dependencies may even cross feature bound-
aries, causing problems that are prone to be detected late. Many
current implementation techniques for product lines lack proper
interfaces, which could make such dependencies explicit. As al-
ternative to changing the implementation approach, we provide a
tool-based solution to support developers in recognizing and dealing
with feature dependencies: emergent interfaces. Emergent interfaces
are inferred on demand, based on feature-sensitive intraprocedural
and interprocedural data-flow analysis. They emerge in the IDE
and emulate modularity benefits not available in the host language.
To evaluate the potential of emergent interfaces, we conducted and
replicated a controlled experiment, and found, in the studied context,
that emergent interfaces can improve performance of code change
tasks by up to 3 times while also reducing the number of errors.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques

General Terms

Experimentation

Keywords

Product Lines, Interfaces, Preprocessors, Controlled Experiments

1. INTRODUCTION

During maintenance, developers often introduce errors into soft-
ware systems when they fail to recognize module and feature depen-
dencies [10]. This problem is particularly critical for configurable
systems, in which features can be enabled and disabled at compile
time or run time, and market and technical needs constrain how
features can be combined. In this context, features often cross-
cut each other [29] and share program elements like variables and
methods [38], without proper modularity support from a notion of
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interface between features. In such context, developers can easily
miss cross-feature dependencies, such as a feature assigning a value
to a variable read by another feature. As there is no mutual agree-
ment [48] between separate feature developers, changing one feature
might be the correct action for maintaining that feature, but might
bring undesirable consequences to the behavior of other features.
Similar issues could also appear when developers assume invalid
dependencies, as would be the case if the just discussed features
were mutually exclusive. In a prior study collecting metrics of 43
large-scale open-source implementations in which features were
implemented using the C preprocessor, we found that cross-feature
dependencies are frequent in practice [38].

To reduce this feature-dependency problem, we propose a tech-
nique called emergent interfaces (introduced in a vision paper [37])
that establishes interfaces for feature code on demand and according
to a given code-change task. An emergent interface is an abstraction
of the data-flow dependencies of a feature, consisting of a set of
provides and requires clauses that describe such dependencies. We
call our technique emergent because, instead of writing interfaces,
developers request interfaces on demand; that is, interfaces emerge
to support a specific code-change task. This way, developers be-
come aware of feature dependencies and may have a better chance
of avoiding errors [49]. Emergent interfaces may also reduce code-
change effort: Instead of searching for dependencies throughout
the code and reasoning about requirements-level feature constraints,
developers can rely on proper tool support to infer interfaces. We
implemented emergent interfaces in a tool, Emergo, available as an
Eclipse plug-in for Java. Emergo performs feature-sensitive data-
flow analysis to infer interfaces on demand, both at intraprocedural
and at interprocedural level.

A key novelty in this paper is an empirical evaluation of emergent
interfaces as provided by Emergo. We conducted and replicated a
controlled experiment on feature-related code-change tasks in two
software product lines. The studied product lines are implemented
with preprocessor-like variability mechanisms, which are widely
used to implement compile-time variability in industrial practice,
despite their lack of modularity. In particular, we evaluate emer-
gent interfaces by answering two research questions: Do emergent
interfaces reduce effort during code-change tasks involving feature-
code dependencies in preprocessor-based systems? Do emergent
interfaces reduce the number of errors during code-change tasks in-
volving feature-code dependencies in preprocessor-based systems?
We consider tasks that involve both intraprocedural and interpro-
cedural feature dependencies. We first conducted the experiment
in one institution, recruiting graduate students as subjects, and then
replicated it with undergraduate students in another institution.

Our experiment reveals that, in our settings, emergent interfaces
significantly reduce maintenance effort for tasks involving inter-



procedural feature dependencies, which cross method boundaries.
Both experiment rounds reveal that developers were, on average, 3
times faster completing our code-change tasks when using emergent
interfaces. As for tasks involving only intraprocedural dependen-
cies, differences are statistically significant only in one round, in
which we on average observe a 1.6 fold improvement in favor of
emergent interfaces. In line with recent research [49], in both rounds
we observe that presenting feature dependencies helps developers
detecting and avoiding errors, regardless of the kind of dependency.
In summary, we make the following contributions:

e An introduction to emergent interfaces and a complete im-
plementation in Emergo, supporting not only intraprocedural
analysis, but also the more powerful interprocedural analysis.

e An empirical evaluation assessing the potential of emergent
interfaces. We evaluate effort and error reduction when using
emergent interfaces in a controlled (and replicated) exper-
iment with, in total, 24 participants in two product lines,
demonstrating significant potential.

The idea of emergent interfaces was first introduced in a vision
paper, with an early prototypical implementation approximating
intraprocedural data-flow analysis [37]. Subsequently, we statically
analyzed the potential impact of emergent interfaces in 43 open
source projects [38] and investigated feature-sensitive data-flow
analyses [7]. This paper brings together these results and reports on
a significantly revised and extended version of Emergo that supports
precise, feature-sensitive, and interprocedural data-flow analysis
and complements them with a novel empirical evaluation.

2. MAINTAINING PRODUCT LINES

Inadequate modularity mechanisms plague many languages and
cause many implementation problems. Emergent interfaces are
applicable to many situations where explicit interfaces between
code fragments are lacking. While we will hint at many other use
cases, to illustrate and explore the idea of emergent interfaces, we
look at a context that is especially challenging to developers due
to non-modular code fragments and variability: preprocessor-based
software product lines.

Configurable systems, especially in the form of software product
lines, are challenging, because code fragments are configurable and
may not be included in all product configurations. That is, develop-
ers need to reason about potentially different control and data flows
in different configurations. At the same time, when variability is im-
plemented with preprocessor directives, code fragments belonging
to a feature are marked (annotated) but not encapsulated behind an
interface. Therefore the control and data flow across feature bound-
aries is implicit—but common, as we found in a previous study [38].
Industrial product lines can easily have hundreds of features with
a large number of possible derivable products. When maintaining
a product line, the developer must be sure not to break any of the
possible products (as we illustrate next with two scenarios), but due
to the sheer potential number of them, rapid feedback by testing is
often too expensive or even not possible for all products.

2.1 Scenario 1: Implementing a New Require-
ment

The first scenario comes from the Best Lap commercial car racing
game! that motivates players to achieve the best circuit lap time and
therefore qualify for the pole position. Due to portability constraints,
the game is developed as a product line and is deployed on 65
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different devices. The game is written in Java and uses the Antenna
C-style preprocessor.?

To compute the score, developers implemented the method illus-
trated in Figure 1: Variable totalScore stores the player’s total
score. Next to the common code (non-annotated code, or annotated
with mandatory features), the method contains optional code that
belongs to feature ARENA. This feature publishes high scores on a
network server and, due to resource constraints, is not available in
all products.

public void computeLevel() {
totalScore = perfectCurvesCounter * PERFECT CURVE_BONUS + ...
- totalCrashes * SRC_TIME_MULTIPLIER;

#ifdef ARENA(D)...
Yo K el

- — public static void setScore(int s){
NetworkFacade.setScore(totalScore); score = (s < 0) 2 0 : s;

NetworkFacade.setLevel (getLevel()); }

Figure 1: Code change only works for some products. ARENA
feature code in gray.

In this scenario, consider the following planned change. To add
penalties in case the player often crashes the car, let the game score
be not only positive, but also negative. To accomplish the task,
a developer localizes the maintenance points, in this case the to-
talScore assignment, and changes the computation of scores (see
the bold line in Figure 1). Products without the ARENA feature now
enjoy the new functionality, but unfortunately the change is incom-
plete for products with the ARENA feature. In the implementation of
feature ARENA, method setScore checks for positive values and
prevents submitting negative scores to the network server.

The cause of the problem is that the ARENA implementation ex-
tends the score behavior and is therefore affected by the change.
This was not, however, noticed by the developer, who did not realize
that she had to change code associated to other features. In this case,
she would have to change part of the ARENA code to not enforce the
invariant that scores are positive. In the actual implementation, fea-
ture ARENA is partially implemented inside method computeLevel
and guarded with #ifdef directives, so it might not be so difficult
to notice the dependency if the method is small. However, in more
complex code or even alternative implementation approaches that
separate the feature implementation (see Section 2.4 below) the
dependencies across feature boundaries might be harder to track.

In this context, searching for cross-feature dependencies might
increase developers effort since they have to make sure that the
modification does not impact other features. Further, if they miss a
dependency, they can introduce errors—that potentially only mani-
fest in few variants—by not properly completing the code change
task, for example.

2.2 Scenario 2: Fixing an Unused Variable

Our second scenario is based on a bug report from glibc.> This
project is structured with several preprocessor macros and conditio-
nal-compilation constructs. Developers report that a variable sta-
tus in the common code is reported as unused. In fact, such warn-
ings are commonly found in many bug reports of preprocessor-based
systems.* Investigating the problem, we find that status is de-
clared in all configurations, but only used when features CHOWN or
UTIMES are selected, as shown in Figure 2 (left-hand side). When
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we compile the product line without either feature, the compiler
issues an unused-variable warning.

#ifdef CHOWN
GFileStatus status;
#endif

GFileStatus status;
#ifdef SLINK (¥)
#ifdef CHOWN (D)~-"% ¢
e status
#ifdef UTIMES (B)e "N\

status

#ifdef SLINK (¥)
#ifdef cHowN (¥)

#ifdef UTIMES (3)

Figure 2: Wrong fixing of an unused variable.

To fix the bug report, a developer would typically look for uses of
the variable. If she does not carefully look across feature boundaries,
she can easily introduce an error. The problem can even be worse
when there are requirements-level dependencies between features,
e.g., that SLINK cannot be selected without CHOWN.

In an unsuccessful attempt to fix the warning, the developer might,
for example, detect only the variable usage in feature CHOWN, and
then guard the declaration correspondingly as shown in the right-
hand side of Figure 2. This would actually lead to a worse problem:
an undeclared variable compilation error for configurations with
UTIMES but without CHOWN. The correct fix would require to
guard the declaration with #ifdef (CHOWN || UTIMES).

Again, the initial problem and the incorrect fix are caused by the
difficulty to follow dependencies across feature boundaries. These
are easy to detect in small and simple methods with little variability,
but might be complicated in larger code bases and when using other
language mechanisms that separate feature code (see Section 2.4).

2.3 Cross-Feature Dependencies in the Wild

Initially, the previously shown examples seem pretty specific,
requiring preprocessor directives and data-flow dependencies. To
quantify their frequency, we have previously conducted a conser-
vative study [38] mechanically mining the code base of 43 highly
configurable software systems with a total of over 30 million lines
of code, including Linux, Freebsd, postgres, sendmail, gcc, and
vim. All these common open-source systems make heavy use of
preprocessor directives for configuration (for features and portabil-
ity). Even just looking conservatively at intraprocedural data-flow
within individual methods, between 1 and 24 percent of all methods
in the studied systems contain cross-feature dependencies; however,
typically more than half of the methods with #ifdef directives also
contain cross-feature dependencies. These numbers only serve as a
lower bound, since interprocedural data-flow between methods was
not measured but likely causes additional cross-feature dependen-
cies. These results show that the problem, even though quite specific,
is so common in practice that building dedicated tool support can
be beneficial for a wide range of code-change tasks.

2.4 Beyond Preprocessors

We illustrate the problem for preprocessor-based product lines,
but other implementation approaches suffer from limited modular-
ity mechanisms, especially implementation approaches supporting
some form of crosscutting. While variability can make cross-feature
dependencies harder to detect, it is by no means necessary.

One of the well-known and controversially discussed examples
is aspect-oriented programming in the style of Aspect]. With As-
pect], code of features (or more generally concerns) is separated
into distinct code units and reintroduced in a weaving step. The
control-flow or data-flow between aspects and base code is not pro-

tected by explicit interfaces—a fact for which Aspect] was repeat-
edly criticized [44, 42], but which was also discussed as enabling
flexibility [15]. To mitigate the problem, several extensions to
aspect-oriented languages have been proposed to declare interfaces
between concerns [43, 21, 1, 16, 35, 32]. Without such interfaces
in Aspect], our first example works just as well with an aspect in-
jecting the ARENA code instead of an in-place #ifdef block. Other
structure-driven composition mechanisms, such as feature-oriented
programming [4], delta-oriented programming [39], or even just
subclassing [31] exhibit similar potential problems.

Finally, also in the context of preprocessor-based implementa-
tions, recent advances support some separation of feature code. To
deal with the scattering of feature code in preprocessor-based imple-
mentations, researchers have investigated virtual forms of separating
concerns by helping developers to focus on relevant features [22, 2,
28, 17]. For example, in CIDE [22], developers can create views
on a specific feature selection, hiding irrelevant files and irrelevant
code fragments inside files, with standard code-folding techniques
at the IDE level. Code fragments are hidden if they do not belong to
the selected feature set the developer has selected as relevant for a
task. In our examples, we have already shown the collapsed versions
of #ifdef statements with a & marker indicating additional code.
Virtual separation in this form has been shown to allow significant
understandability and productivity gains [2, 28]. However, hiding
also has a similar effect as moving code into an aspect: it is no
longer visible locally (except for a marker indicating hidden code)
and there is no interface describing the hidden code. In this sense,
virtual separation makes the problem of cross-feature dependencies
even worse.

3. EMERGENT INTERFACES

The problems discussed so far occur when features share ele-
ments such as variables and methods, raising cross-feature depen-
dencies. For instance, the common code might declare a variable
subsequently used by an optional feature.

There are several paths to attack this problem of cross-feature de-
pendencies. The typical language-designer approach is to introduce
additional modularity concepts into the programming language and
make control-flow and data-flow explicit in interfaces [27]. With
emergent interfaces, we pursue an alternative tool-based direction,
which works with existing languages and existing implementations
and infers interfaces on demand.

An emergent interface is an abstraction of the data-flow dependen-
cies of a feature. It consists of a set of provides and requires clauses
that describe such dependencies. In this work, we consider cross-
feature dependencies as data dependencies arising from definitions
introduced by a feature and used in others, and vice-versa. Each
provides and requires clause expresses data-dependency information
obtained through def-use chains. So, an emergent interface states
that features provide data to others and require data from others,
making explicit data dependencies between the involved features.

For example, when considering feature COPY in Figure 3—from
the MobileMedia product line [14]—, the emergent interface at
the bottom states that COPY requires data from the common code
(the mandatory feature) through the name variable; and that COPY
provides data to the SMS feature. This way, when maintaining a
feature, developers may ask for an emergent interface to be aware
of cross-feature dependencies. Now, they can prevent situations
where features would not work properly, like when assigning a new
controller to nextcontroller not suitable for the SMS feature.

3.1 Inferring Emergent Interfaces on Demand

Like every ordinary interface, an emergent interface abstracts



String name = "...";

#ifdef COPY
PVC controller
nextcontroller
#endif

new PVC(name);
controller;

#ifdef SMS
smsc.setNext (nextcontroller);
#endif

COPY Feature
Mandatory Feature REQUIRES name
PROVIDES name PROVIDES nextcontroller

I»—O)% new PVC(name) |

| nextcontroller = I»—O)—' smsc.setNext (nextcontroller) |

SMS Feature
REQUIRES nextcontroller

| name = ".."

Figure 3: Emergent interface for the COPY feature.

implementation details—feature implementation details—, exposing
only the data that features provide to and require from each other.
Differently from ordinary interfaces, an emergent interface does not
need to be written manually by developers. Instead, they are inferred
and emerge on demand in the IDE to improve feature understanding
and give support for specific development tasks. When analyzing
the inferred interface, developers become aware of cross-feature
dependencies and may have better chance of not introducing errors
to other features.

Despite improving feature understanding, emergent interfaces do
not provide guarantees such as stable contracts or means to detect
violations as normal written interfaces do. However, we argue that
writing and maintaining potentially large, fine-grained, and low-level
interfaces between crosscutting features that may change frequently
is a hard task. With emergent interfaces, developers get rid of this
task, because interfaces are inferred. Besides, it is important to infer
interfaces on demand. As mentioned, cross-feature dependencies
are common in practice [38], so, inferring interfaces in the first
place for entire features will probably yield a large set of provides
and requires clauses, being difficult to read and understand. In
contrast, inferring interfaces on demand from parts of a feature
implementation improves readability and understandability and can
help developers to focus on a specific local task.

To better illustrate how emergent interfaces are inferred from
parts of a feature implementation, we return to Scenario I from the
previous section, where the developer is supposed to change how the
total score is computed. Before changing this computation, the de-
veloper may ask for an emergent interface to support this particular
code change task. To ask for an interface, developers select part of a
feature implementation, possibly consisting of non-contiguous code
blocks within a method, that contains definitions or uses of variables.
Interpreted as maintenance points, the selection drives our tool (see
Section 3.4) to obtain cross-feature dependencies between these
points and the other features. In this context, emergent interfaces
help developers to make code changes once they identify the main-
tenance points. They do not contribute to finding the maintenance
points in the first place, though.

In our example, the developer is only interested in changing the
total score computation. So, she selects only part of the mandatory
feature implementation (see the dashed rectangle in Figure 4). Then,
data-flow analyses are performed to capture cross-feature depen-
dencies between the feature part she is maintaining and the other
features. Finally, the interface emerges stating that there is data pro-
vided by the common code (the mandatory feature) that is required
by the ARENA feature—the totalScore current’s value. Figure 4
illustrates the emergent interface for this scenario. The interface is
an abstraction of the data dependencies between part of the common

code (the totalScore assignment) and ARENA, containing two
provides and requires clauses (see the bottom of Figure 4). The
first clause states that the mandatory feature provides data to the
ARENA feature, which uses the value of totalScore when calling
the setScore method. The second clause states that this data also
reaches a ternary statement, which is inside the setScore method.
This happens due to the binding between totalScore and s, ac-
cording to Figure 1. Thus, the code change task may impact the
behavior of products containing the ARENA feature. The developer
is now aware of cross-feature dependencies. When investigating
them, she is likely to discover she also needs to modify the ARENA
code to avoid introducing an error. Finally, note that there is no data
from other features required by the totalScore assignment at the
mandatory feature, supporting hiding or separating those features.

public void computeLevel() {
=> [totaiScore = ... 1

#ifdef ARENA (¥)
}

Mandatory Feature ARENA Feature
PROVIDES totalScore REQUIRES totalScore

| totalScore = .. I“O)—i NetworkFacade.setScore(totalScore) |

I»—O)_I score = (s < 0) 2 0 : s |

| totalScore

Figure 4: Emergent interface for Scenario 1.

3.2 Abstracting Feature Code

As mentioned, emergent interfaces abstract feature implemen-
tation details. For example, although ARENA has many lines of
code scattered throughout many files, the emergent interface focuses
only on the lines that indeed are data dependent on the totalScore
value, helping developers to abstract the remaining lines and files
during this particular task.

In addition, emergent interfaces can help to prevent develop-
ers from analyzing unnecessary features and their associated code,
which is important to decrease code change effort. In particular, we
believe that our interfaces can help on making the idea of virtual
separation of concerns (see Section 2.4) realistic. That is, we can
hide features and rely on emergent interfaces to only show the ones
we need. For instance, consider Scenario 2 (Section 2.2). Here, an
emergent interface would show that only CHOWN and UTIMES
features require status. So, we could keep SLINK hidden, since it
is not related to the current task.

3.3 Avoiding Invalid Dependencies

Product lines may establish explicit requirements-level feature
constraints in terms of variability models [34]. By using these
models, it is possible to evaluate whether a feature combination is
valid or not. Emergent interfaces work both in the presence and
in the absence of variability models. If they are available, emer-
gent interfaces can take them into account, preventing developers
from reasoning about requirements-level feature constraints and
even from assuming invalid cross-feature dependencies in case of
mutually exclusive features (which may cause potential errors). For
example, with two mutually exclusive features A and B, developers
might assume that changing the x = 0 assignment in feature A may
lead to problems in feature B, which contains the m(x) statement.
However, since the involved features are mutually exclusive, we
have an empty interface: There is no data with respect to the x
variable from feature A that reaches feature B, and vice-versa in
any valid feature combination. So, code-change tasks in the former
feature do not impact the latter.



3.4 Implementation: Emergo

We implemented the idea of emergent interfaces in an Eclipse
plug-in named Emergo. Emergo computes emergent interfaces
based on feature dependencies between methods or within a sin-
gle method, by using interprocedural or intraprocedural feature-
sensitive data-flow analysis [7, 5]. More specifically, we use the
reaching definitions analysis through def-use chains. The feature-
sensitive approach is capable of analyzing all configurations of a
product line without having to generate all of them explicitly.

Although our examples refer to code that implement features,
Emergo is actually more general and considers code associated with
feature expressions such as “B && C”.

Also, because we use the feature-sensitive

approach, Emergo analyzes the def-use int x = 0;

chains of each configuration. So, Emergo #ifdef A

seeks for definitions of a feature used by x=1;

another for each configuration. For ex- #endif

ample, if int x = 0 is the maintenance #ifdef B && C
point (see the code snippet to the right), m(x);

there is a cross-feature dependency when #endif

—A ABAC, since data is required by m(x)

in such a configuration. In case there is a

variability model available, Emergo checks if this dependency is
possible or not. If yes, it shows such a dependency at the tool UL

The capacity of analyzing all products without the need to gener-
ate them in a brute-force fashion increases performance [7, 5], which
is important for interactive tools like ours that need to provide quick
responses to developers requests. To perform the feature-sensitive
analysis, we annotate the control-flow graph with feature informa-
tion, lift the lattice to contain a mapping of sets of configurations to
lattice values, and lift the transfer functions to compare whether or
not apply the ordinary function. The lifted function lazily splits the
sets of configurations in two disjoint parts, depending on the feature
expression annotated with the statement being analyzed: a set for
which the function should be applied; and a set for which it should
not [8].

Figure 5 shows a screenshot of Emergo. After the developer found
and selected the maintenance point in Line 1277 (the totalScore
assignment), Emergo shows an emergent interface using a table view
and a graph view. We read the first row of the table as follows: there
is data (the totalScore value) provided by the common code that is
required by the ARENA feature in Line 177 of the NetworkFacade
class.

©® O O Java ME - Bestlap/src/com/meantime/j2me/gui/GameScreen.java - Eclipse - /Applications/Eclipse...
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1
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1
1
1
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» [J) Mair 1279 this.gc_paint_endMiniGame = fa
128
1
1
1
1
1
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MIDletController.getSc
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this.gc_levelFinishedL score =6 <0)20: 3

Figure 5: Using Emergo for Scenario 1.

Initially, Emergo shows all cross-feature dependencies in both
views. To focus on a particular dependency, the developer can click
on the corresponding table row, and then Emergo shows the data
path associated with the dependency of that row in the graph view.

010010%8 110

Maintenance point

010010%8110

Maintenance point

Find dependencies

Code change task

010010001110

Code change task

i

010010001110

Figure 6: Dashed rectangles represent the time we count (with
and without emergent interfaces).

In our example in Figure 5, the developer selected the first row of
the table, so the graph shows the path from the maintenance point
to Line 177 of the NetworkFacade class. Emergo also provides
navigation support either by clicking on the table rows or on the
graph nodes, enabling developers to quickly jump within in the
IDE.

4. EXPERIMENTAL DESIGN

In the previous section we suggest that emergent interfaces can
make feature-code-change tasks (such as Scenario I and Scenario 2)
faster and less error prone. To evaluate these hypotheses and to get
a better understanding of the benefits and drawbacks of emergent
interfaces, we conducted and replicated a controlled experiment. We
investigate and compare code-change effort and introduced errors
when maintaining preprocessor-based product lines, with and with-
out emergent interfaces, in a setting that supports virtual separation,
allowing developers to hide feature-code fragments.

4.1 Goal, Questions, and Metrics

Our evaluation aims to compare maintenance of preprocessor-
based product lines with and without emergent interfaces (these are
our treatments). Specifically, we are interested in the interaction
with the feature-hiding facilities of virtual separation of concerns,
which we enable in both cases to aid comprehensibility. We evaluate
emergent interfaces from the developer’s point of view and observe
effort and number of errors they commit. We investigate the follow-
ing questions: (Question 1) Do emergent interfaces reduce effort
during code-change tasks involving feature code dependencies in
preprocessor-based systems? (Question 2) Do emergent interfaces
reduce the number of errors during code-change tasks involving
feature code dependencies in preprocessor-based systems?

To answer Question 1 (effort), we measure the time required to
find cross-feature dependencies and to change the impacted features
to accomplish a code change task. Figure 6 illustrates our setup with
and without emergent interfaces. Note that we do not measure the
time needed to find the maintenance point (we actually provide the
maintenance point with our task description as we describe later).
While finding the maintenance point may represent a significant part
of a code-change task in a real-world setting, emergent interfaces
do not contribute to that part. Hence, we measure only the part of
the maintenance task after the maintenance point was identified,
eliminating noise that would not contribute to our analysis.

To answer Question 2 (correctness), we measure how many in-
correct solutions a developer committed during a code change task
(number of errors). We consider all human actions as an error that
introduce one or more defects into the code. As described later,
for some tasks, we provide automated feedback to the experiment



participants, so a participant can continue the task after an incorrect
attempt. Other tasks are evaluated manually after the experiment, so
participants have only one attempt.

4.2 Participants

We performed the experiment three times. In a first pilot study,
we tested the experimental design with a small group of six graduate
students at the University of Marburg, Germany. Next, we per-
formed the actual experiment with 10 graduate students—attendants
of a course on experimental software engineering lead by an in-
dependent lecturer—at Federal University of Pernambuco, Brazil
(Round 1). Finally, we replicated the experiment with 14 UROP
(Undergraduate Research Opportunity Program) students at Federal
University of Alagoas, Brazil (Round 2). In both rounds, around
half of the participants were part-time students with professional
experience—varying from few months to many years of experience.
All participants were informed they could stop participating at any
time, but nobody did.

4.3 Material and Code-Change Tasks

We use two preprocessor-based product lines as experimental
material: Best Lap and MobileMedia. The former is a highly-
configurable commercial product line that has about 15 KLOC.
The latter, which has about 3 KLOC, is an academic product line
for applications that manipulate photo, music, and video on mobile
devices [14]. It contains feature restrictions and has been used in
previous studies [14, 36].

We ask participants to perform a number of code-change tasks
in each of the product lines. We provide the product line’s source
code and corresponding tasks that the participants should perform
by modifying the source code. We selected tasks that are affected by
cross-feature dependencies, since this is the kind of context where
Emergo can help. Note that emergent interfaces target a specific
class of problems; for other maintenance tasks we would not expect
any benefit. We argue that our task selection represents typical
cross-feature problems as outlined in Section 2.

To cover different use cases, we prepare two kinds of tasks. In
line with our motivating scenarios in Section 2, we have tasks that
require participants to implement a new requirement (requiring in-
terprocedural analysis of the existing source code) and tasks that
require participants to fix an unused variable (requiring only in-
traprocedural analysis). We provide a task of each kind for each
product line, for a total of four distinct tasks, as discussed next.

Task 1 - New requirement for Best Lap. The new requirement
for Best Lap is similar to our motivating Scenario I: There are
two methods of feature ARENA that contain conditional statements
forbidding negative scores. So, to accomplish the task, besides
changing the totalScore assignment, participants should remove
or rewrite these conditional statements (see one of them in method
setScore of Figure 1). To reach them, participants need to consider
interprocedural dependencies. That is, there are cross-feature depen-
dencies from the maintenance point to two conditional statements,
each one in a different method. In case Emergo is available, the
participant should use it to identify the cross-feature dependencies
between totalScore and the rest of the code. Otherwise, the partic-
ipant is free to use standard tools like find/replace and highlighting.
This setup also holds for the subsequent tasks.

Task 2 - New requirement for MobileMedia. The task for
MobileMedia is conceptually similar in the sense that participants
should change a variable assignment, follow cross-feature depen-
dencies, and update conditional statements (here, only one if state-
ment). However, in contrast to Task 1, where the method call depth
to reach the two conditional statements is 1, here the call depth is 2.

That is, from the maintenance point, we need to follow two method
calls to reach the if statement.

Task 3 - Unused variable in Best Lap. In Best Lap, we asked
participants to fix unused-variable warnings for two variables: tires
and xP. We introduced the bugs ourself by removing correct #ifdef
directives around the variable declarations. We can solve all unused-
variable tasks by following intraprocedural dependencies only, but
they typically require investigating code of different features. To
accomplish the tasks, we ask participants to put a correct #ifdef
around the variable declarations. The variables tires and xP are
inside methods with 147 and 216 source lines of code, respectively.

Task 4 - Unused variable in MobileMedia. Again the Mobile-
Media task is conceptually similar to the Best Lap task. Participants
should fix the unused-variable warning of numberOfViews and
albumMusic. The two variables are placed in shorter methods
when compared to Task 3: they have 49 and 71 lines of code.

Overall, the tasks for both product lines have similarities, but
they are not equivalent. Actually, these differences—methods size,
method call depths to reach the impacted feature, and number of
conditionals to change—between tasks for both product lines help
us to better analyze the effects of our two treatments and is propetrly
controlled by our experiment design, as we shall see in Section 4.5.

Finally, we designed warmup tasks on a toy product line so that
participants could learn how to use Emergo at the start of the experi-
ment. We performed warmup tasks together in a class context but
did not evaluate their results.

4.4 Hypotheses

Based on our goals and tasks, we evaluate the following hypothe-
ses: (H1 - Effort) With emergent interfaces, developers spend less
time to complete code-change tasks involving feature dependencies
in both product lines. (H2 - Error introduction) With emergent
interfaces, developers commit less errors in both product lines when
performing code-change tasks involving feature dependencies.

4.5 Design

To evaluate our hypotheses, we distinguish between participants
using our treatments (independent variable with two levels: with and
without emergent interfaces). Additionally, we distinguish between
the tasks of both product lines, as we cannot assume equivalence
(independent variable with two levels: Best Lap and MobileMedia
tasks). We measure time and the number of errors (dependent
variables) for new-requirement tasks and unused-variable tasks.

Since we have two independent variables with two levels each,
we use a standard Latin Square design [6]. We randomly dis-
tribute participants in rows and product lines tasks in columns. The
treatments come inside each cell. Each treatment appears only
once in every row and every column (see
figure to the right). As a result, each par-
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carry-over effects, such as learning (if we
let one to use both treatments in the same
task, we would favor the second treatment,
since she already knows how to accomplish the task). The design
does not favor any treatment and blocks two factors: participant and
code-change tasks.

As analysis procedure for this design, we perform an ANOVA.
To give relevance to the ANOVA [6], we use the Bartlett, Box Cox,
and Tukey tests to verify variance homogeneity, normal distribution,
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Figure 7: Task description sheets we distributed.

and model additivity, respectively. We follow the convention of
considering a factor as significant when p-value < 0.05.

4.6 Procedure

After randomly assigning each participant into our Latin Square
design, we distribute task-description sheets accordingly. Each par-
ticipant performs two tasks in two individually prepared installations
of Eclipse (with Emergo installed or not, with Best Lap or Mobile-
Media prepared readily as a project); each installation corresponds
to a cell of our Latin Square design. By preparing the Eclipse instal-
lation, we prevent participants from using Emergo when they are
not supposed to (it is simply not installed in that case). All Eclipse
installations support virtual separation, where we leave the first line
with the #ifdef statement to inform the user of hidden code). Also
for the warmup tasks, we prepared a distinct Eclipse installation.

All tasks focus around a specific maintenance point (a variable
assignment). Since we are not interested in the time needed to locate
the variable, we prepare the installations in such a way that the
correct files are opened and the cursor is positioned exactly at the
maintenance point.

We prepare all Eclipse installations with an additional plug-in to
measure the times automatically. The plug-in adds two buttons: a
Play/Pause button for participants to start/stop the chronometer; and
a Finish button to submit a solution. We instruct the participants to
press Play when starting with the task after reading its description
and Finish when done, and to use Pause for breaks (for asking
questions during the experiment, for example). To collect qualitative
data, in the pilot study we also recorded the screen.

To illustrate the tasks from the participant’s perspective, we sum-
marize the task description sheets we distributed in Figure 7. We
represent the steps that participants should follow as “a”, “b”, and
“c”. Notice that we associate each sheet with a different Eclipse.

We also partially automated measuring the number of errors. For
new-requirements tasks (Tasks 1 and 2, presented in Section 4.3), the
plug-in automatically checks the submitted solution by compiling
the code and running test cases (require about 1 second), as soon as
a participant presses Finish. If the test passes, we stop and record the
time, otherwise we increase the error counter and let the participant
continue until the test eventually passes. The test cases are not
accessible to the participants. For unused-variable tasks (Tasks 3
and 4) we do not provide immediate feedback but evaluate whether
one or both variables are correctly fixed after the experiment. This is
because we learned (when watching the pilot screen recordings) that
participants spend time dealing with compilation errors regarding
missing #endif statements and tokens like “//” and “#”. Because
we do not want to measure this extra time, we ask participants to
write the #ifdef feature expression in the task description sheets.
For example, to fix the unused variable illustrated in Section 2.2,
they can write “CHOWN || UTIMES” in the sheet.

All times using emergent interfaces include the time required by
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Figure 8: Time results for the new-requirement task.

Emergo to compute these interfaces. Emergo takes, on the used
systems, around 13 seconds and 6 seconds to generate emergent
interfaces for Tasks 1 and 2, respectively. To compute interfaces
for Tasks 3 and 4, we only need intraprocedural analyses, but, to
simplify execution, instead of asking the developers to select the
analysis to use, we let Emergo automatically apply interprocedural
ones. So, instead of 1 second or less (intraprocedural), it takes more
time than needed, around 11, 16, 2, and 3 seconds for the variables
tires, xP, number0fViews, and albumMusic, respectively.

To avoid the effect of software installed in different machines and
related confounding parameters, we conduct the experiment in a vir-
tual machine (executed on comparable hardware) that provides the
same environment to all participants. In each round, all participants
worked at the same time in the same room under the supervision of
two experimenters.

4.7 Execution and Deviations

At the start of the experiment session, we introduce preprocessors,
the hiding facilities of virtual separation of concerns, and emergent
interfaces. Together with the participants, we perform a warmup
task that uses Emergo. We introduce how to use the Play/Pause and
Finish buttons. For the entire experiment, we scheduled 2.5 hours
(training, warmup, and execution). No deviations occurred.

S. RESULTS AND DISCUSSION

Next, we describe the results and test the hypotheses before dis-
cussing their implications (All data, materials, tasks, plug-ins, and
R scripts are available at http://twiki.cin.ufpe.br/twiki/
bin/view/SPG/EmergentInterfaces). We proceed separately
with the two kinds of tasks, reporting results from both rounds.

5.1 New-Requirement Tasks

We plot the times for both new-requirement tasks (1 and 2) in
Figure 8. Here we use beanplot batches, where each batch shows
individual observations as small horizontal lines—the longest rep-
resents the average of that batch—and the density trace forms the
batch shape. In Round 1 (see the legend in the figure), the slowest
time when using emergent interfaces is still faster than the fastest
time without. On average, participants accomplished the task 3
times faster with emergent interfaces. According to an ANOVA test,
we obtain statistically significant evidence that our interfaces reduce
effort in both new-requirement tasks, p-value = 2.237¢-05. The key
results were confirmed in the replication (participants with emergent
interfaces were, on average, 3.1 times faster), p-value = 5.343¢-05.

In Figure 9, we plot the number of errors results for both new-
requirement tasks. In Round 1, only one participant committed more
errors when using emergent interfaces than without, and all of them
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Figure 9: Number of errors for the new-requirement task in
both rounds. A-J: Round 1; K-X: Round 2.

committed errors when not using emergent interfaces (they thought
they had finished the task but had not, potentially because they
missed a dependency). The replication roughly confirms the results:
8 (57%) participants committed errors when not using emergent
interfaces, but only 4 (28%) participants committed errors with
emergent interfaces. Here we do not perform an ANOVA test on
number of errors because we have many zero samples, being hard
to observe a tendency and draw statistically significant conclusions.

5.2 Unused-Variable Tasks

Differently from the new-requirement task, here we do not have
a test case, so we do not force participants to finish the task cor-
rectly. We took this important decision after reviewing the screen
recordings from the pilot study. When fixing the unused variable
problem, participants spend time since they miss statements such
as #endif and tokens like “//” and “#”, essential to compile the
code and run the test, but typically less common when somebody is
more familiar with the used notation. Because including this time
would introduce bias into our results, we ask participants to write the
#ifdef feature expression in the task description sheets, not in the
source code. Thus, all participants finished the unused-variable task,
but some committed errors when writing the feature expressions,
which means we could have data of participants that, for example,
did not try hard enough and consequently finished the task earlier.

Regarding the measured time, it actually only reflects the time
participants need until they think they are done. To reflect incor-
rect solutions in the time, we also analyze measurements with an
added time penalty for incorrect tasks that simulates the extra time
participants would have needed, if we mechanically reported the
error or if they found the problem unfixed in practice. We add half
the standard deviation of all participants times. We analyze both the
original time (time until they think they are done) and the adjusted
time with the penalty for incorrect tasks (which can be seen as a
form of sensitivity analysis [18]).

We plot the adjusted times for both unused-variable tasks (Tasks 3
and 4) in Figure 10. Differently from the new-requirement task, here
the use of emergent interfaces adds little: the difference between
the treatments is smaller. In fact, we obtain statistically significant
evidence that our interfaces reduce effort only in the second round (p-
value = 0.016; for the first round, p-value = 0.1306). The statistical
results are stable for the original time (time until they think they
are done) and the adjusted time. Regarding the adjusted time in the
second round, participants were 1.6 times faster, on average.

When considering the product lines peculiarities, the MobileMe-
dia methods are simpler when compared to the Best Lap ones. The
adjusted time spent to accomplish the unused-variable task for the
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Figure 11: Number of errors for the unused-variable task.

MobileMedia variables is, on average, fairly similar when using
and not using emergent interfaces. However, the difference is much
greater for the Best Lap variables: participants using emergent inter-
faces are 2 and 2.2 times faster in the first and second rounds. Again,
notice that the results are similar in both rounds.

We plot the number of errors metric in Figure 11. The left-hand
side represents Round 1; the right-hand side, Round 2. The errors
consist of wrongly submitted #ifdef statements. In general, it
turns out that participants commit less errors when using emergent
interfaces. The MobileMedia methods are simpler, which might
explain why participants commit less errors when performing the
task in such product line.

5.3 Meta-Analysis

To identify other tendencies, we also performed a meta-analysis,
where we combine the results from both rounds. The time differ-
ences are statistically significant for both kinds of tasks. Here we
used the adjusted time for the unused variable task.

5.4 Interpretation

Effort reduction. Regarding Question 1 (effort reduction), we
found that emergent interfaces reduce the time spent to accomplish
the new-requirement tasks. The difference is large, with a three-fold
improvement, and statistically significant. Despite different student
levels (graduate versus undergraduate), the results are stable across
both rounds.

We regard this as a confirmation that emergent interfaces make
cross-feature dependencies explicit and help our participants to
concentrate on the task, instead of navigating throughout the code
to find and reason about cross-feature dependencies.

Additionally, we can see a qualitative difference between new-
requirement tasks that require interprocedural analysis across sev-
eral methods and unused-variable tasks that require to analyze only
code of a single method, where tasks involving interprocedural
analysis show higher speedups. We argue that the effect is general
to tasks with interprocedural dependencies, since they are more



difficult to follow without tool support. In contrast, emergent inter-
faces contribute comparably little over simple textual search tools
when applied in the local context of a function, especially small
ones. Still, we can carefully interpret our results as suggesting that
the effort gains might depend on the method complexity and size in
the intraprocedural context: speedups were considerably higher in
the Best Lap task, where variables were placed in longer methods.

In all cases, the performance gained from emergent interfaces
outperforms the extra overhead required to compute them. Our
conclusion is that, for code-change tasks involving cross-feature
dependencies, emergent interfaces can help to reduce effort, while
the actual effect size depends on the kind of task (inter or intrapro-
cedural, method size, complexity, etc).

Correctness. Regarding Question 2 (reducing the number of
errors made), our experiment suggests that emergent interfaces can
reduce errors. The new-requirement task fits into an incomplete fix
that has been pointed as a type of mistake in bug fixing [49]. It is
“introduced by the fact that fixers may forget to fix all the buggy
regions with the same root cause." Here the developer performs the
code change in one feature but, due to cross-feature dependencies,
she needs to change some other feature as well. If she does not
change it, she introduces an error. To discover this kind of incom-
plete fix, developers should compile and execute the problematic
feature combination. Due to many potential product combinations,
they might discover the error too late.

Given that emergent interfaces make developers aware of cross-
feature dependencies, the chances of changing the impacted features
increases, leading them to not press the Finish button too rashly.
This is consistent with recent research [49]: “If all such potential
‘influenced code’ (either through control- or data-dependency) is
clearly presented to developers, they may have better chances to
detect the errors.” Our results suggest that participants tend to
introduce more errors without emergent interfaces. For unused-
variable tasks, we observe again that the longer methods of Best Lap
are more prone to errors than the shorter methods of MobileMedia.

Outlook. Our experiment considered the influence of emer-
gent interfaces in a specific scenario of preprocessor-based product
lines. As we argued in Section 2, the idea can be generalized to
enhance other implementation mechanisms with insufficient modu-
larity mechanisms. Of course, we cannot simply transfer our results
to these settings, but we are confident that, in follow-up experiments,
we could find similar improvements also for tasks involving cross-
feature dependencies in aspect- or feature-oriented implementations.

Also, emergent interfaces have capabilities we did not explore
in our experiment. For instance, product lines often make explicit
requirements-level feature constraints in terms of variability mod-
els. To identify a cross-feature dependency, the underlying feature-
sensitive data-flow analysis of Emergo can take such constraints into
account mechanically and automatically exclude infeasible paths,
whereas a developer needs to manually compare #ifdef annota-
tions on code statements with constraints specified in these models.
Further, even situations where Emergo derives empty interfaces can
provide valuable information to users, indicating that they can stop
their search—a fact that we did not evaluate yet.

5.5 Threats to Validity

First, our experiment is limited to a specific implementation
technique and specific code-change scenarios; generalization to
aspect-oriented languages and others requires further investigation;
generalization to arbitrary maintenance tasks is not intended.

Second, our code-change tasks are relatively simple (they take
only few minutes to accomplish). Nevertheless, we can often find

bug reports® regarding undeclared, uninitialized, and unused prob-
lems of single variables as well as of their uses along the code in
practice. Moreover, we assume that many bigger tasks can be seen
as a sequence of smaller tasks such as the ones we consider here.
So, if we provide benefits for small tasks, it is plausible to con-
sider that we can sum up their times and observe benefits for the
whole task. Thus, we might carefully extrapolate our results to some
kinds of bigger tasks as well. Also, we analyze tasks on unfamiliar
code, whereas in practice developers might remember cross-feature
dependencies from knowledge gained in prior tasks.

Third, recruiting students instead of professional developers threats
external validity. Though our students have some professional expe-
rience (60 % of our graduate students and 50 % of our undergraduate
students reported industrial experience) and researchers have shown
that graduate students can perform similar to professional develop-
ers [9], we cannot generalize the results to other populations. The
results are nevertheless relevant to emerging technology clusters,
especially the ones in developing countries like Brazil, which are
based on a young workforce with a significant percentage of part
time students and recently graduated professionals.

Fourth, MobileMedia is a small product line. We minimize this
threat by also considering a real and commercial product line with
Best Lap. The results for both are consistent but we still need to
consider more product lines.

Fifth, emergent interfaces depend on data-flow analysis, which
can be expensive to perform. In our experiments, we have included
analysis time, but analysis time may not scale sufficiently with larger
projects. In that case, developers have to decide between imprecise
results or advanced incremental computation strategies. When using
imprecise analysis, the use of Emergo could even lead developers to
a dangerous sense of security. In our experiment, analysis could be
performed precisely in the reported moderate times.

Regarding construct validity, the time penalty we add to wrong
answers for the unused-variable task might be controversial, because
the measured correctness influences the measured time. We argue
that to provide the correct answer, participants would need more time
and a test case, so the adjustment seems realistic. Also, we obtain
similar statistical conclusions with both the original and adjusted
data. In addition, not considering the time to find the maintenance
points might raise a threat in the sense that developers could learn
about feature dependencies in advance when finding these points.

Finally, regarding internal validity, we control many confounding
parameters by keeping them constant (environment, tasks, domain
knowledge) and by randomization. We reduce the influence of
reading time by forcing participants to read the task before pressing
the Play button and the influence of writing time by making the
actual changes small and simple.

6. RELATED WORK

Preprocessor-based variability. Preprocessor-based variability
is common in industry, even though its limitations regarding feature
modularity are widely known and criticized [41, 12]. In this im-
plementation form, no interfaces exist between features. Emergent
interfaces follow a line of research that tries to provide tool-based so-
lutions to help practitioners cope with existing preprocessor-infested
code. Virtual separation was explored with the tool CIDE, which
can hide files and code fragments based on a given feature selec-
tion [22]. The version editor [2], C-CLR [40], and the Leviathan file
system [19] show projections of variable source code along similar
lines. Similar ideas have also been explored outside the product-line

5https ://bugzilla.gnome.org/show_bug.cgi?id=580750,
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context most prominently in Mylyn [25], which learns from user be-
havior and creates task-based views. Also in this context, emergent
interfaces can help to make dependencies visible.

Along those lines, researchers investigated close-world whole-
product-line analysis techniques that can type check or model all
configurations of a product line in an efficient way [45, 24, 46]. The
underlying analysis of Emergo follows the general idea of whole-
product-line analysis, but extends prior work to data-flow analysis.

In our evaluation, we investigated only the influence of emer-
gent interfaces, but not of other facets of preprocessor usage or
virtual separation, which have been explored in prior complemen-
tary studies. Specifically, Feigenspan et al. have shown in a series of
controlled experiments that different representations of conditional-
compilation annotations can improve program comprehension [13].
Further, Le et al. have shown in a controlled experiment that hiding
irrelevant code fragments can improve understanding of product
lines [28]—a result that aligns with an ex-post analysis of using the
version editor, showing productivity increases [2]. These results
complement each other and help building a tool environment for
efficient maintenance of preprocessor-based implementations.

Feature modularity. Separating concerns in the implementation
and hiding their internals has a long history in software-engineering
research [33] and programming language design [30]. The research
field has received significant attention with the focus on crosscut-
ting concerns in the context of aspect-oriented programming [26].
Early work on aspect-oriented programming was often criticized for
neglecting modularity with clear interfaces [44, 42], whereas more
recently many researchers have investigated how to add additional
interface mechanisms [1, 43, 16, 20, 32], typically adding quite
heavyweight language constructs. In contrast, our idea relies on
tools to infer interfaces on demand. So, developers do not need to
write them in advance.

Conceptual Modules [3] support analyzing the interface of a
specific module—also using def-use chains internally. Our idea
extends conceptual modules by considering feature relationships.
Where conceptual modules were evaluated regarding correctness
in case studies, we contribute a controlled experiment to evaluate
correctness and reduced effort. Slicing [47] also uses data-flows but
requires program transformations to yield a executable program (not
feature aware) to support maintenance tasks. Emergent interfaces
pursue an alternative, tool-based strategy with no program trans-
formations, leaving the languages as is (at least until mainstream
languages support modular crosscutting implementations), but pro-
viding tool support for developers. Eventually both directions may
converge by using emergent interfaces to infer interfaces (similar to
type inference with similar tradeoffs).

Opverall, implicit and inferred interfaces, as computed by Emergo,
might provide an interesting new point to explore feature modularity.
Similar to the idea of virtual separation of concerns, where we have
no real separation but only emulate some form of modularity at tool
level with views, emergent interfaces can emulate the benefits of
real interfaces at a tool level. It cannot and does not want to replace
a proper module system with explicit machine-checked interfaces [1,
43,16, 11], but it can provide an interesting compromise between
specification effort and usability [23].

Hidden dependencies. Hidden dependencies are known to be
problematic. This can be traced back to avoiding global vari-
ables [48], where developers have no information over who uses
their variables, since there is “no mutual agreement between the
creator and the accessor.” In this context, developers are prone to
introduce new errors during fixing activities [49], since information
about the agreement is not available. Emergent interfaces support
developers maintaining (variable) systems written in languages that

do not provide strong interface mechanisms (between features).
Current mainstream languages do not have such mechanisms for
fine-grained crosscutting features, such as the ones we often find in
product lines.

Prior work on emergent interfaces. We have first proposed
emergent interfaces in a vision paper [37]. The prototype tool that
we introduced was based on CIDE [22] to annotate features and
the reaching-definition analysis was approximated and unsound. It
was neither interprocedural nor even feature-sensitive, checking
only whether the maintenance-point annotation was different of
the reached statements’ annotation. Then, we assessed how often
cross-feature dependencies occur in practice by mechanically min-
ing 43 software systems with preprocessor variability [38], using
an srcML-based infrastructure [29] conservatively approximating
intraprocedural data-flow using proxy metrics (unsound, but suf-
ficient to approximate the frequency of the problem). Further, we
estimated potential effort reduction by a tool like Emergo, by simu-
lating code-change tasks: We randomly selected variables from the
43 systems and estimated developers effort by counting how many
#ifdef blocks they would analyze with and without emergent inter-
faces, showing a potential for significant reduction. In parallel, we
investigated precise and efficient mechanisms for feature-sensitive
data-flow analyses [7, 8, 5]. These advances now form the technical
infrastructure with which emergent interfaces are inferred precisely
(without unsound approximations of prior work). In this paper, we
bring together these results and focus on the originally envisioned
application: emergent interfaces. We present a significantly revised
and extended version of Emergo that uses intraprocedural and inter-
procedural analysis, and, for the first time, evaluate the actual benefit
of our interfaces for code-change tasks in a controlled experiment
with human participants.

7. CONCLUDING REMARKS

In this paper, we present emergent interfaces that emulate miss-
ing interfaces in many product-line implementations. We provide
Emergo, a complete version of a tool capable of inferring interfaces
from data-flow analysis on demand. Emergent interfaces raise aware-
ness of cross-feature dependencies that are critical for maintaining
(configurable) software systems. With a conducted and replicated
controlled experiment, we evaluate to what extent such tool sup-
port can help achieving better feature modularization. Our study
focuses on feature-code-change tasks in product lines implemented
with preprocessors, since they are the prevalent way to implement
variable software in industrial practice. We observe a significant
decrease in code-change effort by emergent interfaces, when faced
with interprocedural dependencies. Similarly, our study suggests a
reduction in errors made during those code-change tasks. In future
work, we will focus on scaling the underlying data-flow analysis by
trading off performance and precision, and investigating emergent
interfaces for other implementation techniques.
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