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Abstract

We focus on the problem of finding patterns across two large, multidimensional datasets. For example,
given feature vectors of healthy and of non-healthy patients, we want to answer the following questions:
“Are the two clouds of points separable?”, “What is the smallest/largest pair-wise distance across the two
datasets?”, “Which of the two clouds does a new point (feature vector) come from?”.

We propose a new tool, the ‘Cross-Cloud plot’, which helps usanswer the above questions, and many
more. We present an algorithm to compute the Cross-Cloud plot, which requires only a single pass over
the datasets, thus scaling up to arbitrarily large databases. More importantly, it scales linearly with the
dimensionality, while most other spatial data mining algorithms explode exponentially. We show how to
use our tool for classification, when traditional methods (nearest neighbor, classification trees) may fail. We
also provide a set of rules on how to interpret a Cross-cloud plot, and we apply these rules on multiple,
synthetic and real datasets.

1 Introdunction and motivation

The ability to automatically discover meaningful patternsand relationships that may lay hidden in vast reposi-
tories of raw information has become an issue of great importance. Multimedia systems that deal with satellite
imaging, medical data, banking information are some examples of prolific sources of data. Many of these data
are inherently multi-dimensional.

“Summarizing” a large number of attributes by extracting a few essential features is often difficult to do.
Moreover, many proposed methods in the literature suffer from the so-called “dimensionality curse” and be-
come impractical to apply directly. Thus, dealing efficiently with multi- and high-dimensional data has been
a challenge for researchers in the database field [WSB98, BBK98]. This scenario worsens when more than
one dataset is involved. This paper proposes a new method forexploring the relationship between two multi-
dimensional datasets. Our method requires only a single pass on the data and scales linearly with the number
of dimensions. In particular, we propose a method to summarize the information about the relative position of
two datasets. Specifically, we focus on the following.

Problem definition: Given two large multi-dimensional datasets, find rules about their relative placement
in space. For example, we want to answer questions such as:� Q1: Do the datasets come from the same distribution?� Q2: Do they “repel” each other?� Q3: Are they close or far away?
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� Q4: Are they separable?� Q5: For a given, unlabelled point, which of the two sets does it come from (if any)?

The ideal method for dealing with the above problem should meet certain specifications:� it should be linear on the number of dimensions� it should perform a single pass on the whole data set

Our proposed method fulfills these goals.
The remainder of the paper is structured as follows. In the next section, we first give a brief discussion of

the related work on data mining techniques and then a concisedescription of the datasets we used in our exper-
iments and the motivation for this work. Section 3 introduces the Cross-Cloud plots as well as its ’anatomy’.
Section 4 presents the rules which allow us to mine two cloudsof points and the practical usage of the proposed
method. Section 5 presents the algorithm which generated the graphs used in the analysis of the datasets and
in speed considerations. Section 6 gives the conclusions ofthis paper.

2 Related work

There has been a tremendous amount of work on data mining during the past years. Many techniques have been
developed that have allowed the discovery of various trends, relations and characteristics with large amounts
of data [JAG99, Cha98]. Detailed surveys can be found in [CHY96] and [GGR99]. Also, [Fay98] contains an
insightful discussion of the overall process of knowledge discovery in databases (KDD) as well as a compre-
hensive overview of methods, problems, and their inherent characteristics.

In the field of spatial data mining [EKS99] much recent work has focused on clustering and the discovery of
local trends and characterizations. Scalable algorithms for extracting clusters from large collections of spatial
data are presented in [NH94] and [KN96]. The authors also combine this with the extraction of characteristics
based on non-spatial attributes by using both spatial dominant and non-spatial dominant approaches (depend-
ing on whether the cluster discovery is performed initiallyor on subsets derived using non- spatial attributes).
A general framework for discovering trends and characterizations among neighborhoods of data-points is pre-
sented in [EFKS98]. This framework is built on top of a spatial DBMS and utilizes neighborhood-relationship
graphs which are traversed to perform a number of operations. Additionally, scalable clustering algorithms are
included [AGGR98, TZ96, SCZ98, FRB98].

Visualization techniques for large amounts of multidimensional data have also been developed. The work
described in [KK94] presents a visualization method which utilizes views of the data around reference points
and effectively reduces the amount of information to be displayed in a way that affects various characteristics
of the data (eg. shape and location of clusters, etc.) in a controlled manner.

There has also been significant work on data mining in non-spatial, multidimensional databases. Recent
work on a general framework that incorporates a number of algorithms is presented in [iHLN99]. The authors
introduce a general query language and demonstrate its application on the discovery of a large variety of
association rules which satisfy the anti-monotonicity property.

However, none of the above methods can answer all the questions Q1 to Q5, which we posed in the previous
section. The method proposed in this paper can answer such questions as we will show in the next sections.
To find a solution for the given problem we move away from association rules and focus on the relationship
between two spatial datasets.
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2.1 Description of the data sets

In order to test our method we used several synthetic and realdatasets. We use synthetic datasets to help build
intuition and real datasets to validate our techniques. Thesynthetic datasets are always normalized to a unit
MBR (minimum bounding rectangle), and they may be translated, rotated and/or scaled in the experiments.
For the synthetic datasets we used:� ‘Line’ (points randomly chosen along a line segment)� ‘Circumference’ (points randomly chosen along the periphery of a circle)� ‘Sierpinsky’ (randomly generated points from the theoretical Sierpinsky triangle), Figure 1(a) shows an

example of it.� ‘Square’ (randomly generated points in a 2D manifold)� ‘Cube’ (randomly generated points in a 3D manifold)� ‘Super-cluster’ (256 uniformly distributed clusters, each of them with 7x7 points in a 2D manifold).

The number of points in the datasets are shown in the plots following their names. For example: ‘Line10K’
means a line with 10,000 points.

The real datasets used are the following:� California - These are four two-dimensional sets of points that refer to geographical coordinates in Cal-
ifornia [oC89]. Each set corresponds to a feature: ‘streets’ (with 62,933 points), railways (with 31,059
points), political borders (‘political’ with 46,850 points), and natural ‘water’ systems (water with 72,066
points). Figure 1(b) shows the political and water datasetssuperimposed.� Iris - This consists of three sets, each of which describes properties of the flower species of genus Iris. The
points are 4-dimensional (sepal length, sepal width, petallength, petal width); the species are ‘virginica’,
‘versicolor’ and ‘setosa’, and there are 50 points from eachspecies. This is a well-known dataset in the
literature of machine learning and statistics, which we obtained from the UC-Irvine Repository. Figure
1(c) shows a 3D projection of this dataset.� Galaxy - The Galaxy datasets come from the SLOAN telescope: (x,y) coordinates, plus the class label.
There are 82,277 in the ‘dev’ class (deVaucouleurs), and 70,405 in the ‘exp’ class (exponential). Figure
1(d) shows both datasets superimposed.� LC - Customer data from a large corporation, which requestedconfidentiality. There were 20,000
records, each with 19 numerical/boolean attributes. The records formed two classes, with populations of
1,716 and 18,284 respectively.� Votes - These are two 16-dimensional datasets from the 1984 United States Congressional Voting Records
Database: Democrat (267 entries) and Republican (168 entries).
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Figure 1: Some datasets used in the experiments: (a) Synthetic Sierpinski triangle, (b) California-politics and
California-water superimposed, (c) the three Iris datasets, and (d) the two Galaxies datasets.

Symbol DefinitionNA (orNB) Number of points in datasetA (orB)Cross() CrossA;B(r; 1; 1) plot between datasetsA andBSelf A Self A(r; 1; 1) plot of datasetAWA CrossA;B(r; 10; 1) cross-could plot weighted on datasetAWB CrossA;B(r; 1; 10) cross-could plot weighted on datasetBCA;i (CB;i) Count of typeA (B) points in thei-th celln Number of dimensions (embedding dimensionality)r̂min Estimated minimum distance between two pointsr̂max Estimated maximum distance between two points
cloud / point set n-dimensional dataset

Table 1: Symbols and definitions

3 Proposed idea: Cross-cloud plots

The main intuition of our approach is to study how often members of the two setsA andB happen to be
close to each other. This is captured by the Cross-functionCrossf A;B(r; p; q) which we define below. This
function aims to determine the spatial relationship between two clouds ofn-dimensional pointsA andB. Table
1 presents the symbols used in this paper.

Consider a grid with cells of sider and letCA;i (CB;i) be the number of points of typeA (B) in the i-th
cell, and exponentsp andq . The grid partitions the minimum bounding box including both datasets. Then we
have:

Definition 1 Given two data setsA andB residing in the samen-dimensional space, we define the cross-
function as Crossf A;B(r; p; q) =Xi CpA;i � CqB;i

Typically, we plot the cross-function in log-log scales, after some normalization, as we present in the next
definition:
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Definition 2 Given two data setsA (withNA points) andB (withNB points) residing in the samen-dimensional
space, we define the cross-cloud plot between the two datasets as the plot ofCrossA;B(r; p; q) = log(NA �NB)log(NpA �N qB) � log Xi CpA;iCqB;i! versuslog(r)

Notice that the normalization factor scales the cross-cloud plot, maximizing the information presented. The
proposed cross-function has several desirable properties:

Property 1 For p = q = 1, the Cross-function is proportional to the count ofA-B pairs within distancer.
That is, CrossA;B(r; 1; 1) / (number of pairs of points within distance� r)
Proof Using Schuster’s lemma [Sch88].

This is a significant property. Forp = q = 1 the cross-cloud plot gives the cumulative distribution function
of the pair-wise distances between the two “clouds”A andB [FSJT00]. Because of its importance, we will use
the casep = q = 1 as a reference. Thus, we will omit thep, q argument when both of them are equal to one.
For the sake of simplicity we will omit the subscriptsA, B from the cross-cloud plot when it is clear which
datasets are involved. That is,Cross(r) �= CrossA;B(r) �= CrossA;B(r; 1; 1)
Property 2 The Cross-function includes the “correlation integral” asa special case when we apply it to the
same dataset (i.e.,A � B).

Proof From the definition of correlation integral [Sch91]. This isa very interesting property, because the
correlation integral gives the correlation fractal dimension D2 of a datasetA, if this dataset is self-similar.The
above property is so important that we give a special name to the self cross-cloud plots:

Definition 3 The self-plot of a given datasetA is the plot ofSelf A(r) = log�PiCA;i � (CA;i � 1)2 �
versuslog(r)

By definition, the self-plots exclude the counting of self pairs. This means that bothhp1; p2i andhp2; p1i
are counted only once. This is the reason we subtract ‘1’ fromthe second count of points, so as to avoid
artifacts that self-pairs generate.

Property 3 If A is self similar, then (a) the Self-plot ofA is linear and (b) its slope is its intrinsic dimensionality.

Proof See [BF95]. We are now ready to define our two main proposed tools, the tri-plot and thepq-plot.

Definition 4 The tri-plot of two datasets,A andB, is the graph which contains the cross-plotCross(r) and
the normalized self-plots for both datasets (Self A(r) + log(NA=NB) andSelf B(r) + log(NB=NA)).
Notice that the normalization factors,log(NA=NB) andlog(NB=NA), only translate the self-plots, preserving
the steepness of the graphs. In this paper, for every tri-plot we present the three graphs with the same color
pattern: the cross-plot is presented in blue lines with diamonds,Self A in green lines with crosses andSelf B in
red lines with squares. We also report the slope or steepnessof the fitting lines.
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Definition 5 Thepq-plot of two datasets,A andB, is the graph which contains the three cross-cloud plots:CrossA;B(r), CrossA;B(r; 1; k), andCrossA;B(r; k; 1) for large values ofk (k � 1).

Figure 2 shows a tri-plot and apq-plot of the Line and Sierpinsky datasets. Notice that, although theCross() is almost always linear (Figure 2(a)), this is not necessarily true for theCross(r; 1; k) andCross(r; k; 1)
(in Figure 2(b),k = 10).

(a)
 (b)


0


2


4


6


8


10


12


14


16


18


20


-10
 -9
 -8
 -7
 -6
 -5
 -4
 -3
 -2
 -1
 0


pq-Plot: Sierpinsky15K X Line10K


log(radii)


C
ro

s
s
f(

 )



Cross stp= 2.0952


Weighted Sierpinsky 


Weighted Line10K


0


2


4


6


8


10


12


14


16


18


20


-12
 -10
 -8
 -6
 -4
 -2
 0


Tri-Plot: Sierpinsky15K X Line10K


log(radii)


C
ro

s
s
f(

 )



Cross stp=2.0952

Self Sierpinsky stp= 1.5876


Self line stp=1.0014


Figure 2: Sierpinsky triangle and Line datasets: (a) the tri-plot, (b) thepq-plot. The cross-plots are presented in
blue with diamonds, the self- and weighted-Sierpinsky plots in green with crosses and the self- and weighted-
Line in red with squares.

Definition 6 The steepness of a plot is the slope of its regression line (that is, least squares fitting line).

Definition 7 The dissimilarity of two given plots is measured by the sum ofthe root mean square differences
between them.

The tri-plots will allow us to determine the relationship between the two datasets under analysis. If the datasets
are self-similar, i.e, the self-plots of both datasets are linear for a meaningful range of radii, their slopes can be
used in the comparisons that follow. However, the proposed analysis can be applied even to datasets which are
not self-similar (do not have linear self-plots). Thus, we will refer to the “steepness” and “similarity” between
the plots as measurements for comparison. Thepq-plot is used in a further step of the analysis. Its use is more
subtle and is discussed in section 4.3. Next we show some interesting properties of the datasets that can be
derived from the tri- andpq-plots.

3.1 Anatomy of the proposed plots

This section shows how to “read” the cross-cloud plots and take advantage of the tri- andpq-plots without any
extra calculation.

3.1.1 Properties of the self-plots

From a self-plot we derive valuable information:
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Property 4 The estimate valuêrmin , which is the minimum distance between two points of a given dataset, ie,
the first radius where the count-of-pairs is not zero is givenby the self-plot.

Property 5 The estimate valuêrmax , which is the maximum distance between two points of a given dataset
(or the dataset diameter), i.e., the maximum value where thecount-of-pairs increased is given by the self-plot.
For bigger radii the counting remains the same.
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Figure 3: Measurements obtained from self-plots: (a) Line dataset, and (b) Super-cluster dataset.

Figure 3 illustrates the properties stated above. Figure 3(a) in the lower row presents a line with 15,000
points. Its Self-plot is linear, and its slope gives the value of D2 equal to 1. This value is also the intrinsic
dimensionality of a line. The estimate of minimum and maximum distances between two pointsr̂min andr̂max
are also presented in Figure 3.

Property 6 Whenever the self-plot has a plateau from radiusr̂min to r̂max , the dataset is probably consisting
of clusters (see Figure 3).

Notice that, whenever the self-plot is piecewise linear, then the dataset has characteristic scales. Especially
interesting is the case of plateaus. This happens whenever the dataset is not homogeneous. Then, there is
more information to be extracted from the self-plot. This occurs to the self-plot of the ’Super-cluster’ dataset.
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Whenever the self-plot presents flat areas in the middle of the graph, then it means that the dataset is composed
by clusters, and the maximum diameter of the cluster can alsobe estimated. This is shown in Figure 3(b) asr̂
d max . The characteristic separation between the cluster scan also be estimated and is presented in Figure
3(b) asr̂sep
 . Notice that the values of radius presented in the plots are actually the log of the radii. Next we
show how to interpret a cross-cloud plot, to determine the relative positioning of two “clouds”.
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Figure 4: Example of a tri-plot indicating where to find meaningful information. The cross-plot is always in
blue with diamonds,Self A in green with crosses andSelf B in red with squares.

3.1.2 Properties of the cross-cloud plot

Figure 4 presents an example of a tri-plot, where datasetA is a randomly generated set of 6,000 points of a
line (y = x0=x; y 2 [0; 1℄), and datasetB is a Sierpinsky triangle with 6,561 points. These two datasets where
chosen to highlight some interesting properties of this kind of plot. These properties (depicted in Figure 4) are
discussed in the following.

Property 7 Estimate the minimum distance between the two datasets. This minimum distance is given by the
smallest value of thelog(r) axis, which has a non-zero value in the cross-cloud function.
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Property 8 Estimate the maximum distance between the two datasets, that is, the maximum diameter sur-
rounding both datasets. This estimate is given by the greatest value of thelog(r) axis before the plot turns
flat.

Property 9 If the cross-cloud plot is linear, its slope depends on the relative positioning of the two datasets.

Property 10 Whenever the cross-cloud plot has a flat part for very small radii, this means that are points in
datasetA which coincide exactly with points in datasetB (duplicate points in both datasets).

All the previous estimates can be obtained with a single processing pass over both datasets without effectively
computing any distance. Recall that we count the occupationof each grid cell.

Property 11 The steepness of the cross-cloud plot is always greater thanor equal to the steepness of the
steeper self-plot of the datasets.

4 Practical usage / Data mining across two clouds

In order to present the analysis process through the cross-cloud plot method, it is necessary to define some
terms used in this paper:

Definition 8 The shape of a dataset means its formation law.

Definition 9 Two datasets are collocated if they have minimum bounding boxes that are highly overlapping.

Definition 10 The placement of a dataset stands for the position and orientation of it.

We use these three terms when comparing two datasets. Two datasets can have the same shape but different
placement (two non-colinear lines). If a dataset was manipulated byaffine transformations, the resulting dataset
will have the same shape but different placement. Indeed, two datasets with the same intrinsic dimensionality
can have different shapes. This is the case of a line and a circumference as they have the same intrinsic
dimensionality (‘1’), but different shapes.

4.1 Rules for tri-plot analysis

In this section we present rules which will help analyze and classify the relationship between two datasets.
Through the analysis of the tri-plots, we can get information about the intrinsic structure and the global rela-
tionship between both datasets.

Table 4.1 concisely presents the condition set used in the tri-plot analysis. The rules are presented below.

Rule 1 If all three plots of a tri-plot are similar, that isSelf A � Self B � Cross , then both datasets are
probably identical. In this case, the three graphs in the tri-plot will be on top of each other. This means that
both datasets probably have the same intrinsic dimensionality, shape and placement. This is also the case when
either one dataset is a subset of the other, or both datasets are samples from a bigger one. Figure 5 shows the
tri-plots for (a) two lines with different number of objects, (b) two Sierpinsky triangles, and (c) two coplanar
squares in 3D. All datasets in Figure 5 are in a 2D manifold. Inall these examples both datasets have the same
shape and placement but different number of points.
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Rule Condition Meaning Example

A A andB are similar (Self A andSelf B have
same steepness),and

1 Cross has the same steepness asSelf A andSelf B DatasetsA andB are probably
statistically identical

Figure 5

2 Cross has steepness comparable to that ofSelf A andSelf B Both datasets have the same in-
trinsic dimensionality

Figure 6

3 Cross is much steeper than bothSelf A andSelf B The datasets are disjoint Figure 7

B A andB are not similar (Self A andSelf B
have different steepness),and

4 Cross has the same steepnes asSelf A orSelf B The less steep dataset is probably
a proper subset of the other

Figure 8

5 Cross has steepness comparable to that ofSelf A andSelf B Needs further analysis Figure 9

3 Cross is much steeper than bothSelf A andSelf B The datasets are disjoint Figure 7

Table 2: Conditions and rules used in tri-plot analysis.

Rule 2 If the steepness of both datasets are similar (Self A � Self B), but the steepness ofCross is only
moderately steeper than both, then both datasets probably have the same intrinsic dimensionality, but they
come from different placements. Further analysis, as conducted by thepq-plot analysis, can indicate whether
both datasets are separable or not, and if separable to what extent. These are the cases of intersecting lines
in two or more dimensional spaces, intersecting planes, or two Sierpinsky datasets with one rotated over the
other, as presented in Figures 6(a), 6(b) and 6(c) respectively. Notice that the figures show the datasets and the
self-plots with the same color pattern.

Rule 3 If the Cross is much steeper thanSelf A andSelf B (does not matter whether they are similar or not),
then the datasets are disjoint. For two intersecting datasets, theCross steepness will not be so far from the
steepness of their self-plots. However, if theCross is much steeper than bothSelf A andSelf B, it means
that the minimum distance between points from the datasets is bigger than the average distance of the nearest
neighbors of points in both datasets, so the datasets are disjointed. In fact, this case leads to the conclusion that
both datasets are well-defined clusters; hence they should be separable by traditional clustering techniques.
Examples of this situation are non-intersecting lines, squares far apart, or a Sierpinsky triangle and a plane
which is not coplanar with the Sierpinsky’s supporting plane, as shown in Figure 7(a) to 7(c). All datasets are
in 3D space. Notice that the self-plots have the expected slopes, but the cross-plots have very high steepness
(18, 13 and 26 respectively).

Rule 4 Without loss of generality, letSelf A be the steeper betweenSelf A andSelf B . If the steepness of the
self-plots are not similar (Self A 6� Self B) and theCross is equal toSelf A, then datasetB is a sub-manifold
of datasetA. Remember that the steepness of theCross can not be smaller than the steepness of the self
plots Self A or Self B . Therefore, if the steepness of theCross is similar to one of the self steepnesses, e.g.Cross � Self A, then the other graph (in this caseSelf B) will be less steeper thanCross . This means that
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Figure 5:Rule 1: The two datasets have the same shape and placement: (a) Two superimposed lines (all plots
have slope� 1, (b) Two superimposed Sierpinsky triangles (all plots haveslopes� 1:64 � log 3= log 2, (c)
Two superimposed squares (all plots have slopes� 2. All datasets are in 2D space, and the axes of all tri-plots
are in log-log scale.

the points in datasetB have a stronger correlation than the points in datasetA. Rule 1 deals with the situation
where both datasets are subsets of a larger one, or one is a subset of another, but there is no rule to extract the
subsets. Rule 4 deals with the same case of occurrence of subsets, but here there are rules to choose points
that pertain to the dataset with a smoother self-plot. Examples of this case are a line embedded in a plane, a
Sierpinsky dataset and its supporting plane, and a square embedded in a volume, as shown in Figures 8(a), 8(b)
and 8(c) respectively.

Rule 5 If Self A 6� Self B and theCross is only moderately steeper thanSelf A andSelf B, then both datasets
come from different placement. In this case, both datasets have a different shape and intrinsic dimensionality,
and they are not related to each other. They are, however, collocated, or at least intersecting. This means that
although part of the datasets may be separable, this would not be true for the entire dataset, or for both datasets.
Whenever this situation occurs, it should be further analyzed, for example, using thepq-plot. These are the
cases of a line with a Sierpinsky triangle, a line piercing a square, and a Sierpinsky intersecting a square, as
Figure 9 shows.

4.2 Applying the proposed rules to real datasets

In the previous section we presented the proposed rules and how such rules apply to synthetic datasets. In
this way, we take advantage of the intuition that synthetic datasets provide. In this section we show how the
tri-plots can be used to characterize the relationship between two datasets. In Figure 10 we present tri-plots for
real datasets. This figure presents the four cases found in our real datasets.

Rule 1 (probably identical) There are four pairs of datasets in Figure 10 which conform toRule 1: the
two different subsets of the California-political datasets (Figure 10(a)), the two galaxy datasets (Figure 10(b)),
the Iris-versicolor and Iris-virginica datasets (Figure 10(c)), and two different subsets of the California-water
dataset (Figure 10(d)). As Figure 1 showed, all of these datasets, in fact, exhibit similar distribution.

Rule 3 (disjoint datasets) There are two pairs of datasets in Figure 10 which conform to Rule 3: the
Iris-Versicolor and Iris-Setosa datasets (Figure 10(e)),and the Democrat and Republican vote datasets (Figure
10(f)). The steepness of their cross-plot is much bigger than the steepness of their self-plots. In Figure 1(c) we

11



-0.4

-0.2


0

0.2


0.4

0.6


0.8

1
-0.2


0


0.2


0.4


0.6


0.8


1


1.2


-0.4


-0.2


0


0.2


0.4


0.6


0.8


1


(a)
 (c)
(b)


0


2


4


6


8


10


12


14


16


18


20


-12
 -10
 -8
 -6
 -4
 -2
 0


Square(A) X Square(B)


log(radii)


C
ro

s
s
f(

 )

 Cross stp=3.0165


Self Square(A) stp=2.0008


Self Square(B) stp=1.9848


0


2


4


6


8


10


12


14


16


18


20


-12
 -10
 -8
 -6
 -4
 -2
 0


Line5K X Circumf5K


log(radii)

C

ro
s
s
f(

 )

 Cross stp=2.1495


Self Line5K stp=0.9986


Self Circumf5K stp=0.9900


0


2


4


6


8


10


12


14


16


18


-12
 -10
 -8
 -6
 -4
 -2
 0


Two intersecting Circumferences


log(radii)


C
ro

s
s
f(

 )



Cross stp=1.9094


Self Circumf(A) stp=1.0058


Self Circumf(B) stp=0.9888


0


0.2


0.4


0.6


0.8


1


0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8


0


0.2


0.4


0.6


0.8


1


0
 0.2
 0.4
 0.6
 0.8
 1


Figure 6:Rule 2: The two datasets have the same intrinsic dimensionality, but different placements: (a) Two
intersecting circumferences in 2D space, (b) A line crossing a circumference in 2D space, (c) Two piercing
planes in 3D space. The upper row shows the tri-plots with theaxes in log-log scale. The lower row shows the
corresponding datasets in their respective spaces.

saw that the Versicolor and Setosa datasets are indeed apart, and we know that the Democrat and Republican
parties have distinct behavior which allows separation of their members.

Rule 4 (sub-manifold) Figure 10(g) presents the tri-plot of California-water andCalifornia-political
datasets. Let us recall that the dataset with smaller steepness is probably a proper sub-manifold of the one
with larger steepness (or from the set in which both are samples). Thus, Figure 10(g) indicates that the
California-political dataset is probably a subset of the California-water one. This makes sense since many
political divisions use water paths, and there are some criteria to choose the political divisions.

Rule 5 (different placement) There are two pairs of datasets in Figure 10 which conform to Rule 5.
Figure 10(h) indicates that the California-railroad and the California-political datasets agree with Rule 5, which
is a reasonable conclusion as both datasets hold geographical data built with distinct objectives. Figure 10(i)
indicates that the LC datasets also agree with Rule 5 and require further analysis. The flat parts in Figure 10(i)
and in the Self-political plot in Figure 10(h) indicate thatthese datasets possibly have duplicate points (or even
very close points). Notice that we presented the case of the “Super-cluster” in real datasets (see Figure 10(b)).
It shows that the Galaxy datasets have clusters at two characteristic distances. The datasets also repel each
other for the radius range of the cluster diameter. After analyzing the relationship between two datasets by the
Tri-plots, a more detailed analysis can be performed takingadvantage of the pq-plots as we will explain in the
next section.
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Figure 7:Rule 3: The two datasets are disjoint: (a) two non-intersecting lines, (b) two non-intersecting squares,
(c) a square and a Sierpinsky triangle. The upper row shows the tri-plots with the axes in log-log scale. The
lower row shows the corresponding datasets in 3D space.

4.3 Analysis of the pq-plot

The pq-plot allows emphasizing the relationship between two datasets, weighting the contribution of one
dataset when comparing its distance distribution with the distance distribution of the other dataset.

The analysis of thepq-plots is directed to specific parts of the cross-cloud plotsin contrast to the more global
analysis of the tri-plots. Regarding thepq-plot, even if aCrossA;B(r; p; q) plot with p 6= 1 6= q happens to be
a line, the slope is not meaningful; only its ‘shape’ has meaningful properties. Also, due to the normalization
given by log(NA � NB)= log(NpA � NpB), both the leftmost and rightmost points in all pq-plots are the same.
Recalling Equation 1, if a particularCA;i (or CB;i) used to calculate theCrossA;B(r; p; q) plots is null for a
given radius r in a given region of the space, the corresponding CB;i (or CA;i) will not contribute to the total
number of counts for this particular radius, leading to a flattening region in this part of the curve. Otherwise, if
there is a regular distribution of distances over a continuous part of the curve, the resulting curve will exhibit
a linear shape. Sudden rises in a plot indicate a large growthof counts starting at that radius. Hence, the two
shapes in the curves of the Cross-cloud plots that are worth looking for are: the linear parts, and the regions
where the curves are flat.

The cross-cloud plots,CrossA;B(r; k; 1), andCrossAB(r; 1; k) with k � 1 (which we have namedWA
andWB because they are ‘weighted’), can be generated for any valueof k. However, increasing k only increases
the distortions on the plot, without giving any extra information. Thus, for the discussion that follows, we
arbitrarily adopt the value ofk = 10. Each conclusion is valid for the range of radii which presents specific
behavior. Next we discuss two representative situations, using pairs of synthetic datasets and comparing the
obtained tri-plots andpq-plots.

Figure 11 compares two pairs of datasets: circumference-circumference and line-circumference. This
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Figure 8: Rule 4: One dataset is a proper subset of the other dataset: (a) a square overlapping a line in 2D
space, (b) a Sierpinsky triangle and its supporting plane in2D space, (c) a volume travesed by a plane in 3D
space. The upper row shows the tri-plots in log-log scale. The lower row shows the datasets in their respective
spaces.

illustrates the situation stated by Rule 2: the two datasetsare similar (Self A � Self B andCross steepness
is less or equal than the steepness ofSelf A plus the steepness ofSelf B). By looking only at the tri-plots in
Figures 11(a) and 11(d), it is not possible to say anything else about the datasets. However, looking at Figure
11(b) we can see that the three graphs are on top of each other.This means that both datasets have the same
behavior under weighted calculation (Cross(r; 1; 10) andCross(r; 10; 1)). Thus, both datasets have the same
shape. On the other hand, the behavior of thepq-plot in Figure 11(e) shows that indeed both datasets have
different shapes and it also shows how they are correlated within specific radii range (Region I and II on the
plots).

In this section we proposed the rules to analyze the tri-plots and thepq-plots using well-understandable
synthetic datasets in two- or three-dimensional spaces. However, the same conclusions should apply for real
datasets in any multi-dimensional space. In fact, for real datasets it is usually difficult to know how to describe
the relationship between the attributes and to know if they are correlated. Nonetheless, our proposed analysis
can indicate not only the existence of correlations, but also how “tight” they are. This analysis can also provide
evidence of how separable the datasets are, as well as if it ispossible to classify points as belonging to one or
to the other dataset.
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Figure 9: Rule 5: The datasets come from different placements: (a) a line and aSierpinsky triangle in 2D
space, (b) a line piercing a square in 3D space, (c) a plane andan intersecting Sierpinsky triangle in 3D space.
The upper row shows the tri-plots in log-log scale. The lowerrow shows the corresponding datasets in their
respective space.

4.4 Using pq-plots to analyze datasets

In Figure 12 we presentpq-plots only for some cases of real datasets, due to space limitations. Figure 12(a)
shows thepq-plot of the points from the Galaxy datasets. For the range indicated, there is a distinct separation
between the datasets. Besides confirming that the two Galaxytypes indeed repel each other, thepq-plots shows
that there are few clusters consisting only of the ‘exp’ type(although there are clusters including points of both
datasets also with only the ‘dev’ points). However, outsidethis range, they are almost identical. Figure 12(b),
as expected, confirms that the Democrat and Republican datasets are separable. This is because the weighted
plots have completely opposite behaviors.

Figure 12(c) shows thepq-plot of the California-water and California-political datasets. In this plot, there
are four ranges with distinct behaviors. Range I corresponds to very small distances, so these distances are
probably less than the resolution of the measurements; therefore they are not meaningful. Ranges II and III are
where the real distances are meaningful. The sudden fall to the left of the wWater-plot in range II means that
there are very few points in the political dataset at distances below this range from points in the water dataset.
This indicates a kind of “repulsion” of points from both datasets for these small distances. In range III, both
datasets have approximately the same behavior. Range IV is almost flat for all plots, meaning that there are
almost no more pairs within this distance range. In fact, the“almost flat” part of the graph is due to a few
outliers in the dataset.
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Figure 10: Tri-plots of real datasets and their classification as obtained from rules 1-5.

4.5 Membership testing and classification

In this section we illustrate the power of our cross-cloud plots in another setting: namely membership testing
and classification. Figure 13 illustrates the following situation. Given two datasetsA andB, where datasetA
consists of 20 points along a line, and datasetB of 900 points in a ‘tight’ square, a new point, indicated by the
question mark ‘?’ arrives. Which set, if any, does it belong to?

Visually, the new point ‘?’ should belong to the Line20 set. However, nearest neighbors or decision- tree-
based classifiers would put it into the square: the new point has 900 neighbors of type square, before its first
neighbor of type Line20 shows up!

We propose a method that exploits Cross-cloud plots to achieve the correct classification of the incoming
point ‘?’. Our method processes the new point as a singleton dataset and compares its cross-plots with the
self-plots of each target dataset.The classification process we propose compares the steepness of CrossLine,
Point and CrossSquare, Point with the steepness of SelfLineand SelfSquare. If CrossLine, Point is similar to
SelfLine, we classify the new point into the Line20 dataset.Conceivably, our new point could be classified
under one, two, or more of the target datasets.

The full details of the classification method are the topic ofongoing research. We have just shown that this
is another benefit that can be derived from the presented Cross-cloud technique.
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Figure 11: Cross-cloud plots for two pairs of datasets: (a) the tri-plot of two intersecting circumferences (as
shown in (c)), (b) thepq-plot of the two circumferences, (d) the tri-plot of a line intersecting a circumference
(as shown in (f)), and (e) thepq-plot of the line and the circumference.

5 Speed considerations

In this section we present the algorithm designed to generate the tri-plots as well as its performance for multi-
dimensional large datasets.

5.1 Algorithm to generate the Tri-plots

We developed a single-pass algorithm over both datasets to obtain the required tri-plots, which is presented in
Figure 14. It is defined as follows.

Given two datasetsA andB with cardinalitiesNA andNB in an-dimensional space,
Generate the tri-plot of the datasets, that is, the cross-plot, Self A plot andSelf B plot.
CallingF the number of non-empty cells in each grid, clearly1 � F � NA +NB , and it does not depend

on the dimensionalityn. Thus, our algorithm scales up for arbitrarily large datasets, and arbitrarily high
dimensionality. This is rarely true for any other spatial data mining method in the literature. The algorithm to
generate thepq-plots is similar to the algorithm depicted in Figure 14, where instead ofSelf A andSelf B plotsWA andWB plots are drawn. Due to space limitations we do not show it here.
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Figure 12: pq-plots for real datasets: (a) Galaxy, (b) Democrat and Republican, (c) California-water and
California-political. The upper row shows the tri-plots and the lower row the correspondingpq-plots. The
axes are in log-log scale

5.2 Scalability

The algorithm developed is linear over the total number of points in both datasets, i.e.,O(NA + NB). If l is
the number of points that we want in each Cross-cloud plot (i.e., the number of grid sizes), then the complexity
of our algorithm isO((NB + NA) � l � n), wheren is the embedding dimensionality of the input datasets.
Figure 14 presents a brief algorithm to generate the required Cross-cloud plots. Figure 15 shows the wall-clock
time required to process datasets on a Pentium II machine under NT4.0. The datasets have varying numbers
of points in 2, 8 and 16-dimensional spaces, and we generated20 grid sizes for each dataset. The number of
points shown in Figure 15 is the sum of the number of points in both datasets. In this figure we can see that the
execution time of this algorithm is indeed linear on the number of points in the datasets. Figure 16 corroborates
that the our algorithm is also linear on the dimensionality of the datasets. In this case we used datasets with
100,000, 200,000 and 300,000 with dimensions 2 to 40. This shows that the proposed algorithm is safe of the
so-called ‘dimensionality curse’.

Notice that steps 1 and 2 of the algorithm read the datasets and maintain counts of each non-empty grid
cell. These counts can be kept in any data structure (hash tables, quadtrees, etc.).

6 Conclusions

We have proposed the cross-cloud plot, a new tool for spatialdata mining across twon-dimensional datasets.
We have shown that our tool has all the desirable properties we asked for.� It can spot whether two clouds are disjointed (separable), statistically identical, repelling, or in-between.
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Figure 13: Classifying a point as either belonging to a sparse line or to a dense square, using the cross-cloud
method: (a) spatial placement of the incoming point and the datasets, (b)Self Line andCrossLine;Point plot, (c)Self Square andCrossSquare;Point plot.
q

That is, it can answer questions Q1 to Q4 presented in section1.� It can be used for classification and is capable of “learning”a shape/cloud, where traditional classifiers
fail to do so (that is, question Q5 presented in section 1).� It is very fast and scalable: Our algorithm requires a singlepass over each dataset, and the memory
requirement is proportional to the number F of non-empty grid cells and to the number l of grid sizes
requested (1 � F � NA +NB, and clearly not exploding exponentially).� It can be applied to high-dimensional datasets as well because the dimensionality of the dataset for the
counting of points inside the grid cells does not matter.

The experiments on real datasets show that our tool finds patterns that no other known method can. We believe
that our cross-cloud plot is a powerful tool for spatial datamining and that we have just seen only the beginning
of its potential uses.

References

[AGGR98] Rakesh Agrawal, Johannes Gherke, Dimitrios Gunopoulos, and Prabhakar Raghavan. Automatic
subspace clustering of high dimensional data for data mining applications. InProc. of ACM SIG-
MOD Conf. on Management of Data, pages 94–105, 1998.
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