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Abstract

We focus on the problem of finding patterns across two largdtidimensional datasets. For example,
given feature vectors of healthy and of non-healthy patiewe want to answer the following questions:
“Are the two clouds of points separable?”, “What is the sestflargest pair-wise distance across the two
datasets?”, “Which of the two clouds does a new point (featector) come from?”.

We propose a new tool, the ‘Cross-Cloud plot’, which helpgnswer the above questions, and many
more. We present an algorithm to compute the Cross-Clougl wluich requires only a single pass over
the datasets, thus scaling up to arbitrarily large databadéore importantly, it scales linearly with the
dimensionality, while most other spatial data mining aithons explode exponentially. We show how to
use our tool for classification, when traditional methodsafrest neighbor, classification trees) may fail. We
also provide a set of rules on how to interpret a Cross-cldotl pnd we apply these rules on multiple,
synthetic and real datasets.

1 Introdunction and motivation

The ability to automatically discover meaningful patteamsl relationships that may lay hidden in vast reposi-
tories of raw information has become an issue of great inapog. Multimedia systems that deal with satellite
imaging, medical data, banking information are some examgf prolific sources of data. Many of these data
are inherently multi-dimensional.

“Summarizing” a large number of attributes by extractingea fessential features is often difficult to do.
Moreover, many proposed methods in the literature suff@nfthe so-called “dimensionality curse” and be-
come impractical to apply directly. Thus, dealing efficlgrwith multi- and high-dimensional data has been
a challenge for researchers in the database field [WSB98,BBKThis scenario worsens when more than
one dataset is involved. This paper proposes a new methakfdoring the relationship between two multi-
dimensional datasets. Our method requires only a single @ashe data and scales linearly with the number
of dimensions. In particular, we propose a method to sunmadhie information about the relative position of
two datasets. Specifically, we focus on the following.

Problem definition:  Given two large multi-dimensional datasets, find rules abiweir relative placement
in space. For example, we want to answer questions such as:

e Q1: Do the datasets come from the same distribution?
e Q2: Do they “repel” each other?

e Q3: Are they close or far away?



e Q4: Are they separable?

e Q5: For a given, unlabelled point, which of the two sets dbesine from (if any)?
The ideal method for dealing with the above problem shouldtroertain specifications:

e it should be linear on the number of dimensions

e it should perform a single pass on the whole data set

Our proposed method fulfills these goals.

The remainder of the paper is structured as follows. In the section, we first give a brief discussion of
the related work on data mining techniques and then a codesseription of the datasets we used in our exper-
iments and the motivation for this work. Section 3 introdutiee Cross-Cloud plots as well as its 'anatomy’.
Section 4 presents the rules which allow us to mine two clafig®ints and the practical usage of the proposed
method. Section 5 presents the algorithm which generagdrdphs used in the analysis of the datasets and
in speed considerations. Section 6 gives the conclusiotigsopaper.

2 Related work

There has been a tremendous amount of work on data mininggilng past years. Many techniques have been
developed that have allowed the discovery of various treralations and characteristics with large amounts
of data [JAG99, Cha98]. Detailed surveys can be found in [@B[Yand [GGR99]. Also, [Fay98] contains an
insightful discussion of the overall process of knowledggeavery in databases (KDD) as well as a compre-
hensive overview of methods, problems, and their inherkatacteristics.

In the field of spatial data mining [EKS99] much recent work facused on clustering and the discovery of
local trends and characterizations. Scalable algorittangxtracting clusters from large collections of spatial
data are presented in [NH94] and [KN96]. The authors alsobtoenthis with the extraction of characteristics
based on non-spatial attributes by using both spatial damtiand non-spatial dominant approaches (depend-
ing on whether the cluster discovery is performed initiahyon subsets derived using non- spatial attributes).
A general framework for discovering trends and charac&ions among neighborhoods of data-points is pre-
sented in [EFKS98]. This framework is built on top of a sgdliBMS and utilizes neighborhood-relationship
graphs which are traversed to perform a number of operatiddditionally, scalable clustering algorithms are
included [AGGR98, TZ96, SCZ98, FRB98].

Visualization techniques for large amounts of multidimenal data have also been developed. The work
described in [KK94] presents a visualization method whititizes views of the data around reference points
and effectively reduces the amount of information to beldiggd in a way that affects various characteristics
of the data (eg. shape and location of clusters, etc.) in a@ted manner.

There has also been significant work on data mining in notiggpanultidimensional databases. Recent
work on a general framework that incorporates a number afrilgns is presented in [IHLN99]. The authors
introduce a general query language and demonstrate itscapgh on the discovery of a large variety of
association rules which satisfy the anti-monotonicitygandy.

However, none of the above methods can answer all the qusjith to Q5, which we posed in the previous
section. The method proposed in this paper can answer sudtigus as we will show in the next sections.
To find a solution for the given problem we move away from aidimn rules and focus on the relationship
between two spatial datasets.



2.1

Description of the data sets

In order to test our method we used several synthetic andlegatets. We use synthetic datasets to help build
intuition and real datasets to validate our techniques. shimthetic datasets are always normalized to a unit
MBR (minimum bounding rectangle), and they may be trandlatetated and/or scaled in the experiments.
For the synthetic datasets we used:

‘Line’ (points randomly chosen along a line segment)
‘Circumference’ (points randomly chosen along the peniploé a circle)

‘Sierpinsky’ (randomly generated points from the theaatiSierpinsky triangle), Figure 1(a) shows an
example of it.

‘Square’ (randomly generated points in a 2D manifold)
‘Cube’ (randomly generated points in a 3D manifold)

‘Super-cluster’ (256 uniformly distributed clusters, bauf them with 7x7 points in a 2D manifold).

The number of points in the datasets are shown in the pla@ifislg their names. For example: ‘Linel0K’
means a line with 10,000 points.
The real datasets used are the following:

California - These are four two-dimensional sets of poiht tefer to geographical coordinates in Cal-
ifornia [0C89]. Each set corresponds to a feature: ‘strdetsh 62,933 points), railways (with 31,059
points), political borders (‘political’ with 46,850 pois)t, and natural ‘water’ systems (water with 72,066
points). Figure 1(b) shows the political and water dataseperimposed.

Iris - This consists of three sets, each of which describegepties of the flower species of genus Iris. The
points are 4-dimensional (sepal length, sepal width, petajth, petal width); the species are ‘virginica’,
‘versicolor’ and ‘setosa’, and there are 50 points from espécies. This is a well-known dataset in the
literature of machine learning and statistics, which weaot#d from the UC-Irvine Repository. Figure
1(c) shows a 3D projection of this dataset.

Galaxy - The Galaxy datasets come from the SLOAN telescopg) ¢oordinates, plus the class label.
There are 82,277 in the ‘dev’ class (deVaucouleurs), andOBin the ‘exp’ class (exponential). Figure
1(d) shows both datasets superimposed.

LC - Customer data from a large corporation, which requesiaadfidentiality. There were 20,000
records, each with 19 numerical/boolean attributes. Therds formed two classes, with populations of
1,716 and 18,284 respectively.

Votes - These are two 16-dimensional datasets from the 1884dJStates Congressional Voting Records
Database: Democrat (267 entries) and Republican (16&sehtri
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Figure 1: Some datasets used in the experiments: (a) Sim8ietpinski triangle, (b) California-politics and
California-water superimposed, (c) the three Iris datasatd (d) the two Galaxies datasets.

| Symbol | Definition |
Ny, (or Ng) Number of points in dataset (or B)
Cross() Cross 4,p(r, 1, 1) plot between dataset$ and B
Self 4 Self 4(r,1,1) plot of datasetd
W Cross a,p(r, 10, 1) cross-could plot weighted on dataset
Wpg Cross ,p(r, 1, 10) cross-could plot weighted on dataget
Ca,i (Cg,i) Count of typeA (B) points in thei-th cell
n Number of dimensions (embedding dimensionality)
Tmin Estimated minimum distance between two points
Tmaz Estimated maximum distance between two points
cloud / point set n-dimensional dataset

Table 1: Symbols and definitions

3 Proposed idea: Cross-cloud plots

The main intuition of our approach is to study how often memalf the two setsA and B happen to be
close to each other. This is captured by the Cross-funafienssf 4 5(r,p,q) which we define below. This
function aims to determine the spatial relationship betwte@ clouds of:-dimensional pointst andB. Table
1 presents the symbols used in this paper.

Consider a grid with cells of sideand letC,4 ; (Cp,;) be the number of points of typé (B) in the i-th
cell, and exponents andq . The grid partitions the minimum bounding box including lbbdatasets. Then we
have:

Definition 1 Given two data setgl and B residing in the same-dimensional space, we define the cross-
function as

C’I“OSSfA,B(Tapa q) = Z Ciﬂ: ' C%ﬂ:
7

Typically, we plot the cross-function in log-log scalegeafsome normalization, as we present in the next
definition:



Definition 2 Given two data setd (with N4 points) andB (with Nz points) residing in the samedimensional
space, we define the cross-cloud plot between the two datasdhe plot of

log(Na - N
Crossa,g(r,p,q) = w -log (Z Ciyﬁ’%ﬂ) versuslog(r)
A B i

Notice that the normalization factor scales the crossetjdot, maximizing the information presented. The
proposed cross-function has several desirable properties

Property 1 For p = ¢ = 1, the Cross-function is proportional to the count4fB pairs within distancer.
That is,
Cross 4,g(r,1,1) oc (number of pairs of points within distance )

Proof Using Schuster’s lemma [Sch88].

This is a significant property. Far= ¢ = 1 the cross-cloud plot gives the cumulative distributiondtimn
of the pair-wise distances between the two “cloudsind B [FSJT00]. Because of its importance, we will use
the casew = ¢ = 1 as a reference. Thus, we will omit theg argument when both of them are equal to one.
For the sake of simplicity we will omit the subscripts B from the cross-cloud plot when it is clear which
datasets are involved. That is,

Cross(r) = Cross a,p(r) = Cross 4,p(r,1,1)

Property 2 The Cross-function includes the “correlation integral” asspecial case when we apply it to the
same dataset (i.e4 = B).

Proof From the definition of correlation integral [Sch91]. Thisasvery interesting property, because the
correlation integral gives the correlation fractal dimiensD, of a dataset4, if this dataset is self-similar.The
above property is so important that we give a special namiegtgelf cross-cloud plots:

Definition 3 The self-plot of a given datasdtis the plot of

>Cai-(Ca;—1)
2

Self 4(r) = log ( > versuslog(r)

By definition, the self-plots exclude the counting of selfrpaThis means that botfp;, p2) and(p,, p1)
are counted only once. This is the reason we subtract ‘1’ fthensecond count of points, so as to avoid
artifacts that self-pairs generate.

Property 3 If Ais self similar, then (a) the Self-plot dfis linear and (b) its slope is its intrinsic dimensionality.

Proof See [BF95]. We are now ready to define our two main proposdd,tte tri-plot and theg-plot.

Definition 4 The tri-plot of two datasets4 and B, is the graph which contains the cross-plGtoss(r) and
the normalized self-plots for both datases&if ,(r) + log(Na/Ng) and Self g(r) + log(Ng/Na)).

Notice that the normalization factoreg (/N 4/Ng) andlog(Ng/N4), only translate the self-plots, preserving
the steepness of the graphs. In this paper, for every ttivaopresent the three graphs with the same color
pattern: the cross-plot is presented in blue lines with diads,Self , in green lines with crosses asdif 5 in

red lines with squares. We also report the slope or steemidhls fitting lines.
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Definition 5 Thepg-plot of two datasetsd and B, is the graph which contains the three cross-cloud plots:
Cross o,(r), Cross 4 g(r, 1,k), and Cross 4 g(r, k, 1) for large values ok (k >> 1).

Figure 2 shows a tri-plot and gg-plot of the Line and Sierpinsky datasets. Notice that, calgh the
Cross() is almost always linear (Figure 2(a)), this is not necelsttie for theCross(r, 1, k) andCross(r, k, 1)
(in Figure 2(b),k = 10).

Tri-Plot: Sierpinsky15K X Line10K pq-Plot: Sierpinsky15K X Line10K

| Cross stp=2.0952 —*—
Self Sierpinsky stp= 1.5876 ~—+—
6 b Self line stp=1.0014 —&—

; s b Cross stp= 2.0952 —e—
a Weighted Sierpinsky ~ —+—
8 . Weighted Line10K —e—

(a) (b)

log(radii * log(Fadii) °
Figure 2: Sierpinsky triangle and Line datasets: (a) thpltt, (b) thepg-plot. The cross-plots are presented in

blue with diamonds, the self- and weighted-Sierpinsky iontgreen with crosses and the self- and weighted-
Line in red with squares.

Definition 6 The steepness of a plot is the slope of its regression lim i&hleast squares fitting line).

Definition 7 The dissimilarity of two given plots is measured by the suthefoot mean square differences
between them.

The tri-plots will allow us to determine the relationshiptiween the two datasets under analysis. If the datasets
are self-similar, i.e, the self-plots of both datasets ewedr for a meaningful range of radii, their slopes can be
used in the comparisons that follow. However, the proposediais can be applied even to datasets which are
not self-similar (do not have linear self-plots). Thus, wi# vefer to the “steepness” and “similarity” between
the plots as measurements for comparison. gddiplot is used in a further step of the analysis. Its use is more
subtle and is discussed in section 4.3. Next we show some#tiieg properties of the datasets that can be
derived from the tri- anghg-plots.

3.1 Anatomy of the proposed plots

This section shows how to “read” the cross-cloud plots akd talvantage of the tri- ang-plots without any
extra calculation.

3.1.1 Properties of the self-plots

From a self-plot we derive valuable information:



Property 4 The estimate valug,,;,,, which is the minimum distance between two points of a giatssét, ie,
the first radius where the count-of-pairs is not zero is gikgrihe self-plot.

Property 5 The estimate valué,, .., which is the maximum distance between two points of a giataset
(or the dataset diameter), i.e., the maximum value wheredhbat-of-pairs increased is given by the self-plot.
For bigger radii the counting remains the same.

Line15K Cloud of clusters
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Figure 3. Measurements obtained from self-plots: (a) Liatset, and (b) Super-cluster dataset.

Figure 3 illustrates the properties stated above. Figua iB(the lower row presents a line with 15,000
points. Its Self-plot is linear, and its slope gives the gabf D, equal to 1. This value is also the intrinsic

dimensionality of a line. The estimate of minimum and maximdistances between two poirits;, andr,,q.
are also presented in Figure 3.

Property 6 Whenever the self-plot has a plateau from radiyg, to 7,,..., the dataset is probably consisting
of clusters (see Figure 3).

Notice that, whenever the self-plot is piecewise lineagntthe dataset has characteristic scales. Especially
interesting is the case of plateaus. This happens whenkgetataset is not homogeneous. Then, there is
more information to be extracted from the self-plot. Thisus to the self-plot of the 'Super-cluster’ dataset.



Whenever the self-plot presents flat areas in the middleeofithph, then it means that the dataset is composed
by clusters, and the maximum diameter of the cluster cantasestimated. This is shown in Figure 3(b) as
Ted maz- 1H€ Characteristic separation between the cluster scanba& estimated and is presented in Figure
3(b) asr,ep.. Notice that the values of radius presented in the plots etieally the log of the radii. Next we
show how to interpret a cross-cloud plot, to determine tlegtike positioning of two “clouds”.

Tri-plot: Sierpinsky(A) and Line(B)

20 T
< Cross steepness=1.9854 —o—
8 18 SelfA steepness=1.6362 ~—+— 7
o SelfB steepness=1.0003 —&—
16 -
14 / 4
L Maximum ]
distance
10 | between two .
points of the
8 1 datasets 1
6 - -
4 + i
2t Minimum distance between points of 1
#~——"both dataset
0 1 1 1 1 1
12 -10 | -8 -6 -4 0

2
log(radii)

Figure 4: Example of a tri-plot indicating where to find mewagful information. The cross-plot is always in
blue with diamondsSeif 4 in green with crosses arklf ; in red with squares.

3.1.2 Properties of the cross-cloud plot

Figure 4 presents an example of a tri-plot, where datdsista randomly generated set of 6,000 points of a
line (y = 20/x,y € [0,1]), and dataseB is a Sierpinsky triangle with 6,561 points. These two dataséere
chosen to highlight some interesting properties of thisllohplot. These properties (depicted in Figure 4) are
discussed in the following.

Property 7 Estimate the minimum distance between the two datasets.miihimum distance is given by the
smallest value of thing(r) axis, which has a non-zero value in the cross-cloud function



Property 8 Estimate the maximum distance between the two datasetsistithe maximum diameter sur-
rounding both datasets. This estimate is given by the gseatdue of thdog(r) axis before the plot turns
flat.

Property 9 If the cross-cloud plot is linear, its slope depends on thatnee positioning of the two datasets.

Property 10 Whenever the cross-cloud plot has a flat part for very smallirahis means that are points in
datasetA which coincide exactly with points in datagét(duplicate points in both datasets).

All the previous estimates can be obtained with a singlegssing pass over both datasets without effectively
computing any distance. Recall that we count the occupati@ach grid cell.

Property 11 The steepness of the cross-cloud plot is always greater ¢thaaqual to the steepness of the
steeper self-plot of the datasets.

4 Practical usage / Data mining across two clouds

In order to present the analysis process through the ctosst@lot method, it is necessary to define some
terms used in this paper:

Definition 8 The shape of a dataset means its formation law.
Definition 9 Two datasets are collocated if they have minimum boundixg®that are highly overlapping.
Definition 10 The placement of a dataset stands for the position and @iient of it.

We use these three terms when comparing two datasets. Tegettatan have the same shape but different
placement (two non-colinear lines). If a dataset was maaiped byaffine transformationghe resulting dataset
will have the same shape but different placement. Indeenl datasets with the same intrinsic dimensionality
can have different shapes. This is the case of a line and antfezence as they have the same intrinsic
dimensionality (‘1"), but different shapes.

4.1 Rules for tri-plot analysis

In this section we present rules which will help analyze alagsify the relationship between two datasets.
Through the analysis of the tri-plots, we can get inforntatoout the intrinsic structure and the global rela-
tionship between both datasets.

Table 4.1 concisely presents the condition set used in itipdotranalysis. The rules are presented below.

Rule 1 If all three plots of a tri-plot are similar, that iSelf , ~ Self 5 ~ Cross, then both datasets are
probably identical. In this case, the three graphs in thelti will be on top of each other. This means that
both datasets probably have the same intrinsic dimensigretiape and placement. This is also the case when
either one dataset is a subset of the other, or both datasetsumples from a bigger one. Figure 5 shows the
tri-plots for (a) two lines with different number of objecth) two Sierpinsky triangles, and (c) two coplanar
squares in 3D. All datasets in Figure 5 are in a 2D manifoldallthese examples both datasets have the same
shape and placement but different number of points.



| Rule | Condition \ Meaning | Example |

A A and B are similar Gelf , andSelf ; have
same steepnessnd

1 Cross has the same steepnessSaff , and | DatasetsA and B are probably| Figure 5
Self statistically identical

2 Cross has steepness comparable to that &oth datasets have the same |nFigure 6
Self 4, andSelf trinsic dimensionality

3 Cross is much steeper than bo#felf , and | The datasets are disjoint Figure 7
Self 5

B A and B are not similar felf 4 and Self 5
have different steepness)d

4 Cross has the same steepnes &df , or | The less steep dataset is probabl\Figure 8
Self a proper subset of the other

5 Cross has steepness comparable to that dfeeds further analysis Figure 9
Self , andSelf

3 Cross is much steeper than bo#elf , and | The datasets are disjoint Figure 7
Self g

Table 2: Conditions and rules used in tri-plot analysis.

Rule 2 If the steepness of both datasets are simif&if(, ~ Self 5), but the steepness @fross is only
moderately steeper than both, then both datasets probalily the same intrinsic dimensionality, but they
come from different placements. Further analysis, as coeduby thepg-plot analysis, can indicate whether
both datasets are separable or not, and if separable to witeait.e These are the cases of intersecting lines
in two or more dimensional spaces, intersecting planesyorSierpinsky datasets with one rotated over the
other, as presented in Figures 6(a), 6(b) and 6(c) respdctiMotice that the figures show the datasets and the
self-plots with the same color pattern.

Rule 3 If the Cross is much steeper thafielf , and Self ; (does not matter whether they are similar or not),
then the datasets are disjoint. For two intersecting detatiee Cross steepness will not be so far from the
steepness of their self-plots. However, if theoss is much steeper than botbelf , and Self 5, it means
that the minimum distance between points from the datasdtigger than the average distance of the nearest
neighbors of points in both datasets, so the datasets goentisl. In fact, this case leads to the conclusion that
both datasets are well-defined clusters; hence they she@ukkparable by traditional clustering techniques.
Examples of this situation are non-intersecting lines,asgsl far apart, or a Sierpinsky triangle and a plane
which is not coplanar with the Sierpinsky’s supporting @aas shown in Figure 7(a) to 7(c). All datasets are
in 3D space. Notice that the self-plots have the expectques|dout the cross-plots have very high steepness
(18, 13 and 26 respectively).

Rule 4 Without loss of generality, leSelf 4, be the steeper betweéhlf , andSelf 5. If the steepness of the
self-plots are not similarSelf 4, % Self z) and theCross is equal toSelf ,, then dataseB is a sub-manifold

of datasetA. Remember that the steepness of th@ss can not be smaller than the steepness of the self
plots Self 4 or Self 5. Therefore, if the steepness of tligoss is similar to one of the self steepnesses, e.g.
Cross = Self 4, then the other graph (in this caself 3) will be less steeper thafiross. This means that
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Line5K X Line10K Sierpinsky10K X Sierpinsky9K . Square4k X Square10k

Cross stp=1.0000 — ” Cross stp=1.6399 —_— Cross stp=2.0052 —o—

Self Line5K stp=0.9996 — [ Self Square4K stp=2.0003 —+—
7 “[Self Line10K stp=1.0003 ~—&—  [Self Square10K stp=1.9997 —8—

Self Sierp10k stp=1.6467 —
< 1 FSelf Sierpinsky9K stp=1.6474

Crossf()

(©)

2 o N . o N . B R \ N w0 s 7 e s 4 s 2 ' o
log(radii) log(radii) log(radii)

Figure 5:Rule 1: The two datasets have the same shape and placement: (a) parongoosed lines (all plots
have slopex 1, (b) Two superimposed Sierpinsky triangles (all plots helapesx 1.64 ~ log 3/log 2, ()
Two superimposed squares (all plots have slepé&s All datasets are in 2D space, and the axes of all tri-plots
are in log-log scale.

the points in datase® have a stronger correlation than the points in datadsdRule 1 deals with the situation
where both datasets are subsets of a larger one, or one iset @flanother, but there is no rule to extract the
subsets. Rule 4 deals with the same case of occurrence adtsubst here there are rules to choose points
that pertain to the dataset with a smoother self-plot. Examof this case are a line embedded in a plane, a
Sierpinsky dataset and its supporting plane, and a squareddrd in a volume, as shown in Figures 8(a), 8(b)
and 8(c) respectively.

Rule 5 |If Self 4 # Self 5 and theCross is only moderately steeper th&if , andSelf 3, then both datasets
come from different placement. In this case, both datasets h different shape and intrinsic dimensionality,
and they are not related to each other. They are, howevéocetdd, or at least intersecting. This means that
although part of the datasets may be separable, this wotiloertoue for the entire dataset, or for both datasets.
Whenever this situation occurs, it should be further aredyZor example, using thgg-plot. These are the
cases of a line with a Sierpinsky triangle, a line piercingjasse, and a Sierpinsky intersecting a square, as
Figure 9 shows.

4.2 Applying the proposed rules to real datasets

In the previous section we presented the proposed rules @ndshch rules apply to synthetic datasets. In
this way, we take advantage of the intuition that synthetitaslets provide. In this section we show how the
tri-plots can be used to characterize the relationship etwwo datasets. In Figure 10 we present tri-plots for
real datasets. This figure presents the four cases found irealdatasets.

Rule 1 (probably identical) There are four pairs of datasets in Figure 10 which conforiRute 1: the
two different subsets of the California-political datas@tigure 10(a)), the two galaxy datasets (Figure 10(b)),
the Iris-versicolor and Iris-virginica datasets (Figu®d)), and two different subsets of the California-water
dataset (Figure 10(d)). As Figure 1 showed, all of thesesg#gain fact, exhibit similar distribution.

Rule 3 (disjoint datasets) There are two pairs of datasets in Figure 10 which conformuteR: the
Iris-Versicolor and Iris-Setosa datasets (Figure 10@)) the Democrat and Republican vote datasets (Figure
10(f)). The steepness of their cross-plot is much biggemn tha steepness of their self-plots. In Figure 1(c) we
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Two intersecting Circumferences Line5K X Circumf5K Square(A) X Square(B)

Cross stp=1.9094 —e— Cross stp=2.1495 —o—
s [Self Circumf(A) stp=1.0058 —+— Self Line5K stp=0.9986 —+—
Self Circumf(B) stp=0.9888 —&— « | Self Circumf5K stp=0.9900 —s—

Cross stp=3.0165 —
'® I'Self Square(A) stp=2.0008 —
16 | Self Square(B) stp=1.9848 —

Crossf()

Crossf()
Crossf()

“ 2 o 12 10 8 6 4 2 o 12 10 8 6 4 2
log(radii) log(radii) log(radii)

(1

() ®) (©

Figure 6:Rule 2: The two datasets have the same intrinsic dimensionalitydifferent placements: (a) Two
intersecting circumferences in 2D space, (b) A line cragsircircumference in 2D space, (c) Two piercing
planes in 3D space. The upper row shows the tri-plots withakes in log-log scale. The lower row shows the
corresponding datasets in their respective spaces.

saw that the Versicolor and Setosa datasets are indeed apdnive know that the Democrat and Republican
parties have distinct behavior which allows separatiorheirtmembers.

Rule 4 (sub-manifold) Figure 10(g) presents the tri-plot of California-water a@dlifornia-political
datasets. Let us recall that the dataset with smaller sésspis probably a proper sub-manifold of the one
with larger steepness (or from the set in which both are sasjpl Thus, Figure 10(g) indicates that the
California-political dataset is probably a subset of thdifGania-water one. This makes sense since many
political divisions use water paths, and there are somer@ito choose the political divisions.

Rule 5 (different placement) There are two pairs of datasets in Figure 10 which conform ute Fs.
Figure 10(h) indicates that the California-railroad anel @elifornia-political datasets agree with Rule 5, which
is a reasonable conclusion as both datasets hold geogahplai built with distinct objectives. Figure 10(i)
indicates that the LC datasets also agree with Rule 5 andrecfguther analysis. The flat parts in Figure 10(i)
and in the Self-political plot in Figure 10(h) indicate tllagése datasets possibly have duplicate points (or even
very close points). Notice that we presented the case ofShpér-cluster” in real datasets (see Figure 10(b)).
It shows that the Galaxy datasets have clusters at two deasdc distances. The datasets also repel each
other for the radius range of the cluster diameter. Aftetyaiiag the relationship between two datasets by the
Tri-plots, a more detailed analysis can be performed takiigpntage of the pg-plots as we will explain in the
next section.
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Figure 7:Rule 3: The two datasets are disjoint: (a) two non-intersectingdjr{b) two non-intersecting squares,
(c) a square and a Sierpinsky triangle. The upper row showsrifplots with the axes in log-log scale. The
lower row shows the corresponding datasets in 3D space.

4.3 Analysis of the pg-plot

The pg-plot allows emphasizing the relationship betweeo tatasets, weighting the contribution of one
dataset when comparing its distance distribution with tiseadce distribution of the other dataset.

The analysis of thgg-plots is directed to specific parts of the cross-cloud plotontrast to the more global
analysis of the tri-plots. Regarding the-plot, even if aCross 4 g(r,p, q) plot withp # 1 # ¢ happens to be
a line, the slope is not meaningful; only its ‘shape’ has nivegfnl properties. Also, due to the normalization
given bylog(N4 - Ng)/log(N% - N%), both the leftmost and rightmost points in all pg-plots dre same.
Recalling Equation 1, if a particula¥'s ; (or C ;) used to calculate th€'ross 4 g(r, p, q) plots is null for a
given radius r in a given region of the space, the correspandiz ; (or C'4 ;) will not contribute to the total
number of counts for this particular radius, leading to adlasing region in this part of the curve. Otherwise, if
there is a regular distribution of distances over a contirsupart of the curve, the resulting curve will exhibit
a linear shape. Sudden rises in a plot indicate a large grofwtbunts starting at that radius. Hence, the two
shapes in the curves of the Cross-cloud plots that are wodtkirig for are: the linear parts, and the regions
where the curves are flat.

The cross-cloud plots(ross 4 g(r, k, 1), and CrossAB(r, 1, k) with k& > 1 (which we have name®/ 4
andW g because they are ‘weighted’), can be generated for any wAkieHowever, increasing k only increases
the distortions on the plot, without giving any extra infation. Thus, for the discussion that follows, we
arbitrarily adopt the value of = 10. Each conclusion is valid for the range of radii which prasespecific
behavior. Next we discuss two representative situatiosmgupairs of synthetic datasets and comparing the
obtained tri-plots angg-plots.

Figure 11 compares two pairs of datasets: circumferencestiference and line-circumference. This
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Crossf( )
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Figure 8: Rule 4: One dataset is a proper subset of the other dataset: (a) eesopexlapping a line in 2D
space, (b) a Sierpinsky triangle and its supporting plar@Dirspace, (c) a volume travesed by a plane in 3D
space. The upper row shows the tri-plots in log-log scale [6tver row shows the datasets in their respective
spaces.

illustrates the situation stated by Rule 2: the two dataamssimilar Self 4 =~ Self 5 and Cross steepness

is less or equal than the steepnessSeff 4 plus the steepness 6kif ). By looking only at the tri-plots in
Figures 11(a) and 11(d), it is not possible to say anythisg about the datasets. However, looking at Figure
11(b) we can see that the three graphs are on top of each dthisrmeans that both datasets have the same
behavior under weighted calculatiofoss(r, 1,10) and Cross(r, 10, 1)). Thus, both datasets have the same
shape. On the other hand, the behavior ofiheplot in Figure 11(e) shows that indeed both datasets have
different shapes and it also shows how they are correlatédinépecific radii range (Region | and Il on the
plots).

In this section we proposed the rules to analyze the trisptwtd thepg-plots using well-understandable
synthetic datasets in two- or three-dimensional spacesveMer, the same conclusions should apply for real
datasets in any multi-dimensional space. In fact, for ratdskets it is usually difficult to know how to describe
the relationship between the attributes and to know if theycarrelated. Nonetheless, our proposed analysis
can indicate not only the existence of correlations, bud htswv “tight” they are. This analysis can also provide
evidence of how separable the datasets are, as well as passible to classify points as belonging to one or
to the other dataset.
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Figure 9: Rule 5: The datasets come from different placements: (a) a line afempinsky triangle in 2D
space, (b) a line piercing a square in 3D space, (c) a planarmidersecting Sierpinsky triangle in 3D space.
The upper row shows the tri-plots in log-log scale. The lower shows the corresponding datasets in their
respective space.

4.4 Using pg-plots to analyze datasets

In Figure 12 we presenig-plots only for some cases of real datasets, due to spacefionis. Figure 12(a)
shows thepg-plot of the points from the Galaxy datasets. For the randeated, there is a distinct separation
between the datasets. Besides confirming that the two Gatprg indeed repel each other, fheplots shows
that there are few clusters consisting only of the ‘exp’ tygléhough there are clusters including points of both
datasets also with only the ‘dev’ points). However, outghde range, they are almost identical. Figure 12(b),
as expected, confirms that the Democrat and Republicanedsi@® separable. This is because the weighted
plots have completely opposite behaviors.

Figure 12(c) shows thgg-plot of the California-water and California-political @eets. In this plot, there
are four ranges with distinct behaviors. Range | correspdndvery small distances, so these distances are
probably less than the resolution of the measurementsftirerthey are not meaningful. Ranges Il and Il are
where the real distances are meaningful. The sudden fatletdeft of the wWater-plot in range Il means that
there are very few points in the political dataset at distariwelow this range from points in the water dataset.
This indicates a kind of “repulsion” of points from both dse#s for these small distances. In range lll, both
datasets have approximately the same behavior. Range Ivhsaflat for all plots, meaning that there are
almost no more pairs within this distance range. In fact,“Himost flat” part of the graph is due to a few
outliers in the dataset.
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Figure 10: Tri-plots of real datasets and their classiftsatis obtained from rules 1-5.

4.5 Membership testing and classification

In this section we illustrate the power of our cross-cloudt®in another setting: namely membership testing
and classification. Figure 13 illustrates the followinguaiion. Given two dataset$ and B, where datasett
consists of 20 points along a line, and datdsedf 900 points in a ‘tight’ square, a new point, indicated by th
guestion mark ‘?" arrives. Which set, if any, does it beloog t

Visually, the new point ‘?’ should belong to the Line20 sebwver, nearest neighbors or decision- tree-
based classifiers would put it into the square: the new paiat 800 neighbors of type square, before its first
neighbor of type Line20 shows up!

We propose a method that exploits Cross-cloud plots to eehiee correct classification of the incoming
point ‘?’. Our method processes the new point as a singlettasdét and compares its cross-plots with the
self-plots of each target dataset.The classification po@ee propose compares the steepness of CrossLine,
Point and CrossSquare, Point with the steepness of SelflrideSelfSquare. If CrossLine, Point is similar to
SelfLine, we classify the new point into the Line20 datagetnceivably, our new point could be classified
under one, two, or more of the target datasets.

The full details of the classification method are the topiomgoing research. We have just shown that this
is another benefit that can be derived from the presentedsctosd technique.
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Figure 11: Cross-cloud plots for two pairs of datasets: lfa)tti-plot of two intersecting circumferences (as
shown in (c)), (b) thevg-plot of the two circumferences, (d) the tri-plot of a lindersecting a circumference
(as shown in (f)), and (e) they-plot of the line and the circumference.

5 Speed considerations

In this section we present the algorithm designed to gea¢hattri-plots as well as its performance for multi-
dimensional large datasets.

5.1 Algorithm to generate the Tri-plots

We developed a single-pass algorithm over both datasetst&inahe required tri-plots, which is presented in
Figure 14. It is defined as follows.

Given two datasetd and B with cardinalitiesN 4 and Ng in an-dimensional space,

Generate the tri-plot of the datasets, that is, the cross-ftif 4 plot andSelf 5 plot.

Calling F' the number of non-empty cells in each grid, cledrl¥ F' < N4 + Npg, and it does not depend
on the dimensionality:. Thus, our algorithm scales up for arbitrarily large datasend arbitrarily high
dimensionality. This is rarely true for any other spatialadeining method in the literature. The algorithm to
generate theg-plots is similar to the algorithm depicted in Figure 14, wéhanstead ofSelf , andSelf 5 plots
W andWp plots are drawn. Due to space limitations we do not show & her
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Figure 12: pg-plots for real datasets: (a) Galaxy, (b) Democrat and Riggary (c) California-water and
California-political. The upper row shows the tri-plotsdathe lower row the corresponding;-plots. The
axes are in log-log scale

5.2 Scalability

The algorithm developed is linear over the total number ohfsoin both datasets, i.6Q(N4 + Np). Iflis
the number of points that we want in each Cross-cloud plet, ihe number of grid sizes), then the complexity
of our algorithm isO((Ng + Na) - L - n), wheren is the embedding dimensionality of the input datasets.
Figure 14 presents a brief algorithm to generate the requmss-cloud plots. Figure 15 shows the wall-clock
time required to process datasets on a Pentium Il machinerii@i4.0. The datasets have varying numbers
of points in 2, 8 and 16-dimensional spaces, and we gene2fteniid sizes for each dataset. The number of
points shown in Figure 15 is the sum of the number of pointsoiih lolatasets. In this figure we can see that the
execution time of this algorithm is indeed linear on the nemdf points in the datasets. Figure 16 corroborates
that the our algorithm is also linear on the dimensionalityhe datasets. In this case we used datasets with
100,000, 200,000 and 300,000 with dimensions 2 to 40. Thiwshthat the proposed algorithm is safe of the
so-called ‘dimensionality curse’.

Notice that steps 1 and 2 of the algorithm read the datasetsn@mtain counts of each non-empty grid
cell. These counts can be kept in any data structure (hak¥stajuadtrees, etc.).

6 Conclusions

We have proposed the cross-cloud plot, a new tool for spdéitel mining across twa-dimensional datasets.
We have shown that our tool has all the desirable properteeasked for.

e It can spot whether two clouds are disjointed (separabiafisically identical, repelling, or in-between.
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Figure 13: Classifying a point as either belonging to a spéire or to a dense square, using the cross-cloud
method: (a) spatial placement of the incoming point and titasits, (bpelf;;,. and Crossi,ine, point PIOL, (C)
Selfsquare and Crosssquare,Point PIOL.

q

That is, it can answer questions Q1 to Q4 presented in settion

e It can be used for classification and is capable of “learnimghape/cloud, where traditional classifiers
fail to do so (that is, question Q5 presented in section 1).

e It is very fast and scalable: Our algorithm requires a singdss over each dataset, and the memory
requirement is proportional to the number F of non-empty gells and to the number | of grid sizes
requestedl( < F < N4 + Np, and clearly not exploding exponentially).

e It can be applied to high-dimensional datasets as well lsecthe dimensionality of the dataset for the
counting of points inside the grid cells does not matter.

The experiments on real datasets show that our tool findsrpatthat no other known method can. We believe
that our cross-cloud plot is a powerful tool for spatial daiaing and that we have just seen only the beginning
of its potential uses.
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