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ABSTRACT
Graphs are an increasingly important data source, with such
important graphs as the Internet and the Web. Other fa-
miliar graphs include CAD circuits, phone records, gene se-
quences, city streets, social networks and academic citations.
Any kind of relationship, such as actors appearing in movies,
can be represented as a graph. This work presents a data
mining tool, called ANF, that can quickly answer a number
of interesting questions on graph-represented data, such as
the following. How robust is the Internet to failures? What
are the most influential database papers? Are there gen-
der differences in movie appearance patterns? At its core,
ANF is based on a fast and memory-efficient approach for
approximating the complete “neighbourhood function” for a
graph. For the Internet graph (268K nodes), ANF’s highly-
accurate approximation is more than 700 times faster than
the exact computation. This reduces the running time from
nearly a day to a matter of a minute or two, allowing
users to perform ad hoc drill-down tasks and to repeatedly
answer questions about changing data sources. To enable
this drill-down, ANF employs new techniques for approxi-
mating neighbourhood-type functions for graphs with dis-
tinguished nodes and/or edges. When compared to the best
existing approximation, ANF’s approach is both faster and
more accurate, given the same resources. Additionally, un-
like previous approaches, ANF scales gracefully to handle
disk resident graphs. Finally, we present some of our results
from mining large graphs using ANF.

1. INTRODUCTION
Graph-based data is becoming more prevalent and interest-
ing to the data mining community, for example in under-
standing the Internet and the WWW. These entities are
modeled as graphs where each node is a computer, admin-
istrative domain of the Internet, or a web page, and each
edge is a connection (network or hyperlink) between the
resources. Google is interested in finding the most “impor-

tant” nodes in such a graph [2]. Broder et al. studied the
connectivity information of nodes in the Internet [13, 3].
The networking community has used different measures of
node “importance” to build a hierarchy of the Internet [20].
Another source of graph data that has been studied are cita-
tion graphs [18]. Here, each node is a publication and each
edge is a citation from one publication to another and we
wish to know the most important papers. There are many
more examples of graphs which contain interesting informa-
tion for data mining purposes. For example, the telephone
calling records from a long distance carrier can be viewed
as a graph, and by mining the graph we may help iden-
tify fraudulent behaviour or marketing opportunities. DNA
sequencing can also be viewed as a graph, and identifying
common subsequences is a form of mining that could help
scientists. Circuit design, for example from a CAD system,
forms a graph and data mining could be used to find com-
monly used components, points of failure, etc.

In fact, any binary relational table is a graph. For example,
in this paper we use a graph derived from the Internet Movie
Database [10] where we let each actor and each movie be a
node and add an undirected edges between and actor, a,
and a movie, m, to indicate that a appeared in m. It is
also common to define graphs for board positions in a game.
We will consider the simple game of tic-tac-toe. From all
of these data sources, we find some prototypical questions
which have motivated this work:

1. How robust is the Internet to failures?
2. Is the Canadian Internet similar to the French?
3. Does the Internet have a hierarchical structure?
4. Are phone call patterns (caller-callee) in Asia similar

to those in the U.S.?
5. Does a new circuit design appear similar to a previ-

ously patented design?
6. What are the most influential database papers?
7. Which set of street closures would least affect traffic?
8. What is the best opening move in tic-tac-toe?
9. Are there gender differences in movie appearances?

10. Cluster movie genres.

It is possible to answer all of these questions by comput-
ing three graph properties pertaining to the connectivity or
neighbourhood structure of the graph:

Graph Similarity: Given two graphs, G1 and G2, do the
graphs have similar connectivity / neighbourhood structure



(independent of their sizes). Such a similarity measure is
useful for answering questions 1, 4, and 5.
Subgraph Similarity: Given two subsets of the vertices
of the graph, V1 and V2, compare how these two induced
subgraphs are connected within the graph. Such a similarity
measure is useful for answering questions 2, 4, 8, 9, and 10.
Vertex Importance: Assign an importance to each node
in the graph based on the connectivity. This importance
measure is useful for answering questions 1, 3, 6, and 7.

We answer questions 1, 7 and 10 in this paper, one from each
of the three types. The remaining questions can be answered
in a similar fashion, using various forms of the Neighbour-
hood Function . The basic neighbourhood function, N(h),
for a graph, also called the hop plot [8], is the number of
pairs of nodes within a specified distance h, for all distances
h. In section 2 we will define this more formally and present
a more general form of the neighbourhood function that can
be used to compute all three graph properties.

The main contribution of this paper is a tool that allows us
to compute these three graph properties, thereby enabling
us to answer interesting questions like those we suggested.
Beyond simply answering the questions, we want our tool to
be fast enough to allow drill-down tasks. That is, we want
it to be possible to interactively answer users requests. For
example, to determine the best roads to close for a parade,
the city planner would want to interactively consider vari-
ous sets of street closures and compare the effect on traffic.
Almost in contrast to the need to be able to run interac-
tively on graphs, we also want a tool that scales to very
large graphs. In [3, 13], measuring properties about the web
required hardware resources that are beyond the means of
most researchers. Instead, we produce a data mining tool
that is useful given any amount of RAM. These two goals
give rise to the following list of properties that our tool must
satisfy when analyzing a graph with n nodes and m edges:

Error guarantees: estimates must be accurate at all dis-
tances (not just in the limit).
Fast: scale linearly with # of nodes and # edges (n, m).
Low storage requirements: use only O(n) additional
storage.
Adapts to the available memory: when the node set
does not fit in memory, make effective use of the available
memory.
Parallelizable: for massive graphs, must be able to dis-
tribute the work over multiple processors and/or multiple
workstations, with low overheads.
Sequential scans of the edge file: avoid random accesses
to the graph. Random accesses exhibit horrible paging per-
formance for the common case that the graph is larger than
the available memory.
Estimates per node: must be able to estimate the neigh-
bourhood function from each node, not just for the graph
as a whole.

This paper presents such a tool, which we call ANF for Ap-

proximate Neighbourhood Function . In the literature, we
have found two existing approaches that could prove useful
for computing the neighbourhood function. We show that
neither meets our requirements, primarily because neither
scales well to very large graphs. This can be seen in Figure 1,
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Figure 1: ANF algorithms scale but not the others

which plots the running time versus the graph size for some
randomly-generated graphs. The two existing approaches
(the RI approximation scheme [4] and a random sampling
approach) scale very poorly while our ANF schemes scale
much more gracefully and make it possible to investigate
much larger graphs. In section 2 we provide background
material, definitions and a survey of the related work. In
section 3 we describe our ANF algorithms. In section 4, we
present experimental results demonstrating the scalability
of our approach. In addition, we show that, given the same
resources, (1) ANF is much more accurate and faster then
the RI approximation scheme, and (2) ANF is more than
700 times faster than the exact computation for a snapshot
of the Internet graph (268K nodes). In section 5, we use
ANF to answer some of the prototypical questions posed in
this introduction.

2. BACKGROUND AND RELATED WORK
2.1 Definitions
Let G = (V, E) be a graph with n vertices, V , and m directed
edges, E. (Table 1 summarizes the symbols used in this
paper.) Let dist(u, v) be the number of edges on the shortest
path from u to v. To answer our prototypical questions,
we need a characterization of a node’s connectivity and the
connectivity within a graph, as a whole. Accordingly, we
define the following forms of the neighbourhood function:

Def. 1. The individual neighbourhood function for u at h
is the number of nodes at distance h or less from u.

IN(u, h) = | {v : v ∈ V, dist(u, v) ≤ h} |
Def. 2. The neighbourhood function at h is the number of

pairs of nodes within distance h.
N(h) = | {(u, v) : u ∈ V, v ∈ V, dist(u, v) ≤ h} |, or
N(h) =

P
u∈V IN(u, h).

To deal with subgraphs, we generalize these two definitions
slightly. Let S be a set of starting nodes and C be a set of
concluding nodes . We are interested in the number of pairs
starting from a node in S to a node in C within distance h:

Def. 3. The generalized individual neighbourhood function

for u at h given C is the number of nodes in C within dis-
tance h.

IN+(u, h, C) = | {v : v ∈ C, dist(u, v) ≤ h} |.
Note that IN(u, h) = IN+(u, h, V ).



Table 1: Commonly used symbols
Name Description

n Number of vertices
m Number of edges
V Vertex set {0,1, · · · , n − 1}
E Edge set {(u, v) : u, v ∈ V }
d Diameter of the graph
S Starting set for the neighbourhood
C Concluding set for the neighbourhood
r Number of extra approximation bits
k Number of parallel approximations

Def. 4. The generalized neighbourhood function at h is the
number of pairs of a node from S and a node from C that
are within distance h or less.

N+(h, S, C) = | {(u, v) : u ∈ S, v ∈ C, dist(u, v) ≤ h} |
N+(h, S, C) =

P
u∈S IN+(u, h, C).

Note that N(h) = N+(h, V, V ).

In section 5 we will use the neighbourhood function to char-
acterize graphs. We will compare NG1

(h) to NG2
(h) to mea-

sure the similarity in connectivity/neighbourhood structure
of graphs G1 and G2. For example, if we want to know the
structural similarly of the Web from 1999 to today’s Web,
we can compute their neighbourhood functions and compare
them at all points. Comparing subgraphs induced by vertex
sets V1 and V2 can be done by comparing N+(h, V1, V1) to
N(h, V2, V2). E.g., let V1 be the routers in the Canadian
domain and V2 be the routers in the French domain. Fi-
nally, we will use the individual neighbourhood function for
a node to characterize its importance, with respect to the
connectivity. E.g., the most important router is the one that
in some way reaches the most routers the fastest.

Thus, if we can compute all these variants of the neigh-
bourhood function efficiently, then we can answer the graph
questions that we posed in the introduction.

2.2 Related Work
It is trivial to compute N(0) and N(1), which are |V | and
|V |+ |E| respectively. N(2) is reminiscent of the size of the
(self-)join of the edge relation: each edge is viewed as a tuple
with attributes “first” and “second” and N(2)−N(1) is the
size of the result of the query

select distinct E1.first, E2.second
from edge-rel E1, edge-rel E2
where E1.second = E2.first

Writing N(2) − N(1) in this way illustrates the difficulty
in efficiently computing N(h) for any h ≥ 2. The distinct

means that we must know which of the n2 possible pairs of
nodes have already been counted and we must take care not
to over count in the presence of multiple paths between the
same pair of nodes. One approach to computing N(h) is to
repeatedly multiply the graph’s adjacency matrix. Asymp-
totically, this could be done in O(n2.38) time. Unfortunately,
we would also require O(n2) memory, which is prohibitive.
Instead, it is common to use breadth first searches in the
graph. A breadth-first search beginning from u can easily
compute IN(u, h) for all h. We can compute N(h) by run-
ning a breadth-first search from each node u and summing
over all u. This takes only O(n + m) storage but the worse
case running time is O(nm). For large, disk resident graphs,

a breadth-first search results in an expensive random-like ac-
cess to the disk blocks. This appears to be the state of the
art solution for exact computation of N(h).

The transitive closure is N(∞) or, equivalently, N(d), where
d is the diameter of the graph. Lipton and Naughton [14]
presented an O(n

√
m) algorithm for estimating the transi-

tive closure that uses an adaptive sampling approach for se-
lecting starting nodes of breadth-first traversals. Motivated
by this work, in section 4 we will experimentally evaluate a
similar sampling strategy to discover that it scales poorly to
large graphs and, due to the random-like access to the edge
file, it does not scale to graphs larger than the RAM. Most
importantly, however, we will find that the quality of this ap-
proximation can be quite poor (we show an example where
even a sample as large as 15% does not provide a useful ap-
proximation!). Lipton and Naughton’s work was improved
by Cohen, who gave an O(m) time algorithm using only
O(n + m) memory [4]. Cohen also presented an O(m log n)
time algorithm for estimating the individual neighbourhood
functions, IN(u,h). This appears to be the only previous
work which attempts to approximate the neighbourhood
function. More details of this algorithm, which we refer
to as the RI approximation, appear in section 4.1.1 when
we experimentally compare it to our new approximation.
Our experiments demonstrate that the RI approximation is
ill-suited for large graphs; this is due to its extensive use
of random-like access (for breadth first search, heap data
structures, etc.).

The problems of random access to a disk resident edge file
has been addressed in [15]. They find that it is possible to
define good storage layouts for undirected graphs but that
the storage blowup can be very large. Given that we are in-
terested only in very large graphs and graphs with directed
edges, this does not solve the problems related to large edge
files. Instead, we will need to find a new computation strat-
egy which avoids random access to disk.

State-of-the-art approaches to understanding/characterizing
the Internet and the Web very often make use of neighbour-
hood information [3, 13, 1, 20]. Other recent work in data
mining for graphs has focused on mining frequent substruc-
tures. Essentially, the problem of finding frequent itemsets
is generalized to frequent subgraphs. Systems for this in-
clude SUBDUE [5] and AGM [11]. Graphs have been used
to improve marketing strategies [7]. A survey of work on
citation analysis appears in [18].

3. PROPOSED APPROXIMATION TO THE
NEIGHBOURHOOD FUNCTION

We are given a graph G = (V, E). We assume that V =
{0, 1, · · · , n − 1} and that E contains m directed edges.
Undirected graphs can be represented using pairs of directed
edges. We wish to approximate the function N+(h, S, C)
and IN+(x, h, C) for a node x, allowing us to compute N(h)
and IN(x,h). The approximation must be done accurately
and in such a way that we will be able to handle disk resident
graphs. In this section, we construct such an approximation
gradually. First, we approximate N(h) and/or IN(x,h) as-
suming memory-resident data structures. We extend this al-
gorithm to approximate N+(h, S, C) and IN+(x, h, C) but
still requiring sufficient RAM for processing. Next, we move



// Set M(x,0) = {x}
FOR each node x DO

M(x,0) = concatenation of k bitmasks
each with 1 bit set (P (bit i) = .5i+1)

FOR each distance h starting with 1 DO
FOR each node x DO M(x,h) = M(x,h − 1)
// Update M(x, h) by adding one step
FOR each edge (x, y) DO

M(x,h) = (M(x,h) BITWISE-OR M(y, h − 1))
// Compute the estimates for this h
FOR each node x DO

Individual estimate ˆIN(x,h) = (2b)/.77351
where b is the average position of the least zero bits
in the k bitmasks

The estimate is: N̂(h) =
P

all x
ˆIN(x,h)

Figure 2: Introduction to the basic ANF algorithm

the data structure to disk and to create an algorithm that
meets all of our requirements. Finally, we will extend this
algorithm with bit compression to further increase its speed.

3.1 Basic ANF Algorithm (ANF-0)
A graph traversal effectively accesses the edge file in random
order. Thus, if our algorithm is going to be efficient on a
graph that does not fit in memory, we cannot perform any
graph traversals. Instead, we are going to build up the nodes
reachable from x within h steps by first finding out which
nodes its neighbours can reach in h− 1 steps. Slightly more
formally, let M(x, h) be the set of nodes within distance h
of x. Clearly, M(x, 0) = {x}, since the only node within
distance 0 of x is x itself. To compute M(x,h) we note that
x can still reach in h or fewer steps the nodes it could reach
in h − 1 or fewer steps. But, x can also reach the nodes in
M(y, h − 1) if there is an edge from x to y. That is:

M(x, 0) = {x} for all x ∈ V
FOR each distance h DO

M(x, h) = M(x, h − 1) for all x ∈ V
FOR each edge (x, y) DO

M(x,h) = M(x, h) ∪M(y, h − 1)

This iterates over the edge set instead of performing a traver-
sal. The trick will be to efficiently compute the number of
distinct elements in M(x, h). One possibility is to use a dic-
tionary data structure (e.g., a B-tree) to represent the sets
M(x, h). However, this approach needs O(n2 log n) time
and space, which is prohibitive. An approach that people,
particularly C hackers, often employ is to use bits to mark
membership. That is, each node is given one of n bits and
a set is a bit string of length n. To add a node to the set,
we mark its bit. The union of two sets is the bitwise-OR of
the bitmasks. Unfortunately, this approach still uses O(n2)
memory, which will be prohibitive for large graphs.

Instead, we’re going to use a clever probabilistic counting al-
gorithm [9] to approximate the sizes of the sets using shorter
bit strings (log n+r bits, for some small constant r). We re-
fer to the bit string that approximates M(x,h) as M(x, h).
Instead of giving each node its own bit, we are going to give
about half the nodes bit 0, a quarter of them bit 1, and
so on (give a node bit i with probability 1/2i+1). We still
mark a node by setting its bit and use bitwise-OR for the
set-union. Estimating the size of the set from the small bit
string is done based on the following intuition. If we expect
25% of the nodes to be assigned to bit 1 and we haven’t seen

x M(x,0) M(x,1) ˆIN(x,1) M(x,2) ˆIN(x, 3)
0 100 100 001 110 110 101 4.1 110 111 101 5.2
1 010 100 100 110 101 101 3.25 110 111 101 5.2
2 100 001 100 110 101 100 3.25 110 111 101 5.2
3 100 100 100 100 111 100 4.1 110 111 101 5.2
4 100 010 100 100 110 101 3.25 110 111 101 5.2

Figure 3: Simple example of basic ANF

FOR each node x DO
IF x ∈ C THEN

Mcur(x) = concatenation of k bitmasks each
with 1 bit set (P (bit i) = .5i+1)

FOR each distance h starting with 1 DO
FOR each node x DO Mlast(x) = Mcur(x)
FOR each edge (x, y) DO

Mcur(x) = (Mcur(x) BITWISE-OR Mlast(y))
FOR each node x DO

ˆIN
+

(x,h, C) = (2b)/.77351, where b is the average
position of the least zero bit in the k bitmasks

N̂+(h, S, C) =
P

x∈S
ˆIN(x,h, C)

Figure 4: ANF-0: In-core ANF

any of them (bit 1 is not set), then we probably saw about
4 or less nodes. So, the approximation of the size of the set
M(x, h) is proportional to 2b, where b is the least bit num-
ber in M(x, h) that has not been set. We refer the reader
to [9] for a derivation of the constant of proportionality and
a proof that this estimate has good error bounds.

A single approximation is obviously not very robust. We
do k parallel approximations by treating M(x, h) as a bit-
string of length k(log n+r) bits. Figure 2 shows the complete
algorithm implementing the edge-scan based ANF.

Example. Figure 3 shows the bitmasks and approxima-
tions for a simple example of our most basic ANF algorithm.
The purpose is to clarify the concatenation of the bitmasks
and to illustrate the computation. The input is a 5 node
undirected cycle and we used parameters k = 3 and r = 0.
The first FOR loop of the algorithms generates the table of
random bitmasks M(x, 0). That is, using an exponential
distribution, we randomly set one bit in each of the three
concatenated bitmasks. (In the figure, bit 0 is the leftmost
bit in each 3-bit mask.) Then, each iteration uses the OR

operation to combine the nodes that it could reach in h− 1
steps plus the ones that its neighbours could reach in h − 1
steps. For example, M(2, 1) is just M(1, 1) OR M(2, 1) OR

M(3, 1), because nodes 1 and 3 are the neighbors of node

2. The estimates, for example ˆIN(2, 1), are computed from
the average of the least zero bit positions (2, 1, 1 = 4

3
, and

24/3/.77359 = 3.25).

The algorithm in Figure 2 uses an excessive amount of mem-
ory and does not estimate the more general forms of the
neighbourhood function. Figure 4 depicts the same algo-
rithm, with the following improvements:

• M(x, h) uses M(y, h− 1) but never M(y, h− 2). Thus
we use Mcur(x) to hold M(x, h) and Mlast(y) to hold
M(y, h − 1) during iteration h.

• The starting nodes, S, just changes the estimate by
summing over x ∈ S instead of x ∈ V . In terms of
implementation, this can be done by extending Mcur
to hold a marked bit indicating membership in S.



• The concluding nodes change the h = 0 case. Now
M(x,0) is {} if x /∈ C since it can reach no nodes
in C in zero steps. Thus nodes not in C are initially
assigned a bitmask of all 0s.

The ANF-0 algorithm meets all but one of the requirements
set out in the introduction:

Error guarantees: each IN+(x,h, C) is provably esti-
mated with low error with high confidence.
Fast: running time is O((n + m)d) which we expect to be
fast since d is typically quite small (verified in section 4).
Low storage requirements: only additional memory for
Mcur and Mlast.
Adapts to the available memory? No! We will address
this issue in the next section.
Easily parallelizable: Partition the nodes among the pro-
cessors and then each processor may independently compute
Mcur for each x in its set. Synchronization is only needed
after each iteration.
Sequential scans of the edge file: Yes.
Estimates IN(x,h): Yes, with provable accuracy.

3.2 ANF Algorithm
The ANF-0 algorithm no longer accesses the edges in ran-
dom order, but we now access Mcur and Mlast in an effec-
tively random order. When we see the edge (x, y) we read
and write Mcur(x) and read Mlast(y). If these tables are
larger than the available memory, swapping will kill perfor-
mance. We propose a small amount of preprocessing, to
make these accesses predictable. Our idea is to break the
large bitmasks Mcur and Mlast into b1 and b2, resp., equal-
sized pieces. We partition the edges into b1 × b2 buckets. In
most cases, a one pass bucket sort can be used to partition
the edges. Given that we have partitioned the edges, we
would like to run the following algorithm to update Mcur:

FOR each bucket i of Mcur DO
Load bucket i of Mcur
FOR each bucket j of Mlast DO

Load bucket j of Mlast
FOR each edge (x, y) in bucket (i, j) DO

Mcur(x) = Mcur(x) OR Mlast(y)
Write bucket i of Mcur

The cost of this algorithm is exactly the same cost as running
ANF-0 plus the cost of the I/O (we have simply reordered
the original computation). If Mcur and Mlast are N bytes
long, then the cost of the I/O required to update the bit-
masks is: 2N to load and store each bucket of Mcur and
b1N to read Mlast once for each bucket of Mcur. That is,
the cost of this I/O is (b1 + 2)N . Thus, we select b1 and
b2 such that b1 is minimal, given that we have enough file
descriptors to efficiently perform the bucket sort in one pass.

Note that by reordering the computation to bucketize the
edges, we now have very predictable I/O. Thus, we will in-
sert prefetching operations which allows the computation
and the I/O to be performed in parallel. The complete al-
gorithm with prefetching appears in Figure 5.

This algorithm now meets all of our requirements.

Select the number of buckets b1 and b2
Partition the edges into the buckets (sorted by bucket)
FOR each node x DO

IF x ∈ C THEN
Mcur(x) = concatenation of k bitmasks each

with 1 bit set (P (bit i) = .5i+1)
IF x ∈ S THEN mark(Mcur(x))
IF current buffer is full THEN

switch buffers and perform I/O
Flush any buffers that need to be written
FOR each distance h DO

Fetch the data for the first bucket of Mcur and Mlast
Prefetch next buckets of Mcur and Mlast
FOR each edge (x, y) DO

IF Mcur(y) is not in memory THEN
We have been flushing and prefetching it
Wait for it if necessary
Asynchronously flush modified buffer
Begin prefetching next buffer

IF Mlast(x) is not in memory THEN
We have been prefetching it
Wait for it if necessary
Begin prefetching next buffer.

Mcur(x) = (Mcur(x) OR Mlast(y))
// Copy Mcur(u) to Mlast(u) as we stream through Mcur(u)
// computing the estimate
est = 0
Fetch the data for the first bucket of Mcur
FOR each node x DO

IF Mcur(x) is not in memory THEN
We have been prefetching it
Wait for it to be available
Start prefetching the next buffer

Mlast(x) = Mcur(x)
If x is the last element in its bucket of Mlast THEN

Asynchronously flush the buffer
Continue processing in the double buffer

IF marked(Mcur(x)) THEN
IN+(x,h, C) = (2b)/.77351
est += IN+(x,h, C)

where b is the average position of the least zero
bits in the k bitmasks

output N̂+(h, S, C) = est

Figure 5: ANF: Disk based processing

3.3 Leading Ones Compressions (ANF-C)
ANF is an algorithm that will be dominated by the I/O costs
for large data sets and by the cost of the bit operations for
smaller data sets. In both cases, we can further improve
ANF by reducing the number of bits of data that must be
manipulated. First, observe that, as ANF runs, most of the
bitmasks will gradually accumulate a relatively lengthy set
of leading 1s. That is, the bitmasks are of the form:

1111111110xxxxxx

It is wasteful to apply the bit operations and to write these
leading 1s to disk. Instead, we will compress them. Sec-
ond, we can achieve even better compression by bit shuf-
fling . We have k parallel approximations, each of which has
many leading ones. Instead of compressing each mask indi-
vidually, we interleave the bitmasks by taking the first bit
of each mask, followed by the second bit of each, etc. For
example, with 2 masks:

11010, 11100 ⇒ 1111011000

which gives rise to a larger number of leading ones. The
ANF-C algorithm uses a counter of the leading ones to re-
duce the amount of I/O and the number of bit operations.
Like the mark bit, this counter can be prepended to the
bitmask. In our experiments, we will find that leading ones



compressions provide a significant speed-up, up to 23% in
Figure 1.

4. EXPERIMENTAL EVALUATION
In this section we present an experimental validation of our
ANF approximation. Two alternative approaches will be
introduced and then we will describe our data sets. Next,
we propose a metric for comparing two neighbourhood func-
tions (functions over a potentially large domain). We con-
duct a sensitivity analysis of the parameter r. Then, we pick
a value of r and we compare ANF to the approximation pre-
sented in [4] for various settings of the parameter k. We then
show that sampling can provide very poor estimates and, fi-
nally, we examine the scalability of all approaches. The key
results from this section are to answer these questions:

1. Is ANF sensitive to r, the number of extra bits?
2. Is ANF faster than existing approaches?
3. Is ANF more accurate than existing approaches?
4. Does ANF really scales to very large graphs? Do the

others?

4.1 Framework
4.1.1 RI approximation scheme
The RI approximation algorithm is based on the approx-
imate counting scheme proposed in [4]. To estimate the
number of distinct elements in a multi-set, assign each a
random value in [0, 1] and record the least of these values
added to the set. The estimated size is the reciprocal of
the least value seen, minus 1. This approximate counting
scheme was used to estimate the individual neighbourhood
functions with the following algorithm. We need to know
for each node, u the minimum value vh of a node reachable
from u in h hops. Then, the estimate for IN(u, h) is 1

vh

−1.

An equivalent, but more efficient algorithm was presented
which uses breadth-first searches. It was shown that this
improved procedure takes only O(m log n) time (with high
probability). To reduce the variance in the estimates, the
entire algorithm is repeated, averaging over the estimates.

4.1.2 Sampling
We can sample by selecting random edges, random nodes
or random starting nodes for the breadth-first search. Ran-
domly selecting a set of nodes (and all edges for which both
end-points are in this set) and randomly selecting a set of
edges is unlikely to produce a useful sample. For exam-
ple, imagine sampling a cycle – anything but a very large
sample will leave disconnected arcs which have very dif-
ferent properties. For completeness we verified that these
approaches produced useless estimates. The last approach
is much more compelling. It is akin to the sampling done
in [14]. Recall that the neighbourhood function is: N(h) =P

u∈V IN(u,h). Rather than summing over all nodes, u,
we could sum over only a sample of the nodes while using
breadth-first searches to compute the exact IN(u, h). We
call this method exact-on-sample and it has the potential
to provide great estimates – a single sample of a cycle will
provide an exact solution. However, experimentally we find
that this approach also has the potential to provide very
poor estimates. Additionally, we find that it does not scale
to large graphs because of the random-like access to the edge
file due to its use of breadth-first search.

Table 2: Data set characteristics

(n) (m) Degree Prac.
Name #Nodes #Edges Max. Avg. Diam. Orient.
Cornell 844 1,647 131 1.95 9 Dir
Cycle 1,000 1,000 2 2.00 500 Undir
Grid 10,000 19,800 4 1.98 100 Undir
Uniform 65,378 199,996 20 3.06 8 Undir
Cora 127,083 330,198 457 2.60 35 Dir
80-20 166,946 449,832 723 2.69 10 Undir
Router 284,805 430,342 1,978 1.51 13 Undir

4.1.3 Experimental Data Sets
We have collected three real data sets and generated three
synthetic data sets. These data sets have a variety of prop-
erties and cover many of the potential applications of the
neighbourhood function. Some summary information is pro-
vided in Table 2. “Prac. Diam.” is the Practical Diameter

which we use informally to mean the distance which includes
most of the pairs of points. We use three real data sets:

Router: Undirected Internet routers data from ISI [19], in-
cluding scans done by Lucent Bell Laboratories [12].
Cornell: A crawl of the Cornell web site by Mark Craven.
Cora: The CORA project at JustResearch found research
papers on the web and provided a citation graph [6].

and four synthetic data sets:

Cycle: A single simple undirected cycle (circle).
Grid: A 2D planar grid (undirected).
Uniform: Graph with random (undirected) edges.
80-20: Very skewed graph generated in an Internet like
fashion with undirected edges using the method in [17].

4.1.4 Evaluation Metric
We are approximating functions defined over d points. Let
N be the true neighbourhood function and N̂ be the candi-
date approximation. To measure the error of N̂(h), we use
the standard relative error metric. To measure the overall
error of N̂ we use the Root Mean Square (RMS) of point-
wise relative errors. Thus, the error function, e, is:

rel(N(h), N̂(h)) = |N(h)−N̂(h)|
N(h)

e(N,N̂) =

qP
d

h=2
rel(N(h),N̂(h))2

d−1

Note that the RMS is computed beginning with h = 2. Since
N(0) = |V | and N(1) = |E| we do not require approxima-
tions for these points.

4.2 Results
4.2.1 Parameter Sensitivity
ANF has two parameters: the number of parallel approxima-
tions, k, and the number of additional bits, r. The number
of approximations, k, is a typical trade-off between time and
accuracy. We consider this in section 4.2.2 and fix k = 64
for the time being. Additional experiments were run with
other values of k which produced similar results. To mea-
sure the sensitivity we averaged the RMS error over 10 trials
for different values of r and the different data sets. These
results appear in Figure 6 and we see that the accuracy is
not very sensitive to the value of r. (The lines between the
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Figure 6: Results are not sensitive to r

points are a visual aid only.) We find r = 5 or r = 7 provide
consistent results.

4.2.2 Accuracy
We now examine the accuracy of the ANF approximation.
To do so, we compare our accuracy with a highly tuned
implementation of the RI approximation (the only existing
approach). Now we fix r = 7 and consider three values of k:
32, 64 and 128. We average the error over 10 trials of each
approximation scheme. The first row of Figure 7 shows the
accuracy of each of the k values for each data set for each
algorithm, while the second row shows the corresponding
running times. We see that:

• ANF’s error is independent of the data sets.
• RI approximation’s error varies significantly between

data sets.
• ANF achieves less than 10%, 7% and 5% errors for

k = 32, k = 64 and k = 128, respectively.
• RI has errors of 27%, 14% and 12% for k = 32, k = 64

and k = 128, respectively.
• ANF is much faster than RI, particularly on the larger

graphs, with up to 3 times savings.
• Using much less time, ANF is much more accurate

than RI.

Thus, even for the case of graphs that may be stored in
memory, we have a significant improvement.

4.2.3 Sampling
There are three problems with the described exact-on-sample
approach. First, it has heavy memory requirements because
fast breadth-first search requires that the edge file fit in
memory. Second, the quality is dependent on the graph be-
cause there are no bounds on the error. Third, it is not possi-
ble to compute the individual neighbourhood functions. We
now provide an example which demonstrates the first two
problems. Figure 8(a) helps illustrate our example graph.
First, create a chain of d − 2 nodes that start from a node
r and end at a node x. Add N nodes to the center of the
graph, each of which has a directed edge to r and a directed
edge from x. This graph has diameter d and a neighbour-
hood function that is O(N) for each distance less than d
and O(N2) for distance d. Finally, define a set of s source
nodes that have an edge to each of the N center nodes and
a set of t terminal nodes that have an edge from each of the
N center nodes. If N ≫ s and N ≫ t, then the majority
of the sampled nodes will be from the N center nodes and

Table 3: Wall clock running time (minutes)
Data Set BF (Exact) ANF Speed-up
Uniform 92 0.34 270x
Cora 6 1.4 4x
80-20 680 0.9 756x
Router 1,200 1.7 705x

very few will be from the s source nodes. This will result in
an error that is a factor of around s/p for exact-on-sample
using a p% sample. We measure the error and the running
time over 20 trials for a variety of sample sizes ranging from
.1% to 15% on a graph generated with N = 25, 000, s = 100,
t = 100 and d = 6. Figure 8(b) shows the large errors, more
than 20%, even for very large samples.

To illustrate the scalability issues for exact-on-sample, we
constructed a graph with N = 250, 000, s = t = 5 and
d = 6. We then increase s and t proportionately to gen-
erate larger graphs. Figure 8(c) shows that as the graph
grows larger exact-on-sample scales about as well as ANF
but as soon as the edge file no longer fits in memory (approx-
imately 27 million edges) we see approximately a two order
of magnitude increase in the running time of the exact-on-
sample approach. Thus, we conclude that exact-on-sample
scales very poorly to graphs that are larger than the avail-
able memory.

4.2.4 Speed and Scalability
Table 3 reports wall-clock running times on an otherwise un-
loaded Pentium II-450 machine for both the exact compu-
tation (Breadth-First search) and ANF with k = 64 parallel
approximations. We chose k = 64 since it provides much
less than a 10% error, which should be acceptable for most
situations. The approximations are quite fast and, for the
Router data set, we have reduced the running time from ap-
proximately a day down to less than 2 minutes. This makes
it possible to run drill down tasks on much larger data sets
than before. Overall, we find that ANF is up to 700 times
faster than the exact computation on our data sets.

ANF also scales to much larger graphs than the alternatives.
We generated random graphs placing edges randomly be-
tween nodes. We increased the number of nodes and edges
while preserving an edge:node ratio of 8:1 (based on the
average degree found in two large crawls of the Web [3]).
Figure 1 (in the introduction) shows the running times for
the ANF variants, the RI approximation and example-on-
sample. Parameters for each alternative were chosen such
that they all had approximately the same running time for
the first data point. These values are k = 32 for the ANF
variants, k = 8 for RI and p = 0.0015 for exact-on-sample.
We find that:

1. Exact-on-sample scales much worse than linearly. For
a fixed sampling rate, we expect it to scale quadrati-
cally when we increase the number of nodes and edges.

2. RI very quickly exhausts its resources due to its data
structures. Because RI was not designed to avoid the
random accesses, it has horrible paging behaviour and,
after about 2 million edges, we had to stop its timing
experiment.

3. ANF-0 suffers from similar swapping issues when it
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exhausts the memory at around 8 million edges, and
it too had to be stopped.

4. Approximate counting methods [9, 4] are not enough
for disk resident graphs.

5. ANF/ANF-C scale the best, growing piece-wise lin-
early with the size of the graph. The break points are:
all data fits in memory (about 8 million edges), Mcur
fits in memory (about 16 million edges) and neither
fits in memory (the rest). This is as expected.

6. ANF-C offers up to a 23% speed-up over ANF.

Thus, ANF is the only algorithm that scales to large graphs
and does so with a linear increase in running time.

5. DATA MINING WITH OUR ANF TOOL
With our highly-accurate and efficient approximation tool,
ANF, it is now possible to answer some of the prototypical
graph mining questions that we posed in the introduction.
Due to the limits of page constraints and data availability,
we will report on answers to only a representative sample of

those questions. However, all 10 questions can be answered
by the same approaches that we will now demonstrate. The
approach is to compute various neighbourhood functions
and then to compare them. Our tool allows for a detailed
comparison of these functions. However, comparing neigh-
bourhood functions requires that we compare two functions
over potentially large domains (the domain is {1, 2, · · · , d}).
Instead, in this paper we will focus on a summarized statis-
tic derived from the neighbourhood function, called the hop
exponent. Many real graphs [8] have a neighbourhood func-
tion that follows a power law N(h) ∝ hH. The exponent,
H, has been defined as the hop exponent (similarly, Hx is
the individual hop exponent for a node x).

There are three interesting observations about the hop expo-
nent that make it an appealing metric. First, if the power-
law holds, the neighbourhood function will have a linear
section with slope H when viewed in log-log scale. Second,
the hop exponent is, informally, the intrinsic dimensionality
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of the graph. A cycle has a hop exponent of 1 while a grid
has a hop exponent of 2, which corresponds with some idea
of their dimensionality. Third, if two graphs have different
hop exponents, there is no way that they could be similar.
While not all neighbourhood functions will actually follow a
power-law, we have found that using the hop exponent still
fairly reasonably captures the growth of the neighbourhood
function.

To compute the hop exponent, we first truncate the neigh-
bourhood function at deff, the effective diameter , then we
compute the least-squares line of best fit in log-log space to
extract the slope of this line. The slope is the hop exponent
of the graph and we use it as our measure of the growth
of a neighbourhood function. We define deff to be the least
h such that it include 90% of the pairs of nodes. We use
the individual hop exponent, Hx, as a measure of a node’s
importance with respect to the connectivity of a graph. We
can answer some of the proposed questions.

5.1 Tic-Tac-Toe
Tic-tac-toe is a simple game in which two players, one using
X and the other using O, alternatively place their mark on
an unoccupied square in a 3x3 grid. The winner is the first
player to connect 3 of their symbols in a row, column or
diagonal. The best opening move for X is the center square,
the next best is any of the 4 corners and the worst moves
are the 4 remaining squares. To verify that our notion of
importance has some potential use, we will use our ANF
tool to discover this same rule. Construct a graph where
each node is a valid board and add an edge from board x
to board y to indicate that this is a possible move. Let C,
the concluding set, be the set of all boards in which X wins.
Compute the individual neighbourhood functions for each
of the 9 possible first moves by X, which is their importance
(speed at which they attain winning positions from each
of these moves). Figure 9 shows these importances along
with the difference between each and the best move. ANF
determined the correct importance of each opening move.
Using Figure 9(b), we see that the center is only slightly
better than a corner square which is, in turn, much better
than the remaining 4 squares. This shows both the correct
ordering of the starting moves and the relative importance
of each.

5.2 Clustering movie genres
The Internet Movie Data Base (IMDB) [10] is a collection of
relations about movies. We will map a subset of the relations
into graphs to illustrate questions that we can now answer
thanks to our ANF tool. First, construct the actor-movie

graph by creating a node for each actor and a node for each
movie. An undirected edge is placed between an actor, a,
and a movie, m, to indicate an appearance by a in m. Let
S be the nodes we created for the actors. We now employ
another relation of the IMDB. Each movie has been identi-
fied as being in one or more genres (such as documentaries,

Film-Noir
Animation Short

Adult
Fantasy Documentary Family
Mystery Musical Western War

Sci-Fi
Romance

Horror Adventure Crime Thriller Action
Comedy
Drama

Figure 10: Movie genre clusters sorted in increasing
hop exponent value

dramas, comedies, etc). For each genre, we take the set of
movies in that genre and the set of actors which appear in
one or more of those movies. We then cluster these graphs
by computing the hop exponents and forming clusters that
have similar hop exponents (less than 0.1 difference). This
clustering appears in Figure 10. One interesting cluster is
mystery, musical, western, war which actually corresponds
to movies that are typically older. Finally, other fringe gen-
res such as Adult turn out to be well separated from the
others.

5.3 Internet Router Data
In the networking community, a study used an early version
of our ANF tool (ANF-0) to look at the inherent robustness
of the Internet. That is, the robustness that we observe
from the topology itself. Each router was a node and edges
were used to indicate communication links. Here we repro-
duce some of the results of this study, including Figure 11,
from [16]. The goal is to determine how robust the Inter-
net is to router failures. As an experiment, we delete some
number of routers and then measure the total connectivity
(number of pairs of routers that are still able to communi-
cate) and the hop exponent of the graph. The three lines
differ in how the deleted routers are selected. First, ran-
domly selected nodes are deleted. Second, nodes are deleted
in decreasing order of their importance. Third, routers are
deleted in decreasing order of their degree. Here we see some
very interesting results:

1. Random failures do not disrupt the Internet.
2. It may be possible to take a random sample of the In-

ternet by deleting random routers and adjacent edges.
This appears possible because we found that the con-
nectivity information (hop exponent) is not signifi-
cantly changed under random deletions.

3. Targeted failures of routers can very quickly and very
dramatically disrupt the Internet.

This type of study was infeasible before our ANF tool as
an exact computation would have required over a year of
computation time.

6. CONCLUSIONS
In this paper we presented 10 interesting data mining ques-
tions on graph data, proposed an efficient and accurate ap-
proximation algorithm that gives us the tool, ANF, we needed
to answer these questions, and presented results for three of
these questions on real-world data. We have found ANF to
be quite useful for these and other questions that can be
addressed by studying the neighbourhood structure of the
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underlying graphs (e.g., we have used ANF to study the
most important movie actors). We experimentally verified
that ANF provides the following advantages:
Highly-accurate estimates: Provable bounds which we
also verified experimentally, finding less than a 7% error
when using k = 64 parallel approximations (for all our syn-
thetic and real-world data sets).
Is orders of magnitude faster: On the seven data sets
used in this paper, our algorithm is up to 700 times faster
than the exact computation. It is also up to 3 times faster
than the RI approximation scheme.
Has low storage requirements: Given the edge file, our
algorithm uses only O(n) additional storage.
Adapts to the available memory: We presented a disk-
based version of our algorithm and experimentally verified
that it scales with the graph size.
Can be parallelized: Our ANF algorithm may be paral-
lelized with very few synchronization points.
Employs sequential scans: Unlike prior approximations
of the neighbourhood function, our algorithm avoids random
access of the edge file and performs one sequential scan of
the edge file per hop.
Individual neighbourhood functions for free: ANF
computed approximations of the individual neighbourhood
functions as a byproduct of the computation. These approx-
imations proved to be very useful in identifying the “impor-
tant” nodes in a graph.

Even for the case that graphs (and data structures) fit into
memory, ANF represents a significant improvement in speed
and accuracy. When graphs get too large to be processed ef-
fectively in main memory, ANF makes it possible to answer
questions that would have been at least infeasible, if not im-
possible, to answer before. In addition to its speed, we found
the neighbourhood measures to be useful for discovering the
following answers to our prototypical questions:

1. We found the best opening moves to tic-tac-toe.
2. We clustered movie genres.
3. We found that the Internet is resilient to random fail-

ures while targeted failures can quickly create discon-
nected components.

4. We found that sampling the Internet actually preserves
some connectivity patterns while targeted failures truly
distort it.

7. REFERENCES
[1] L. A. Adamic. The small world Web. In Proceedings of the

European Conf. on Digital Libraries, 1999.
[2] S. Brin and L. Page. The anatomy of a large-scale

hypertextual Web search engine. Computer Networks and
ISDN Systems, 30(1–7):107–117, 1998.

[3] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, and
R. Stata. Graph structure in the Web. In Proceedings of the
9th International World Wide Web Conference, pages
247–256, 2000.

[4] E. Cohen. Size-estimation framework with applications to
transitive closure and reachability. Journal of Computer
and System Sciences, 55(3):441–453, December 1997.

[5] Cook and Holder. Graph-based data mining. ISTA:
Intelligent Systems & their applications, 15, 2000.

[6] CORA search engine. http://www.cora.whizbang.com.
[7] P. Domingos and M. Richardson. Mining the network value

of customers. In KDD-2001, pages 57–66, 2001.
[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law

relationships of the internet topology. In SIGCOMM, 1999.
[9] P. Flajolet and G. N. Martin. Probabilistic counting

algorithms for data base applications. Journal of Computer
and System Sciences, 31:182–209, 1985.

[10] IMDB. http://www.imdb.com.
[11] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based

algorithm for mining frequent substructures from graph
data. In PDKK, pages 13–23, 2000.

[12] http://cs.bell-labs.com/who/ches/map/.
[13] S. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar,

A. Tomkins, and E. Upfal. The Web as a graph. In ACM
SIGMOD–SIGACT–SIGART Symposium on Principles of
Database Systems, pages 1–10, 2000.

[14] R. J. Lipton and J. F. Naughton. Estimating the size of
generalized transitive closures. In Proceedings of 15th
International Conference on Very Large Data Bases, pages
315–326, 1989.

[15] M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking
for external graph searching. In Proc. ACM PODS
Conference (PODS-93), pages 222–232, 1993.

[16] C. R. Palmer, G. Siganos, M. Faloutsos, C. Faloutsos, and
P. Gibbons. The connectivity and fault-tolerance of the
Internet topology. In Workshop on Network-Related Data
Management (NRDM-2001), 2001.

[17] C. R. Palmer and J. G. Steffan. Generating network
toplogies that obey power laws. In IEEE Globecom 2000,
2000.

[18] G. Salton and M. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[19] http://www.isi.edu/scan/mercator/maps.html.
[20] S. L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos. A

simple conceptual model for the Internet topology. In IEEE
Globecom 2001, 2001.


