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� geographical information systems (GIS) [Sam90] contain point data, such as cities on a two-dimensional map;� medical image databases with, for example, three-dimensional MRI brain scans, require thestorage and retrieval of point-sets, such as digitized surfaces of brain structures [ACF+93],etc.� multimedia databases, where multi-dimensional objects can be represented as points in featurespace [FRM94] e.g., 2-d color images correspond to points in (R,G,B) space (where R,G,Bare the average amount of red, green and blue [FBF+94]);� time-sequences analysis and forecasting [CE92], where k successive values are treated as apoint in k-d space; correlations and regularities in this k-d space help in characterizing thedynamical process that generates the time series.In all the above applications the distribution of k-d points is seldom (if ever) uniform [Chr84],[FK94b]. Thus, it is important to be able to characterize the deviation from uniformity in succinctway (e.g. as a sum of gaussians, or something like that). Such a description is vital for the followingtwo requirements:1. selectivity estimation and, in general, query optimization: "Given a range query, or a spatialjoin, estimate the amount of e�ort for a variety of alternative query plans". This is increasinglyimportant, as the size of spatial databases increases (19Gb for the GIS data of the TIGERsystem of the U.S. Bureau of Census, > 1Gb and up to several Terabytes for the spatial dataof the Sequoia benchmark [DKPY94], [SFGM93]).2. "data mining" [AIS93],[AS94], with hypothesis testing and rule discovery. A succinct de-scription of a k-d point-set could help reject quickly some non-promising hypotheses, or couldhelp provide hints about hidden rules. For example, consider a medical database, with patientrecords, with k numerical attributes (eg., age, blood-pressure, cholesterol-level, etc.); in thiscase, a fast, positive test for uniform distribution of points in k-d space would indicate thatthere are no correlations or rules to search for.We argue that the theory of fractals provide powerful tools to solve the above problems. Thepaper is organized as follows. Section 2 gives past work in spatial databases query optimizationand analysis of spatial access methods (SAMs). Section 3 gives a survey of the main ideas inthe theory of fractals. Section 4 shows how to use fractals to describe real point-sets and how toobtain accurate estimates for the selectivities of several spatial queries. Section 5 gives experimentalresults on real and synthetic data sets, illustrating the accuracy of our proposed formulas. Section 6discusses the practical use of the obtain results. Section 7 lists the conclusions and directions forfuture research.2 Past work in databasesThere are two areas within the databases �eld that are related to our present work:2



(a) query optimization and, speci�cally, selectivity estimation in multi-attribute queries;(b) analysis of spatial access methods.Within query optimization, a set of records with k-attributes can be seen as a set of points ink-d space. To estimate selectivities for range queries, one typically makes the uniformity andindependence assumptions. These assumptions, however, do not hold on real data; moreover,they lead to pessimistic estimates [Chr84] For a single attribute, the uniformity assumption hasbeen relaxed [IC91], typically through the use of the Zipf distribution [Zip49]. Distributionsof real attributes do indeed follow the Zipf distribution or the generalized Zipf distribution: forexample, word frequencies in the English language (as well as other languages); salaries [Zip49];�rst names and last names of people [FJ92], etc. For multi-dimensional distributions, though,the deviations from uniformity and independence are di�cult to model. The general practice isto divide the address space in cells and to keep statistics with their occupancy, in the form ofhistograms [IC94],[MD88].Similar assumptions are made in the analysis of spatial access methods. Theoretical analysisin such cases assumes that points are uniformly distributed in the address space [FSR87],[AS91],which also implies that the attributes are uncorrelated. Even in simulation studies, researchers onspatial access methods and multi-attribute query optimization are forced to use ad-hoc, non-uniformdistributions, such as the Gaussian distribution [NS86], some sort of clustered distributions (withpoints clustering around uniformly distributed sites [Ore86], or points clustering around curves, likethe sinusoidal curve [BKSS90]). Although these distributions are non-uniform, they su�er from twodrawbacks:1. it is unclear whether these distributions are related to real-world distributions;2. they do not help make the analysis tractable.In a recent paper [FK94b] we proposed an alternative viewpoint to modeling real-world point-sets,which alleviates both of the above problems. The idea was to use concepts from the theory offractals. Using real data sets, we showed that they indeed behave as fractals and we showed howto accurately predict the performance of R-trees [Gut84], [BKSS90] using the Hausdor� fractaldimension (D0) of the target point-set. Next we introduce the basic concepts from the theoryof fractals. Later on we show how to use a di�erent fractal dimension, the `Correlation' one, toestimate the selectivities of spatial queries.3 Introduction to fractalsIntuitively, a set of points is a fractal if it exhibits self-similarity over all scales. This is illustratedby an example: Figure 1 shows the �rst few steps in constructing the so-called Sierpinski triangle.Figure 2(a) gives 5,000 points that belong to this triangle. Theoretically, the Sierpinski triangle3
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(a): `Sierpinski5K' dataset (b): `StrLine3D' datasetFigure 2: Theoretical fractals: (a) sample of the Sierpinski triangle (b) a line in 3-d space)Like all fractals, the Sierpinski triangle is a rich source of paradoxes: it is a point-set� with area zero (being proportional to: limi!1(3=4)i),� and with in�nite-length perimeter (proportional to limi!1(1 + 1=2)i).Thus, it is not a 1-dimensional Euclidean object (otherwise it would have �nite length perimeter),but it is not a 2-dimensional Euclidean object either (since it has zero area). The way to resolve theissue is to consider fractional dimensionalities, which are called fractal dimensions. As we shall seeshortly, there are several de�nitions; among them, we �rst choose the Hausdor� fractal dimension,or box-counting dimension or D0, because it is easier to describe.The Hausdor� fractal dimension D0 for a given point-set in an E-dimensional address spaceis de�ned as follows [Sch91]. Divide the E-dimensional space into (hyper-)cubic grid cells of side4



r. Let N(r) denote the number of cells that are penetrated by the set of points (i.e., that containone or more of its points). Then the (box-counting) fractal dimension D0 of a fractal is de�ned asD0 � limr!0 logN(r)log(1=r) (1)This de�nition is useful for mathematical fractals, that consist of in�nite number of points.For a �nite number of points, we avoid the limit r ! 0; instead we restrict our attention to asuitable range of scales r 2 (r1; r2), in which the point-set exhibits (statistical) self-similarity. Morespeci�cally, we use the box-count plot, which plots log(N(r)) vs. log(r) (e.g., see Figure 4(a),top row, for the box-count plot of the `Sierpinski5K' dataset). If the point-set is self-similar forr 2 (r1; r2), then its box-count plot will be a straight line for this range. The (negated) slope ofthis line is the Hausdor� fractal dimension D0 of the point-set for the range of scales (r1; r2):De�nition 1 (Hausdor� fractal dimension) For a point-set that has the self-similarity prop-erty in the range of scales (r1; r2), its Hausdor� fractal dimension D0 for this range is measuredas D0 = � @ log(N(r))@ log(r) = constant for r1 < r < r2 (2)An interesting observation is that the above de�nition encompasses traditional Euclidean objects:Observation 1 For Euclidean objects, their fractal dimension equals their Euclidean dimension.Thus, lines, line segments, circles, and all the standard curves have D0=1; planes, disks andstandard surfaces have D0=2; Euclidean volumes in E-dimensional space have D0 = E.Figure 4(a)(top row) shows the box-count plot for D0 for the `Sierpinski5K' dataset. Noticethat the slope for r 2 (e�4:5; e�1) is 1.574, very close to the theoretical value of log 3= log 2 = 1:585[Man77]. Also notice that the horizontal parts of the plot are perfectly explainable:� For very �ne granularities (i.e., r ! 0), each of the 5,000 points eventually is in a cell byitself. Thus, it becomes clear that the point-set is a �nite collection of points (each withfractal dimension D0 = 0), and therefore, the collective Hausdor� fractal dimension is also 0.Notice that the limit value limr!0N(r)=5,000.� For very coarse granularities (i.e., r!1), the whole point-set �ts in a single cell (limr!1N(r) =1), and thus behaves like a single point.As mentioned earlier, there are more than one fractal dimensions; in fact, there is an in�nite familyof them. For a �nite point set, the generalized fractal dimension Dq (where q is a real number) isas follows. Consider again a grid with cells of side r, and let pi denote the frequency with whichpoints fall into the i-th cell of the grid. 5



De�nition 2 (Generalized fractal dimension) For a point-set that has the self-similarity inthe range of scales (r1; r2), the generalized fractal dimension Dq is de�ned asDq � 1q � 1 @ logXi pqi@ log r = constant q 6= 1; for r1 < r < r2 (3)D1 � @ logXi pi log pi@ log r = constant q = 1; for r1 < r < r2 (4)Clearly, the plot of logPi pqi versus log r is vital for the estimation of a generalized fractaldimension Dq. For the rest of this paper, we shall refer to it by the generalized box-count plot orsimply the box-count plot. In the de�nition of the generalized fractal dimension, notice that:� for q = 0, we have the Hausdor� fractal dimension D0;� for a strictly self-similar point set (eg., like the Sierpinski triangle), we have 8q : Dq = D0(see proof in [Sch91]).� for q = 2, we have the so-called `correlation' fractal dimension D2, which is the one we shalluse next: D2 � @ logXi p2i@ log r = constant r 2 (r1; r2) (5)Thus, for the rest of this paper, we focus on q = 2. To make the discussion more clear, we introducethe term "sum of squared occupancies" S2(r):De�nition 3 For a point-set P in a grid of cell-side r, the sum of squared occupancies S2(r) isde�ned as: S2(r) � Xi p2i (6)We close this introduction to fractals with a formula which is valuable for selectivity estimation:by integrating Equation 3, we have that the sum of squared occupancies follows the power law:S2(r) / rD2 (7)where the symbol `/ ' stands for `proportional'. Combined with the upcoming Lemma 1 this powerlaw is the �rst stepping stone towards the desired selectivity estimation formulas.6



Symbols De�nitionsDq general Fractal DimensionD0 Hausdor� DimensionD2 Correlation DimensionE Dimensionality of address space (`Embedding Dimension')P set of points~q single multi-dimensional pointN cardinality of the considered point setr length of the side of a grid cellpi frequency with which points fall into each grid cellS2(r) sum of squared occupancies� radius of the spatial join or size of the query regionSelr�range(�) selectivity of random range queriesSelb�range(�) selectivity of biased range queriesSeljoin(�) selectivity of spatial joinnb(�) average number of neighbors`shape0 shape of the query regionstep(x) function which return 1 if x > 0, 0 otherwisedist(~qi; ~qj) Euclidean distance between two points ~qi and ~qjTable 1: De�nition of symbols3.1 Description and fractal dimensions of sample datasetsThe reader might be wondering whether real datasets behave like fractals, with linear box-countplots. In this subsection we give (a) a description of 4 datasets (2 real and 2 synthetic), that we shalluse throughout this paper and (b) their box-count plots, for the Hausdor� (D0) and correlation(D2) fractal dimensions.The two real point-sets are road intersections of U.S. counties, from the TIGER database ofthe U.S. Bureau of Census:� `MCnty' dataset: road intersections from the Montgomery County, Maryland, with N =9,552points (see Figure 3(a));� `LBCnty' dataset: road intersections from the Long Beach County, California, with N=10,377points (see Figure 3(b)).As a `sanity check' for our formulas and algorithms, we also used synthetic point-sets, which areself-similar and have known fractal dimensions:� `Sierpinski5K' dataset: a 5,000 point sample from the Sierpinski triangle (Dq = 1:585 8q); seeFigure 2(a)� `StrLine3D' dataset: a 5,000 point sample from a straight line in 3 dimensional space (Dq=1 8q);see Figure 2(b). 7



Next, we give the box-count plots for the above 4 datasets, for both the Hausdor� andcorrelation fractal dimension. For the two synthetic datasets (Figures 4(a, b)) the plots are indeedstraight lines in the suitable range of scales, and the slope is very close to the theoretically expectedones (the relative error is less than 2%).For the real datasets, the box count plots are shown in Figure 4(c,d). Notice that they,too, have plots that are straight lines for suitable ranges of scales. The slopes are smaller thanthe embedding dimension (E=2), re
ecting the visually obvious fact (see Figures 3(a,b)) that thepoint sets are not uniformly distributed in the address space.
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(a) `MCnty' dataset (b) `LBCnty' datasetFigure 3: Real data sets: road intersections from (a) the Montgomery county, MD; and (b) and theLong Beach county, CA.Table 2 lists the measured D0 and D2 for each dataset. The last column lists the theoreticalfractal dimension, whenever known. We shall use the results of this Table in the experiments(Figures 7 and 5). Data Sets Measured TheoreticalD0 D2 Dq`Sierpinski5K' dataset 1.574 1.587 1.585`StrLine3D' dataset 0.979 1.008 1.000`MCnty' dataset (road int. map) 1.719 1.518 N/A`LBCnty' dataset (road int. map) 1.697 1.732 N/ATable 2: Summary of measured fractal dimensions (D0 and D2), for all datasets4 Selectivity estimationIn the previous section we saw the de�nitions of several fractal dimensions, and speci�cally, the`correlation' fractal dimension D2 of a point-set. Next, we show how to use this machinery, in order8
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SLOPE = 1.73235(a) `Sierpinski5K' dataset (b) `StrLine3D' dataset (c) `MCnty' dataset (d) `LBCnty' dataset(theor. D0 = D2=1.585) (theor. D0 = D2=1.000)Figure 4: Box count plots for all four datasets, for the D0 (top row) and D2 (bottom row)to estimate the selectivities for spatial queries, and speci�cally (a) for range queries and (b) forspatial joins.First, we give some preliminary de�nitions and the problem description; then we show thatthe desired selectivities follow a power law, with exponent the correlation fractal dimension D2; nextwe give a formula to estimate the constant of proportionality; and �nally we combine everything inthe main theorem, in Eq. (34). Each subsection corresponds to each of the above steps, respectively.4.1 De�nitions and problem descriptionAs mentioned before, we focus on range queries and on spatial joins. A range query speci�es aregion in the address space and requires all the data items that intersect this region. Thus, we candescribe a range query as a triplet: < `shape 0; �; ~q >where:� `shape0 represents the shape of the query region (e.g.: square, circle, diamond, etc.); withoutloss of generality, we designate the center of gravity of the query region as the `anchor' point.� ~q is the position of the `anchor' in the address space,� � is the extent of the shape, that is, the distance of the center-of-gravity to the most remotepoint of the shape on the positive x-axis (e.g., in the case of a circle, � is the radius).9



&%'$����@@@���@@@Figure 5: Query shapes with radius �.Figure 5 shows some shapes (square, circle, diamond) of the same radius �.We distinguish between two models [PSTW93] for the probability distribution of the anchors ~q:1. the Random model, which assumes that the anchors are uniformly distributed in the addressspace and2. the Biased model, which assumes that queries are more probable in high-density areas ofthe address space. For example, in a GIS/transportation application with a map of cities,we would expect few queries on deserts and bodies of water, and more queries on highlypopulated areas. In the `biased model', we assume that the anchors are allowed to land onlyon data points; thus, high-density areas attract more queries.A `self spatial join', or simply a `spatial join', of a set of points P is a query that requests all uniquepairs of distinct points, whose relative distance is less than a given radius `�'. We typically use theEuclidean distance as the distance metric.For any query, its selectivity is de�ned as the proportion of records that it retrieves.For range queries under the randommodel, the problem is easy: the selectivity Selr�range(�; `shape 0)for a query of the speci�ed shape with radius � is the relative volume V ol(�; `shape 0) of the queryshape: Selr�range(�; `shape 0) = V ol(�; `shape 0)(volume of address space) (8)Since Eq. (8) solves the problem, we will not examine the random model any further.Before we give the formulas to express the selectivities of biased range queries (Selb�range(�))and of spatial joins (Seljoin(�)), we de�ne two auxiliary quantities, which will make the presentationand the proofs more clear: (a) the total number UniquePairs(�) of unique pairs of points that liewithin distance � from each other, and (b) the average number of neighbors nb(�) within distance� from a data point.De�nition 4 The total number of unique pairs UniquePairs(�) of a point set P is de�ned as:UniquePairs(�) � P( unique pairs of points (~qi; ~qj)within Euclidean distance � ) ~qi; ~qj 2 P ; i 6= j (9)10



where `unique' means that (~qi; ~qj) and (~qj ; ~qi) are counted once. More formally:UniquePairs(�) � NXi=1 NXj=i+1 step(� � dist(~qi; ~qj)) ~qi; ~qj 2 P (10)where: dist(~qi; ~qj)i is the Euclidean distance between two points ~qi, ~qj and step(x) =1 if x ispositive, =0 otherwise.De�nition 5 The average number of neighbors nb(�) is de�ned asnb(�) � (avg: # of neighbors within distance �)or nb(�) = 1=N PNi ( # points within distance �from the i�th point) (11)where the summation is over all the N points of the point-set P . Notice that this summation isexactly twice as large as the summation of Eq. (10), because it counts each pair of points twice.Thus nb(�) = 1=N � 2� UniquePairs(�) (12)We can generalize the above de�nition, to include other distance measures, or even otherquery shapes, like diamonds, squares, etc.:De�nition 6 The average number of neighbors nb(�; `shape0) for a speci�ed query shape is de�nedas nb(�; `shape0) � (avg: # of neighbors within a `shape 0 of radius �)� 1=N NXi (# points within a shape of radius �anchored at the i�th point) (13)We designated the default shape to be the `circle' (corresponding to Euclidean distances). That isnb(�) � nb(�;
) (14)Based on that, the selectivities for the range query and the spatial join can be expressed as follows:Selb�range(�) = nb(�) + 1 (15)11



and Seljoin(�) = UniquePairs(�)N � (N � 1)=2= nb(�)N � 1 (16)Thanks to Eq. (15,16), we only need to study the average number of neighbors nb(�).Before we proceed with the major results, we mention the concept of `Correlation Integral',which has been studied in the theory of fractal dimension, and, speci�cally, in connection to the`correlation' fractal dimension. The correlation integral can be de�ned in two ways, depending onwhether we count the `self-pairs' (like (~qi; ~qi)) or not. Here we follow the de�nition by Richard L.Smith in [Smi92], where self-pairs are not counted. Then, the `Correlation Integral' C(�) coincidesexactly with our de�nition for the selectivity of spatial joins Seljoin(�):De�nition 7 The Correlation Integral C(�) of a point set P is de�ned as:C(�) � X (unique pairs of points (~qi; ~qj) within Euclidean distance �)N � (N � 1)=2 ~qi; ~qj 2 P ; i 6= j (17)which is identical to our de�nition of spatial join selectivity:C(�) � Seljoin(�) (18)After these preliminary de�nitions and observations, we are ready for the major results.4.2 A power law for selectivity estimationOur goal is to �nd a formula to estimate the average number of neighbors nb(�; `shape 0). Animportant stepping stone towards our goal is provided by the following Lemma:Lemma 1 (Schuster) Given a point set P and the sum of squared occupancies S2(�) (=Pi p2i )on a grid with cells of side �, we have: C(�) / S2(�) (19)Proof: See [Sch88].An obvious consequence of the above Lemma is the following power law:12



Lemma 2 Given a set of points P with �nite cardinality N and its Correlation Dimension D2,the average number of neighbors within radius � follows the power law:nb(�) / �D2 (20)Proof: Trivially, from Eqs. (19) and (7). QEDUsing Eq. (20), we know how to estimate the average number of neighbors, except for a constant ofproportionality. Our experiments (see Section 5) led to an observation that simpli�es greatly theestimation of this constant. This observation states that other query shapes, too, obey the samepower law, with the same (!) exponent D2:
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 for circles (ie., Euclidean distances). A head-on attack onthis problem seems di�cult. Instead, we propose to exploit Observation 2, to estimate the constant13



K`shape0 for a more convenient shape �rst, and, speci�cally, a square. Without loss of generality, wecan normalize the address space to the unit hyper-cube. Then, we have:Lemma 3 For a square query shape, the constant of proportionality K2 is given by:K2 = (N � 1)� 2D2 (22)Proof: The idea is that a query that covers the whole address space should retrieve N�1 neighbors.Since queries that exceed the limits of the address space are `wrapped around' [KF94],[Fal92], aradius of � = 1=2 is needed to cover the address space. Thusnb(1=2;2) = N � 1 (23)Combining Eq. (23) with Eq. (21), we prove Eq. (22). QEDFrom the above lemma, we have �nally:nb(�;2) = (N � 1)� (2� �)D2 (24)The formula for the constant K`shape0 is based on the following assumption:Assumption 1 For a fractal point set P, biased range queries with equal (hyper-)volumes, retrieveon the average the same number of points, regardless of the query shape.We do not have a solid justi�cation for this assumption, apart from the fact that it `sounds right'.However, in our pursuit of an accurate selectivity formula, we don't need to provide a justi�cation:this assumption eventually leads to predictions which are consistently accurate (see Figure 8 inthe experiments section). Since the assumption works, we should use it! The consequence of thisassumption is the following:Lemma 4 For a given point set, the constant K`shape0 is given byK`shape0 = K2 � �V ol(�; `shape0)V ol(�;2) �D2=E (25)where D2 is the Correlation dimension of the point set, E is the embedding dimension andV ol(�; `shape 0) gives the volume of the speci�ed shape with radius �.Proof: Consider a query (Q`shape0) of the desired shape and radius �, and a query (Q2) of square(i.e., E-d hyper-cube) shape and the same radius. Then we havenb(�;2) = K2 � �D2 (26)nb(�; `shape 0) = K`shape0 � �D2 (27)14



The main idea in the proof is to consider a query Q02, which is a square query with the samevolume as Q`shape0 . Let �� denote the radius of this query. Then we haveV ol(�; `shape 0) = V ol(��;2) (28)and, by Assumption 1 nb(�; `shape 0) = nb(��;2) (29)From Eq. (21) we have nb(��;2) = K2 � �D2� (30)For a E-dimensional hypercube, the volume is given byV ol(�;2) = (2�)E (31)V ol(��;2) = (2��)E (32)Putting all of the above together, we haveK`shape0=K2 = nb(�; `shape 0) = nb(�;2)= nb(��;2) = nb(�;2)= (��=�)D2= ((V ol(��;2) = V ol(�;2))1=E)D2= (V ol(�; `shape 0) = V ol(�;2))D2=E (33)QEDTable 3 gives arithmetic examples of the ratio K`shape0=K2 for circles and diamonds, for thefour sample datasets. We use the measured value ofD2, from Table 2. The measuredD2 is repeatedin the second column, for convenience.4.4 Main resultThe �nal conclusion of all these mathematical derivations is the formula that estimates the averagenumber of neighbors for any query shape, as a function of the correlation fractal dimension D2.Theorem 1 The average number of neighbors for a pointset P is given bynb(�; `shape0) = (V ol(�; `shape0)=V ol(�;2))D2=E � (N � 1)2D2 � �D2 (34)15



Sample Sets D2 K`shape0=K2Circle DiamondSynthetic Data`Sierpinski5K' 1.587 (�=4)1:587=2 = 0:826 (1=2)1:587=2 = 0:577`StrLine3D' 1.008 (�=6)1:008=3 = 0:805 (1=6)1:008=3 = 0:548Real Data`MCnty' 1.518 (�=4)1:518=2 = 0:832 (1=2)1:518=2 = 0:591`LBCnty' 1.732 (�=4)1:732=2 = 0:811 (1=2)1:732=2 = 0:549Table 3: Theoretical values for the ratio K`shape0=K2where D2 is the correlation fractal dimension of the point-set, N is the number of points in thepoint-set and V ol(�; `shape 0) is the volume of a shape of radius �.Proof: By substituting Eqs. (25) and (22) into Eq. (21). QEDFrom the above theorem and Equations (15) and (16), we can estimate the selectivity of thespatial join (Seljoin(�)) and of the biased range queries (Selb�range(�)), which was our initial goal.The question is to �nd out how accurate these formulas are, in a real setting. This is exactly thegoal of the next section.5 ExperimentsThe purpose of the experiments is to test the prediction accuracy of our main result, Eq. (34). Thisequation estimates the average number of neighbors nb(�; `shape 0) for a given query, in a point-set with N points and correlation fractal dimension D2. For our experiments, we used the fourdatasets described in subsection 3.1. Recall (subsection 3.1) that we have already veri�ed thatall four datasets behave like fractals, that is, they have linear box-count plots. Their correlationfractal dimensions D2 are in Table 2.We present two sets of experiments. In the �rst set, we examine the accuracy of our analysisfor square queries, because the derivations for square queries (Eq. (24)) required fewer assumptionsthan the rest of the shapes; if our analysis is inaccurate for square queries, it will be at least asinaccurate for the rest of the shapes. In the second set, we examine additional query shapes(namely, circles and diamonds).All the upcoming plots have the same format: they give the average number of neighborsnb(�; `shape 0) versus the radius � of the query. Our estimates (using Eq. (34)) are shown in solidline; a dashed line shows the estimates under the uniformity assumption (i.e., by Eq. (34), afterforcing D2 to be E). Actual measurements are represented by `bullets' (�); for each such `bullet' wemeasured the number of neighbors within the desired radius � for each point of the point-set, andaveraged the results. To accelerate the searches, we used an R-tree spatial index. Also, we selected16



the radii so that they form a geometric progression.5.1 Accuracy of predictions for square queriesFigure 7 shows the results of the experiments for square queries. Each column corresponds to theindicated dataset. Each plot follows the format mentioned above: it shows the average numberof neighbors nb(�;2) versus the radius � of the square queries; actual measurements are shown as`bullets'; our estimates, using the measured D2 (see Table 2) and Eq. (34) are shown with a solidline; the results of the uniformity assumption are shown with a dashed line.The plots in the top and bottom rows use linear and logarithmic scales, respectively. Theconsistent conclusion is that Eq. (34) (which reduces to Eq. (24) for square shapes) gives veryaccurate predictions. In contrast, the uniformity assumption may give large errors; its errorsincrease with the discrepancy between D2 and E, as intuitively expected. The largest error is forthe `StrLine3D' dataset (Figure 7(b)), which has the highest such discrepancy.
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)(a) `Sierpinski5K' (b) `StrLine3D' (c) `MCnty' (d) `LBCnty'Measured D2 = 1.587 Measured D2 = 1.008 Measured D2 = 1.518 Measured D2 = 1.732Figure 7: All four datasets, with square queries. Average number of neighbors nb(�;2) vs. � inlinear (top row) and logarithmic plots (bottom row): actual measurements (`bullets'), estimateswith D2 (solid line), estimates with uniformity assumption (dashed line).Table 4 lists the exact values of the errors for our predictions, as well as the predictions of theuniformity assumption. Following the recommendations from statistics, we compute the geometricaverage of relative errors, for each setting. While the uniformity assumption leads to errors in the17



range of 40%-100%, the accuracy of our predictions is striking, typically within 10%.Avg. Relative ErrorData Sets Proposed formula Uniformity assumptionSynthetic Data`Sierpinski5K' 8.9% 61.2%`StrLine3D' 3.3% 97.1%Real Data`MCnty' 12% 75.8%`LBCnty' 4.5% 43.2%Table 4: Average relative error in estimating nb(�;2).5.2 Accuracy of predictions for arbitrary query shapes.Here we list the plots for queries of additional shapes (circles and diamonds). Figure 8 has theresults. All the plots follow the same format as before: they give the average number of neighborsvs. the radius �, for all 4 datasets and for circle queries (top row) and diamond queries (bottomrow). The `bullets' are the actual measurements, the solid line plots our predictions, and the dashedline plots the predictions of the uniformity assumption. The observations are as follows:� As mentioned in Observation 2, the `bullets' of any plot fall on a straight line, whose slope isvery close to the measured correlation fractal dimension D2 of the respective point-set.� Our predictions are consistently good, justifying our Assumption 1, which was necessary forthe estimation of the ratio K`shape0=K2.� The predictions of the uniformity assumption can lead to large errors, as happened for thesquare queries. The error in the predictions increases with the deviation of the dataset fromuniformity (E � D2), as expected: the smallest error is for the `LBCnty' dataset (E � D2= 2-1.732 = 0.268), while the largest error is again for the `StrLine3D' dataset (E � D2 =3-1.008 �2 ).Finally, Tables 5 and 6 list in detail the (geometric) average of the relative errors for circles anddiamonds, respectively. The observations are� the relative errors seem insensitive to the shape of the queries (compare also with the errorsfor square queries, in Table 4). The only major change is in the error for our formula, fordiamond queries on the `StrLine3D' dataset (3.3%, 9.9% and 26% for squares, circles anddiamonds, respectively). The phenomenon is probably due to unlucky relative orientation ofthe the 3-d line with respect to the surfaces of the diamonds (ie., octahedra, in 3-d). Theerror for the uniformity assumption is not changed, probably because it was large to beginwith (97.1%, 98% for squares and circles, respectively).� with the above exception, the accuracy of our predictions is in the 10-15% range, while thecompetition remains in the 40-100% range.18
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SLOPE: 1.85443(a) `Sierpinski5K' (b) `StrLine3D' (c) `MCnty' (d) `LBCnty'Measured D2 = 1.587 Measured D2 = 1.008 Measured D2 = 1.518 Measured D2 = 1.732Figure 8: All four datasets, with circle (top row) and diamond queries (bottom row). Averagenumber of neighbors nb() vs. � in logarithmic plots: Actual (bullets), estimates with D2 and K`shape0(solid line), estimates with uniformity assumption (dashed line).6 DiscussionHere we discuss some questions about the practicality of the proposed concepts and formulas.Q1 How often do real point-sets behave like fractals?Surprisingly often. Recall that Euclidean objects (smooth curves and surfaces), as well asuniformly distributed point sets behave like fractals, with fractal dimension their Euclidean di-mension. There is overwhelming evidence [Man77](p. 447),[Sch91] that a huge number of realpoint sets behave like a fractal, for an appropriate range of scales: coast lines and country bor-ders (D0 � 1:2� 1:3); the periphery of clouds and rainfall patches (D0 � 1:35)[Sch91](p.231);the distribution of galaxies in the universe (D0 � 1:23); the brain surface of mammals(D0 � 2:7); the human vascular system (D0 = 3, because it has to reach every cell in thebody!) and so on. Thus, applications with GIS, with meteorological databases, with medicalimage databases, etc., will encounter fractal sets very often.Q2 How would a practitioner use the provided formulas?The setting we envision is as follows: given a point-set (e.g., a set of cities of a country, as2-d points), the practitioner needs to compute the correlation dimension D2. An e�cient19



Circle - avg. relative errorSample sets Proposed formula Uniformity assumptionSynthetic Data`Sierpinski5K' 8.1% 71,6%`StrLine3D' 9.9% 98%Real Data`MCnty' 12.4% 80.4 %`LBCnty' 3.7% 42.6%Table 5: Shape CIRCLE: Average relative error in estimating nb(�;
).Diamond - avg. relative errorSample sets Proposed formula Uniformity assumptionSynthetic Data`Sierpinski5K' 9.4% 74.6%`StrLine3D' 26% 93.3%Real Data`MCnty' 14.1% 82.5%`LBCnty' 4.3% 45.8%Table 6: Shape DIAMOND: Average relative error in estimating nb(�;3).(O(N logN)) algorithm is provided in Appendix A, by measuring the sum of squared oc-cupancies S2(r), for several grid sides r. Once D2 is known, Equation (34) can be used toestimate the average number of neighbors for any query shape. Moreover, with the help ofEquations (15) and (16), accurate predictions for biased range queries and for spatial joinscan be made. Our analysis can also be used to provide bounds, or educated guesses, in casethat a computation of D2 is expensive.Q3 How expensive is the computation of D2 ?Older algorithms [Gra90] used a di�erent de�nition of D2, through the `correlation integral'C(�); this requires the enumeration of the number of pairs within distance �. Given that theaverage number of pairs is N(N � 1)=2� �D2 , the complexity of such an algorithm will in-evitably be O(N2). Our algorithm (see Appendix A) reduces the complexity to O(N log(N)),because it uses Schuster's Lemma and computes the sum of squared occupancies (S2(�)) in-stead; this can be achieved by a linear scanning of the points and by a (lexicographic) sortingof them. Figure 6 shows the timing results for the two approaches (elapsed time vs. databasesize). Both algorithms ran on a dedicated SUN SPARCstation 5. Our algorithm, in solidline, was implemented in the `Mathematica' system. The dashed line shows the time for ourimplementation (in `C') of the older algorithm, using an R-tree to accelerate the search for20
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Figure 9: Elapsed time vs. database size N , for the estimation of D2: Our algorithm (O(N logN)- solid line); an older algorithm ( O(N2) - dashed line).neighbors. The advantage of our algorithm is clear and it will increase with larger databases.7 ConclusionsThe major contribution of this paper is a fractal-based approach to estimate the selectivity ofseveral spatial queries on real, non-uniform point sets. Query types of interest are: spatial joins,`biased' range queries and average number of neighbors. Expanding on our previous work [FK94a](where we used the Hausdor� fractal dimension to study range queries on R-trees), here we use the`Correlation' fractal dimension to �nd accurate estimates for all the above query types. Additional,smaller contributions are:� the discovery of Schuster's Lemma from the theory of fractals, which justi�es our choice ofthe `Correlation' fractal dimension D2;� the experimental discovery that the average number of neighbors for any query shape followsa power law (Equation (21))� the accurate estimation of the constant of proportionality (K`shape0) for Equation (21), justi-fying our Assumption 1.� the design of a fast (O(N logN)) algorithm to estimate D2; other algorithms, by fractaltheory experts [Gra90], require quadratic (O(N2)) time. Our algorithm has been imple-mented in the Mathematica 2.2 environment and is available through ftp and mosaic (URLftp://olympos.cs.umd.edu/pub/SRC/fractal.dim.bundle).21



� the experimentation on real data sets, which showed that the proposed approach gives veryaccurate results (typically, within 10% or less), while the uniformity assumption typicallyleads to 40%-100% relative errors.Future research could further exploit ideas from the theory of fractals, to solve problems inspatial databases, such as the performance of nearest neighbor queries [RKV95], and the analysisof other spatial access methods (e.g., z-ordering [Ore90]) on real, non-uniform datasets.A Appendix: Algorithm for D2In this appendix we describe an algorithm for the computation of the `correlation' fractal dimensionD2, which is based on the box-counting method proposed in [Sch91] for practical fractals (i.e. �nitepoints-set with sef-similar behavior). We use the de�nition of Eq. (5) and compute the `sum ofsquared occupancies' S2(r) =P pi2 over all the cells of a grid of side r. We repeat this computationfor several values of r, and we compute the slope of the line in the resulting box-count plot.Before we give the details of the algorithm, notice that it can compute the generalized fractaldimension Dq, for any q 6= 1 (and, with some trivial modi�cation in step 3 of ComputeSq(), evenfor q = 1). For the correlation fractal dimension, all we need to do is to set q = 2. We needthe concept of `sum of q-powered occupancies', which is the obvious generalization of the sum ofsquared occupancies: Sq(r) = Xi piq (35)The algorithm for the generalized fractal dimension Dq is shown in Figure 10.The most complicated (and time consuming) task is the estimation of Sq(r). Our approachis based on the following ideas1. each cell is identi�ed by the coordinates of its lower-left corner (with the obvious extensionfor E-d spaces). Let ~c = (c1; : : : ; cE) (36)be a cell identi�er, with ck denoting the k-th coordinate of a cell (k = 1; : : : ; E)2. for a grid-side r, the cell that a point ~x = (q1; : : : ; qE) falls into is determined by dividingeach coordinate qk by r and taking the `
oor' functionck = bqk=rc k = 1; : : : ; E (37)Given the above, the algorithm to compute the sum of q-powered occupancies Sq(r) for agiven r is given in Figure 11. 22



Algorithm 1 Compute-Dq ( P)begin1) normalize the address space to the unit hyper-cube2) select a list of r values, usually, in geometric progression, eg. (0.5), (0:5)2, : : :, (0:5)n3) for each value of r,3.1) invoke ComputeSq(r) to compute the sum of squared (or q-powered) occupan-cies Sq(r) = P piq3.2) print the values log r and log(Sq(r))4) eliminate the 
at parts of the box count plot,5) perform a linear interpolation and6) return the slopeend Figure 10: Algorithm to compute the generalized fractal dimension Dq
Algorithm 2 ComputeSq(r)begin1) for each point ~x in the point-set,compute the cell ~c it falls in using Eq. (37)append the cell identi�er ~c to a list L2) sort lexicographically the list L3) count the duplicates (= occupancies) for each cell, raise them to the q-th power, andcompute Sq(r).end Figure 11: Algorithm to compute the sum of q-powered occupancies.23



In these algorithms, all the steps are either O(1) or O(N), except for the sorting step ofComputeSq(). This step requires sorting of the list L of cell-identi�ers. Therefore, the complexityof our algorithm is O(nN log(N)) where N is the number of points in the database and n is thenumber of points in the box-count plot (typically, n � 10-20).References[ACF+93] Manish Arya, William Cody, Christos Faloutsos, Joel Richardson, and Arthur Toga. Qbism: aprototype 3-d medical image database system. IEEE Data Engineering Bulletin, 16(1):38{42,March 1993.[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between sets ofitems in large databases. Proc. ACM SIGMOD, pages 207{216, May 1993.[AS91] Walid G. Aref and Hanan Samet. Optimization strategies for spatial query processing. Proc. ofVLDB (Very Large Data Bases), pages 81{90, September 1991.[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in largedatabases. Proc. of VLDB Conf., pages 487{499, September 1994.[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an e�cient and robustaccess method for points and rectangles. ACM SIGMOD, pages 322{331, May 1990.[BS88] M.F. Barnsley and A.D. Sloan. A better way to compress images. Byte, pages 215{223, January1988.[CE92] M. Casgagli and S. Eubank. Nonlinear Modeling and Forecasting. Addison Wesley, 1992. Proc.Vol. XII.[Chr84] S. Christodoulakis. Implication of certain assumptions in data base performance evaluation.ACM TODS, June 1984.[DKPY94] D. J. DeWitt, N. Kabra, J. M. Patel, and Jie-Bing Yu. Client-server paradise. In Proceedings ofthe 20th VLDB Conference, Santiago, Chile, September 1994.[Fal92] C. Faloutsos. Analytical results on the quadtree decomposition of arbitrary rectangles. PatternRecognition Letters, 13(1):31{40, January 1992.[FBF+94] Christos Faloutsos, Ron Barber, Myron Flickner, Wayne Niblack, Dragutin Petkovic, andWilliamEquitz. E�cient and e�ective querying by image content. J. of Intelligent Information Systems,3(3/4):231{262, July 1994.[FJ92] Christos Faloutsos and H.V. Jagadish. On b-tree indices for skewed distributions. In 18th VLDBConference, pages 363{374, Vancouver, British Columbia, August 1992.[FK94a] C. Faloutsos and I. Kamel. Beyond uniformity and independece analysis of r-trees using theconcept of fractal dimension. Proc. ACM SIGACT-SIGMOD-SIGART PODS, pages 4{13, May1994. Also available as CS-TR-3198, UMIACS-TR-93-130.[FK94b] Christos Faloutsos and Ibrahim Kamel. Beyond uniformity and independence: Analysis of r-treesusing the concept of fractal dimension. Proc. ACM SIGACT-SIGMOD-SIGART PODS, pages4{13, May 1994. Also available as CS-TR-3198, UMIACS-TR-93-130.[FRM94] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subsequence matching intime-series databases. Proc. ACM SIGMOD, pages 419{429, May 1994. `Best Paper' award; alsoavailable as CS-TR-3190, UMIACS-TR-93-131.24
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