
Requirements Satisfiability with In-Context
Learning

Sarah Santos, Travis Breaux
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvannia, United States

Thomas Norton
School of Law

Fordham University
New York, New York, United States

Sara Haghighi, Sepideh Ghanavati
School of Computing and Information

University of Maine
Orono, Maine, United States

Abstract—Language models that can learn a task at inference
time, called in-context learning (ICL), show increasing promise in
natural language inference tasks. In ICL, a model user constructs
a prompt to describe a task with a natural language instruction
and zero or more examples, called demonstrations. The prompt
is then input to the language model to generate a completion.
In this paper, we apply ICL to the design and evaluation
of satisfaction arguments, which describe how a requirement
is satisfied by a system specification and associated domain
knowledge. The approach builds on three prompt design patterns,
including augmented generation, prompt tuning, and chain-of-
thought prompting, and is evaluated on a privacy problem to
check whether a mobile app scenario and associated design
description satisfies eight consent requirements from the EU
General Data Protection Regulation (GDPR). The overall results
show that GPT-4 can be used to verify requirements satisfaction
with 97.4% accuracy and dissatisfaction with 92.7% accuracy.
Inverting the requirement improves verification of dissatisfaction
to 96.7%. Chain-of-thought prompting improves overall GPT-
3.5 performance by 9.4% accuracy. We discuss the trade-offs
among templates, models and prompt strategies and provide a
detailed analysis of the generated specifications to inform how
the approach can be applied in practice.

Index Terms—requirements, satisfaction arguments, language
models

I. INTRODUCTION

In software engineering, requirements serve to ensure that
software is fit for purpose and designed to meet business
objectives, legal requirements and stakeholder needs. In their
seminal work, Zave and Jackson introduced satisfaction argu-
ments, in which a system’s specifications S and domain knowl-
edge or properties K together satisfy the system requirements
R, written as S,K ⊢ R. This formulation has been used to
motivate goal modeling refinement [39], means-end [25], [27]
relationships and traceability [29] links, e.g., to show that sub-
goals, which refine a parent goal, and domain properties are
necessary and sufficient to satisfy the parent goal.

Satisfaction arguments expressed in logic have the ben-
efit of reducing system behavior, domain properties, and
requirements into discrete elements that can be analyzed and
evaluated formally. However, these elements can lose the rich
description of the argument and associated interpretability
that underpins how the requirement is satisfied, and some
requirements are difficult to express formally [33]. Maiden
et al. [27] and Haley et al. [14] extend the formal argument

with an informal natural language argument, which Haley et
al. call the inner argument.

Recent advances in auto-regressive, large language models
(LMs) have produced in-context learning (ICL), which is
the model’s ability to recognize a desired task and learn
from analogy, often using examples at inference time [5]. In
addition, LMs have been used to perform natural language
inference (NLI), including open- and closed-domain reasoning
and commonsense reasoning [32]. Improvements in NLI have
been obtained using chain-of-thought (CoT) prompting, in
which the LM is provided one or more reasoning steps prior
to generating the answer [44].

In this paper, we study LM applications to generate and
evaluate satisfaction arguments. We envision two use cases:
(1) a software designer seeks to brainstorm which software
features can be used to satisfy a requirement; and (2) given
a design description, a designer wishes to check whether that
description satisfies a requirement, and further to understand
why.

The remainder of this paper is organized as follows: we
introduce related work in Section II; in Sections III and IV,
we present our approach and evaluation method; in Section V
we present results with discussion in Section VI; in Section VII
we discuss threats to validity; and we conclude in Section VIII.

II. BACKGROUND

We now review related work on natural language inference,
in-context learning, satisfaction arguments.

A. Natural Language Inference

Natural language inference (NLI), which includes Recog-
nizing Textual Entailment (RTE) tasks, is the class of tasks
for “determining whether a natural-language hypothesis can be
inferred from a given premise” [28]. Given the text “A soccer
game with multiple males playing,” a model should confirm
that “some men are playing a sport” is a valid hypothesis,
and that “the woman kicked the ball” is a contradiction.
Two prominent datasets exist to develop models for NLI,
including the Stanford Natural Language Inference (SNLI)
corpus [4], and Multi-Genre NLI (MultiNLI) corpus [46]. The
SNLI contains 570K English sentence pairs labeled as en-
tailment, contradiction, and neutral. MultiNLI contains 430K
pairs using the same labels, but draws from a wider diversity

of domains, including both spoken and written texts. The
extended dataset e-SNLI includes explanations to support the
predicted label [7]. At this time, state-of-the-art neural models
exhibit a test accuracy of 93.1% on SNLI [40], and 90.8% on
MultiNLI [23].

B. In-Context Learning

Recent advances in auto-regressive, large language models
(LMs) have produced in-context learning (ICL), which is the
model’s ability to recognize a desired task and learn from
analogy, often using examples at inference time [5]. For many
benchmark natural language processing tasks, supervised deep
learning has been the state-of-the-art, often requiring thou-
sands and tens of thousands of training examples [24]. With
ICL, LLMs have been shown to solve some benchmark tasks
with no training examples, called zero-shot learning, and as
few as 1-15 training examples, called few-shot learning [26],
[50]. To achieve these results, a model user writes a natural
language prompt consisting of an instruction that indicates
the type of task, a text linearization called a template that
includes trigger words and slots that are filled with expressions
of human knowledge, and zero or more demonstrations or
training examples that show the desired input and output [10].

The choice of which demonstrations to use and their or-
dering in ICL can have a significant effect on task accuracy
by as much as 30% [26], [50]. In addition, LMs have been
shown to exhibit a number of biases in classification tasks
when using demonstrations: majority label bias, in which LMs
choose the most common label among demonstrations; recency
bias, in which LMs choose the most recent label from the last
demonstration; and common token bias, in which LMs prefer
to output tokens that are more common in their pre-training
data [50]. These biases can be mitigated to some extent by
“soft” prompt tuning, in which the prompt author chooses
demonstrations with a near-equal balance of label classes and
by ordering the demonstrations to evenly distribute labels.

An instance of ICL in which the demonstration exemplars
include the question, the intermediary steps to complete before
obtaining the answer, and the answer is called chain-of-
thought (CoT) prompting [44]. Few-shot CoT prompting has
shown improved performance in benchmark NLP tasks for
arithmetic, symbolic and commonsense reasoning [18]. Zero-
shot CoT prompting is used in the absence of exemplars
using two-stage prompting: first, the model is prompted to
generate the intermediary steps to reach an answer; next, the
steps are amended to the first prompt to generate the answer.
In arithmetic reasoning, zero-shot CoT performs better than
zero-shot prompting, but performs 10% worse than few-shot
prompting when using Google’s PaLM 540B model. There are
numerous variations on CoT, including plan-and-solve [42],
self-consistency [41], interleaved CoT [38] and tree-of-thought
prompting [47].

Instruction tuning is a fine-tuning procedure that improves
LM performance when responding to human instructions in
natural language [31]. The procedure uses training samples
that fit into instructional categories, including brainstorming

or making lists, generating narrative and text summarization,
to name a few. Several commercial base models have been
instruction tuned or provide instruction-tuned variants, includ-
ing Gemini, Claude, GPT-3.5 and GPT-4. In addition to fine-
tuning, prompt authors can divide the prompt template into re-
gions using trigger words to improve performance [43]. Chain-
of-thought prompting has been shown to improve performance
in multi-hop reasoning tasks, wherein multiple facts must be
reasoned about at once or when facts are inferred from other
facts in series [44].

Large language models (LMs) are not impervious to failure.
LMs have exhibited misdirection, which is the failure to follow
instructions [31]. LMs have reported falsehoods, misinforma-
tion, and so-called hallucinations [22], and they have exhibited
gender and racial bias toward others [30] and toxicity [13].
Moreover, they can exhibit sycophancy when they respond
with the bias of their users, even if those biases are extreme
or incorrect [45]. Alignment is a broader effort to improve
LM performance and reduce these unwanted effects [1], and
several commercial models, including Gemini, Claude, GPT-
3.5, and GPT-4, have been fine-tuned to this end.

C. Satisfaction Arguments

Zave and Jackson first introduce satisfaction arguments
using the formula S,K ⊢ R, in which system specifi-
cations S and domain knowledge and properties K taken
together must be sufficient to satisfy requirements R [49].
In goal modeling, a satisfaction argument is expressed as
SubGoals,DomProps ⊢ ParentGoal, in which satisfying
the sub-goals and domain properties is sufficient to satisfy
the parent goal [39]. In goal modeling notation, sub-goals are
linked to a parent goal through a refinement relationship, and
thus satisfaction arguments can be chained together to trace
the satisfaction of an organization’s business objectives down
to a system’s low-level requirements [39].

Maiden et al. [27] extended the i* diagram notation by
attaching satisfaction arguments to the means-end link in
the notation. The argument is constructed from S, K and R
(above) in addition to an informal, natural language argument
justifying the satisfaction of R. Lockerbie et al. extended this
work to reuse satisfaction arguments across socio-technical
system boundaries [25].

In addition to refinement and means-end links, Murugesan
et al. define traceability as a relationship between target
and source artifacts [29]. The target artifacts Σ implement a
system’s behavior, such as code, and the source artifacts ∆
are requirements. Thus, they write S ⊢r r for S ⊂ Sigma
and r ∈ ∆ when S satisfies the requirement r.

Finally, Haley et al. structure satisfaction arguments in
two parts: a formal outer argument expressed in logic that
describes what system behavior entails the satisfaction of the
requirement, e.g., B ⊢ R, which means that requirement R
is satisfied by the system behavior by the logical formula B;
and an informal inner argument that supports the claims in
the outer argument [14]. They propose using causal logic to

express the outer argument and Toulmin-style arguments [37]
to structure the outer argument.

III. APPROACH

We first introduce the applicaiton domain, before describing
our approach to requirements satisfiability using in-context
learning, which proceeds in three phases: (1) manually ex-
tract and summarize knowledge from authoritative sources for
use in natural language inference; (2) generate specifications
from public app descriptions; and (3) evaluate requirements
satisfaction arguments using the summarized knowledge and
generated specifications.

A. Application Domain

We made the following assumptions in choosing the appli-
cation domain. (1) The domain knowledge should be authori-
tative, reusable, described in general terms independent of any
one specification and, when combined with a specification, the
knowledge should be sufficient to infer satisfaction. (2) While
specifications can be represented formally (e.g., using logic
or graph theory), we assume only informal, natural language
descriptions of software. (3) The requirements are mathemat-
ically verifiable by satisfying a logical formula consisting of
propositions. When true, each proposition corresponds to the
satisfaction of an individual requirement described in natural
language. (4) Arguments must justify why a requirement
is or is not satisfied by drawing connections between the
specification and the knowledge about the requirement in
question.

Herein, specifications are presented as natural language
scenarios with a list of design practices that describe how an
application processes personal data. We ask whether the sce-
nario satisfies eight requirements of consent under multiple ar-
ticles of the EU General Data Protection Regulation (GDPR),
including Articles 4(11), 6(1), and 7(4). The knowledge used
to check satisfaction is derived from requirement-specific
guidance [12] published by the European Data Protection
Board (EDPB), which is the formal body in charge of ensuring
the consistent application and enforcement of data processing
law in the European Economic Area.

In addition to meeting our assumptions, this problem has
additional constraints. While authoritative, the knowledge is
limited and dated: the EDPB provides 30 pages of guideline
description, including 24 examples, that were authored in May
2020 [12]. From this information, organizations must draw
inferences about consent requirement satisfaction. Systems for
computing satisfaction must be updated as new knowledge is
discovered or created, either by new or amended guidelines,
regulatory enforcement actions, or by legal cases. Presently,
there are few legal cases or enforcement actions on this topic.
We identified only one landmark legal case in Case C-252/21,
where the Court of Justice of the European Union (CJEU)
found that Meta Platforms violated the consent requirement
of freely given by bundling unnecessary advertising practices
with other platform data practices [6]. Similarly, there are
few enforcement actions. In our review of 235 enforcement

actions 1 decided between 30 June 2023 and 30 December
2023, we found only 50 cases that cover violations of consent
articles, among which only 26% of these cases are likely
judgments resulting from software design issues. Due to the
limited authoritative ground truth, LMs offer an advantage
in utilizing retrieval augmented generation [21] to incorpo-
rate authoritative regulatory guidance and chain-of-thought
prompting [44] to make natural language inference explicit.

B. Knowledge

Knowledge about the domain and environment are needed to
decide if a specification satisfies a requirement. We manually
extracted the knowledge and requirements from the guidance
document entitled “Guidelines 05/2020 on consent under Reg-
ulation 2016/679, Version 1.1” that was adopted on 4 May
2020. The document consists of 30 pages and 24 examples that
describe scenarios in which systems satisfy or do not satisfy
a given property.

We selected all eight requirements from Section 3 plus a
ninth requirement from Section 5 of the guidance document
to provide breadth in the kinds of phenomena covered. This
includes requirements covering how consent is requested, the
scope of data practices covered by consent, the scope of
information provided to the data subject, and their access to
withdrawal. We summarized the guidance in the following
abbreviated rubric:2

• Freely Given (F): Consent is freely-given, if it exhibits
all of the following: (1) is not presented to a data subject
by a data controller with a power imbalance; (2) is not
conditioned on accepting other terms, and not bundled; (3)
is granular; and (4) yields no detriment.
– Power Imbalance (P): Power imbalance generally oc-

curs when the data controller is a public authority or
employer, although other cases may arise. For a consent
to be freely given in the presence of a power imbalance,
the controller must demonstrate that there is no detriment
when consent is refused or later withdrawn.

– Conditionality (C): If the purpose for processing a data
type is bundled with other contract terms, or if the data
subject is otherwise compelled to consent, then it is
conditional and is not freely given. Conditionality only
applies if the requested data is unnecessary to perform the
contract. Contracts include end-user agreements, terms of
use, and terms and conditions.

– Granular (G): Data subjects should be free to choose
which purpose they accept, rather than having to consent
to a bundle of processing purposes.

– Detriment (D): The controller needs to demonstrate that
it is possible to refuse or withdraw consent without
detriment, including no deception, intimidation, coercion,
or significant negative consequences. Gray Area: per-
missible incentives, which means a controller can use

1https://www.enforcementtracker.com/
2The complete rubric and source code will be made available in a non-

anonymized replication package.

an incentive that is only obtainable if the data subject
consents. This incentive is not viewed as a detriment
to refusing to consent. Refusal to consent or withdrawal
should not lead to a diminished product or service.

• Specific (S): The processing of data is limited to specific
purposes and will not be processed for other purposes,
the consent is granular, and the information presented to
obtain consent describes the consent and not other unrelated
matters.

• Informed (I): A design description must indicate that a data
subject is informed prior to the collection of their data, and
at minimum identify (a) the data controller’s identity, (b)
the purpose of each processing operation, (c) what type(s)
of data will be collected and used, (d) the existence of the
right to withdraw consent, (e) information about the use of
the data for automated processing, and (f) about the risks
due to transfers to countries without adequacy decisions or
safeguards.

• Unambiguous (U): Consent must be provided through a
clear, affirmative action, which may be a written, oral or
electronic means.

• Withdrawal (W): The data subject can withdraw consent
as easily as they gave it, and at any given time.

For each requirement definition in the rubric, we wrote a
corresponding requirement statement in the optative mood. Re-
quirements are generally written in the optative mood, which
describes what we desire to be true, whereas the indicative
mood describes what we assert to be true [16]. To check
if a specification satisfies a requirement, we chose to write
the requirements in the indicative mood, because this mood
reflects what is or is not true of the specification, as opposed
to what could be true, e.g., after modifying the specification
or considering a hypothetical. The eight requirements are
presented below:

P: There is a power imbalance between the data subject and
the data controller.

C: The purpose for data processing is bundled with other
contract terms, such as user agreements, terms of use, or
terms and conditions.

G: The data subject can choose which data processing pur-
poses they accept.

D: The data subject can refuse or withdraw consent and incur
no detriment.

S: Data processing is limited to specific purposes.
I: The data subject is properly informed.

U: Consent is be provided through a clear, affirmative action
by the data subject.

W: The data subject can withdraw consent as easily as they
gave it.

The guidelines indicate that the freely given requirement F
is a composition of four refinements, which we formalize in a
sub-formula: ¬P∧¬C∧G∧¬D. Substituting this sub-formula
for F , we observe that consent validity simplifies to: ¬P ∧
¬C∧G∧¬D∧S∧I∧U∧E∧B∧W . In the remainder of this
paper, we refer to the eight non-refined requirements, which

excludes freely given. Decomposing complex questions into
more narrowly focused sub-questions is necessary to reduce
the likelihood that the LM will miss relevant details during
generation in the satsifiability task, and has been a performant
prompting tactic in prior work [11], [17], [51].

We validated the above rubric by asking three investiga-
tors to decide whether the EDPB guidance examples satisfy
each of the eight requirements. Among the 24 examples, six
examples were excluded from this study because they were
either redundant or did not describe a scenario with a target
system (e.g., they restated content from recitals). Next, we
sanitized the examples to remove any conclusory or justifying
language indicating whether a requirement was satisfied and
the rationale for satisfaction. For each of the requirements,
coders were asked to assign one of the following codes: YES,
if the scenario satisfies the property; NO, if the scenario
does not satisfy the property; MIS, if the scenario is missing
information needed to evaluate the property’s satisfaction; or
IDK, if the example contains relevant information, but the
rubric is unclear. After each coder independently coded all 18
examples, Cohen’s Kappa was 47%. Next, the coders met to
discuss their disagreements, after which Kappa rose to 100%.

C. Specifications

As described in Section III-B, the number of authoritative
specifications with ground truth labels is limited to 18 exam-
ples. To improve external validity, we use the LM to generate
specifications from publicly available mobile application (app)
descriptions. This has the advantage that the specifications are
grounded in real-world applications and we can experimentally
control the breadth and diversity of application behaviors.
This step also simulates how developers can use LMs to
“brainstorm” and discover design practices that do and do not
satisfy requirements.

The generation process consists of a pipeline of LM tasks,
in which the output of an upstream task becomes the input
to a downstream task. To describe this process formally, let
I be an instruction to an LM that indicates the task type,
and let T be a template function that maps one or more text
values (v1, v2, ...vn) to slots in a text linearization, yielding
a slot-filled text t. A prompt is the concatenation of one or
more strings, expressed using semi-colon, e.g., the prompt
P = I;T (v1) for an instruction I and a text t based on the
template T that had one slot filled by the value v1.

For each task, we used LangChain v0.0.344 and the Ope-
nAI API with the gpt-3.5-turbo-1106 model and parameters
temperature = 0.7, top p = 1.0. We chose this model for
the lower pricing and larger context window of 16,385 tokens.
The temperature and top p parameters control token sampling
during generation. Lower temperature gives preference to
higher probability tokens, thus reducing randomness and in-
creasing focus across generations, whereas higher temperature
generally increases randomness. The top p is an alternative to
temperature that use nucleus sampling by choosing a subset
of tokens with a cumulative probability mass above the top p

threshold. In our study, we effectively ignore nucleus sampling
and chose a moderately lower temperature 0.0 < 0.7 < 2.0.

We begin with the top 50 mobile application (app) descrip-
tions reported separately by the Google Play and Apple App
stores for each of the 27 EU member states. This initial set
yields 2,482 unique Apple App apps and 1,559 unique Google
Play apps. Next, we randomly selected 200 app descriptions
from each app store dataset. The generation process continues
through the following steps:
1) For each app description ai ∈ A for 0 < i ≤ |A|,

summarize ai into a one sentence summary zi, using the
prompt P1 = I1;T1(ai)

2) For each app description ai ∈ A, extract a list of data
practices Di, using the prompt P2 = I2;T2(ai)

3) For each data practice di,j ∈ Di, identify a list of candidate
data types ti,j likely used by the practice, using the prompt
P3 = I3;T3(di,j)

4) For each summary zi, data practice di,j and list of data
types ti,j for this practice, write a brief scenario ci using
the prompt P4 = I4;T4(zi, di,j , ti,j)

5) For each scenario ci, requirement rm ∈ R and domain
knowledge km defining the requirement, choose one of
two augmentations for ci at random: a) assume rm is true,
then generate a list of satisfactory design practices using
the prompt P+

5 = I+5 ;T5(ci, km, rm); or b) assume rm is
false, then generate a list of dissatisfactory design practices
using the prompt P−

5 = I−5 ;T5(ci, km, rm). For each list
of design practices Xi generated using scenario ci, let S+

m

be the set of pairs (c,X), called a specification, that were
generated using prompt P+

5 to satisfy requirement rm, and
let S−

m be the set of specifications generated using prompt
P−
5 to not satisfy requirement rm.

At step 3 above, the 200 app descriptions for Apple App
and Google Play yielded 1,637 and 2,148 triples consisting of
a shared summary, a single data practice, and data types asso-
ciated with the practice, respectively. As inputs to generating
app scenarios in step 4, we randomly sampled 200 triples for
each app store. Step 4 yielded 400 scenarios in total. Below
is an example scenario generated from steps 1-4:

Summary: The mobile app is a platform for watch-
ing and creating short-form videos that are person-
alized to your interests, with easy-to-use tools for
editing and adding effects, music, and filters.
Data Practice: The user watches short-form videos
on TikTok.
Data Types: [’watch history’, ’liked videos’, ’com-
ments’, ’user profile information’]
Scenario: The app provides a user with a per-
sonalized video feed that offers a wide range of
entertaining and inspiring short videos. It also offers
simple-to-use tools for creating original videos with
special effects, filters, and music. The user is able to
edit their own videos using the app’s features. The
app utilizes videos to enable this functionality.

In step 5, we extend each scenario with a list of design

practices generated by the model that collectively satisfy or
dissatisfy one of the eight requirements described by the rubric
in Section III-B. For an even distribution across app stores,
requirements and satisfaction states, this yields 384 total
specifications down-sampled from the 400 scenarios randomly
sampled in step 4. Next, we generate design practices D using
deduction expressed by the formula K,S,R ⊢ D. Because
LMs can be fine-tuned to follow instructions [31] and aligned
to limit undesired behaviors [1] (e.g., toxicity [13], social
bias [30] and hallucinations [22]), and because K can overlap
with the pre-training data [5], which can cause related but
irrelevant information to “leak” into the model output, we
conducted a series of design iterations to shape the answers,
called answer shaping [24]. Answer shaping includes changes
to the input to exclude undesirable output and retain desirable
output.

Below is an example list of design practices generated
by step 5 for the consent requirement of specificity. Each
specification consists of the design practice list appended to
the end of the generated scenario.

1) The app clearly and specifically states the purposes for
which the data will be processed, such as providing a
personalized video feed and offering video creation tools
with special effects, filters, and music. This ensures that
the data processing is limited to these specific purposes.

2) When the user first installs the app, they are presented with
a consent request that is granular and allows them to choose
whether they consent to each specific purpose separately.
For example, they can choose to consent to the personalized
video feed but not to the video creation tools, or vice versa.
This granular consent ensures that the user has a choice in
relation to each specific purpose.

3) The information presented to obtain consent focuses solely
on the specific purposes for which the data will be pro-
cessed. The consent request does not include unrelated mat-
ters, such as promotional offers or unrelated data processing
activities. This clear separation of information ensures that
the consent request describes the consent and not other
unrelated matters.

4) The app does not process the user’s data for purposes other
than those specifically stated. It does not use the data for
targeted advertising or share it with third parties without
the user’s explicit consent. This adherence to purpose
specification safeguards against function creep and ensures
that the data processing remains limited to the specific
purposes for which the user has given consent.

We evaluated the generated dataset in two steps. First,
two investigators involved in designing the generation process
manually reviewed the 400 sampled scenarios to validate that
the data types are relevant to the data practices and that the
practices are relevant to the summary. This step identified 19
scenarios for removal due to practices outside app scope, no
practices, and misinterpretation of a fictional game. Next, one
of these investigators reviewed the generated design practices
for logical consistency with whether the practices were ex-

pected to satisfy the requirement. We report and discuss the
results of this review in Section VI.

Finally, two investigators not involved in the generation
process design used the rubric described in Section III-B to
classify each generated specification by whether it satisfies
or does not satisfy the given requirement and to record
their justification for their classification. They first coded
16 specifications before meeting to discuss the process. At
this stage, the initial inter-rater reliability calculated using
Cohen’s Kappa [9] was K = 50%, which is considered a
moderate agreement [19]. Next, they coded the remaining
specifications independently, yielding a Kappa K = 76%,
which is considered substantial. The two investigators further
discussed and re-coded five remaining disagreements to yield
K = 91%, which is considered almost perfect.

Among the disagreements, most occur in specifications
related to the “conditionality” and “power imbalance” require-
ments. In specification SCR-A003, the design practice list
states the ”Conditionality” to be false, as the data processing
now requires the data subject (user) to accept terms and
conditions.” The first investigator decided that conditionality
is true because the user must agree to the terms and conditions
before using the app, while the second investigator agreed with
the quoted conclusory statement and marked conditionality
as false. To mitigate these disagreements, the investigators
agreed to ignore the conclusory statements and make their
own judgement.

The final dataset consisting of the reconciled disagreements
were used as the ground truth to evaluate the requirements
satisfiability phase, which we now discuss.

D. Satisfiability

We check whether a specification s satisfies a requirement
rm using knowledge km specific to the requirement and
the prompt P6 = I6;T6(s, km, rm). When checking satis-
faction, we retrieve the knowledge and requirement from a
database, which can be updated over time. The knowledge k
is comprised on a requirement name and definition of that
requirement, and the specification s = (c,X) is comprised
of the app scenario c and list of design practices X for the
given app. To satisfy a requirement r, it must be true that
no design practice x ∈ X dissatisfies r; and to dissatisfy
r, it must be true that at least one x ∈ X dissatisfies r.
To test whether LMs are robust reasoners when requirements
statements are inverted, we check satisfiability separately using
the requirement rm and the inverted requirement, written r−m.
For example, the requirement for specificity is written as “data
processing is limited to specific purposes” and the inversion is
written as “data processing is not limited to specific purposes.”
Therefore, we can check for consistency such that s, k ⊢ r is
not true, if and only if s, k ⊢ ¬r is true.

1) Instructions and Templates: Prompt performance has
been shown to vary widely based on the choice of words in the
instruction and template [36], [50]. This variance is attributed
to the word distributions learned during the model pre-training
and to how in-context learning uses token sequences to select

the task at inference time. Thus, we examine two different
templates by varying the prompt vocabulary. In Listing 1, we
present a requirements template TR

6 that uses an instruction
written about requirements satisfiability and that uses trigger
words drawn from this vocabulary (e.g., specification and
requirement). In this template, the answer is missing and
the model is instructed to complete the answer with True or
False. In Listing 2, we present a generic template TG

6 that is
written about a scenario and statement that must be true of the
scenario. Apart from these changes in the trigger words and
in how to choose a response, the two templates are identical.

Listing 1: Satisfiability Template R

1 Definition of {req_name}: {definition}
2
3 Read the following specification. If the

specification satisifies the requirement
based on the definition, above, respond
with True, otherwise respond with False.
Do not comment or elaborate.

4
5 Specification: {scenario} {design_practices}
6
7 Requirement: {requirement}
8
9 Answer:

Listing 2: Satisfiability Template G

1 Definition of {req_name}: {definition}
2
3 Read the following scenario, and decide if the

given statement is true or false based on
the definition, above. Respond with True
or False. Do not comment or elaborate.

4
5 Scenario: {scenario} {design_practices}
6
7 Statement: {requirement}
8
9 Answer:

2) Chain-of-Thought Prompting: Prompts that involve rea-
soning over multiple hops or facts have shown improved per-
formance using Chain-of-Thought (CoT) prompting in natural
language inference tasks [44]. In CoT prompting, a prompt is
augmented with one or more examples that demonstrate step-
by-step reasoning. The model then completes a reasoning task
prior to providing an answer to a given question. The key
idea is that the generated reasoning reduces the probability of
misdirection when completing the answer. To further narrow
the focus in this task, we chose to apply CoT directly to the list
of design practices and to exclude the scenario. In Listing 3,
we introduce prompt P7 = I7;T7(X, km, rm, E) that checks
whether a list of design practices X satisfy requirement rm
given knowledge km. Based on an early evaluation of P6,
we based this template on the generic template TG

6 . The
template T7 embeds a list of training examples E in which
each example e ∈ E consists of a list of design practices, a
requirement, an answer to whether the design practices satisfy
the requirement, and a rationale justifying the answer (see
sub-template TE

7 in Listing 4). To separate the examples, we

use the trigger word # END, and to separate the question
and answer components we use the trigger word ###. These
examples are drawn from the ground truth dataset and kept
separate from the data used for evaluation.

Listing 3: Chain-of-Thought Template

1 Definition of {req_name}: {definition}
2
3 Read the following example scenarios and

observe the rationale and answer about
whether the statement is true or false.
For the last scenario and statement,
decide if the statement is true or false
based on the definition, above. Respond by
completing the Rationale and Answer using
the same format. Do not elaborate.

4
5 {examples*}
6
7 Scenario: {design_practices}
8
9 Statement: {requirement}

10
11 ###
12
13 Rationale:

In Listing 3, the {examples*} slot is filled with one
or more examples generated by the sub-template show in
Listing 4. The slot fillers in each sub-template are drawn from
the ground truth data hold-out dedicated to training.

Listing 4: Chain-of-Thought Sub-Template

1 Scenario: {design_practices}
2
3 Statement: {requirement}
4
5 ###
6
7 Rationale: {rationale}
8
9 Answer: {answer}

10
11 # END

As described in Section II, the choice of which demon-
strations to use and their ordering can impact accuracy by as
much as 30% [26], [50]. This is due in part to majority label
bias, in which LMs choose the most common label among
demonstrations, and recency bias, in which LMs choose the
most recent label from the last demonstration [50]. These
effects are reduced as model size increases. Regardless, to
mitigate any possible effects of these biases, we divide the
training examples into subset E+

m for those examples that
demonstrate when requirement rm is satisfied, and into subset
E−

m for those examples that demonstrate when requirement
rm is not satisfied. Next, we check the satisfiability of rm for
a previously unseen list of design practices X by presenting
demonstrations in the ordering e+0 ; e

−
0 ; ...; e

+
n ; e

−
n for e+i ∈ E+

m

and e−i ∈ E−
m and 0 < i ≤ min(|E+

m|, |E−
m|). This ordering

ensures an equal number of examples from each class (satisfies
and does not satisfy) and distributes the classes evenly in the
order. Finally, if we are testing an inverted requirement, then

we invert the requirement and answer in all of the selected
examples.

IV. EVALUATION

We evaluate the efficacy of checking requirements satis-
fiability by the proportion of correct LM responses (c) to
the total LM responses (t), which is equal to c/t, called
accuracy. To check if a response is correct, we first check if
the case-insensitive response is in the set (True, False),
which we call a uniform response. This check is necessary
because generative LMs can produce answers that are not
limited to a discrete set, despite considerable answer shaping.
If the response is not True or False, which we call a
non-uniform response, we next try to match the response to
the regular expression /Answer: (True|False)/ based
on the template design and trigger word Answer, and
to the expression /The (requirement|statement)
("?.+?"?\s)?is (true|false)/, which is a common
elaboration featured by the model that in some cases includes
the requirement restated in quotes. This approach is helpful
to detect correct responses when the LM generates additional
commentary and embeds the answer in this commentary. If the
regular expressions do not match a response, which we call
a non-parsable response, we count this response as incorrect.
If the expression matches one or more times, then we accept
the last match as the predicted answer and check the predicted
answer against the expected answer in the ground truth dataset.
We report the number of non-uniform responses that do not
match the above patterns for each experiment in Section V.

In addition to computing overall accuracy, we are interested
in how accuracy varies by requirement type, how the effects of
the polarity of the scenario affect accuracy, which is whether
the scenario satisfies or dissatisfies the requirement, and how
the polarity of the requirement affects accuracy, which is
whether the requirement is written in terms of what the system
does or does not do. Finally, we examine whether running
a prompt 10 times and taking the majority response (vote)
affects accuracy, which is called self-consistency [41] and has
shown promise in prior work [20]. To this end, we conduct
experiments to answer the following research questions:
RQ1: How does accuracy vary by the requirement type?
RQ2: How does the scenario polarity affect accuracy?
RQ3: How does the requirement polarity affect accuracy?
RQ4: How does majority response affect accuracy?

To evaluate overall accuracy and answer the research ques-
tions, we used the ground truth dataset described in Sec-
tion III-C. We sampled the dataset to ensure half of the speci-
fications were generated from the 1,637 Apple App scenarios,
and the other half from the 2,148 Google Play scenarios. In
addition, we sampled to ensure an even distribution across
the eight requirements and two satisfaction states, wherein a
specification either satisfies or does not satisfy one of the eight
requirements. We restricted the sample total to less than 400
specifications, which yields 384 specifications in which each
requirement and satisfaction state was replicated 24 times,
and each specification represents a different mobile application

(i.e., 8×2×24 = 384). Because Chain-of-Thought prompting
requires training examples, we held out 20% of the ground
truth dataset based on a near even distribution across all
eight requirements, which yields 75 training samples, and 300
testing samples. We evaluated each satisfiability prompt P6

and P7 using the same 300 testing samples, which were evenly
distributed across requirements.

In-context learning relies on token sampling to generate a
model completion. Sampling is a non-deterministic process
that can be affected by changing the model temperature or
top p parameters. This can lead to different responses, even
when using the same prompt. Therefore, we checked satisfia-
bility by prompting the model 10 times for each requirement
and its inversion to yield a total of 300× 2× 10 = 6, 000 LM
responses per experiment. We report the mean accuracy of the
10 trials for each experiment. For the majority response, we
calculate the frequencies for a True and False response, respec-
tively, and choose the response with the highest frequency. If
the responses are tied, we randomly choose True or False as
the response.

For this task, we used LangChain v0.0.344 and OpenAI
API with the gpt-3.5-turbo-1106 model, which has a 16,385
token context window, and the gpt-4-0613 model, which has a
8,192 token window. Both models have a pre-training cut-off
date of September 2021. In each experiment, we use the same
parameters temperature = 0.7, top p = 1.0.

V. RESULTS

We now discuss the results based on the approach described
in Section III. In Table I, we present the mean accuracies
for the 10 trials for each experiment and majority response
described in the evaluation method in Section IV. The columns
correspond to each experiment, including the requirements TR

6

and generic TG
6 templates, the best performant 1-shot Chain-

of-Thought (CoT) template T7 and both GPT-3.5 and GPT-4
models. The rows present the per-requirement mean accuracy,
the accuracy when the specification satisfies the requirement
(Spec. true) and dissatisfies the requirement (Spec. false),
and when the requirement was written in the normative and
inverted tone, the overall accuracy followed by the accuracy
when taking the majority response from 10 prompt responses.
The highest accuracy for each experiment is presented in bold.
All experiments used the same dataset for this evaluation.

The highest overall accuracy for checking requirements
satisfaction was 95.7% using GPT-4 and the requirements
template TG

6 , followed by GPT-4 with the generic template and
then GPT3.5 with 1-shot Chain-of-Thought (CoT) prompting.
CoT has the advantage that responses include the rationale
or justification for the answer, despite the lower accuracy. In
these experiments, we only observed unparsable, non-uniform
responses in the CoT experiment that accounts for 0.002% of
the error in that reported result.

RQ1 asks “How does accuracy vary by the requirement
type?” To answer RQ1, we examine the accuracy for each
requirement. In Table I, Conditionality was overall the weakest
performing satisfiability check across all models and prompt

GPT-3.5 GPT-4
TR
6 TG

6 T7 TR
6 TG

6

Power Imbalance 0.878 0.895 0.896 0.961 0.934
Conditionality 0.695 0.767 0.828 0.861 0.858
Granularity 0.613 0.851 0.999 0.986 0.999
Detriment 0.849 0.879 0.962 1.000 1.000
Specificity 0.724 0.820 0.949 0.978 0.974
Informed 0.646 0.807 0.992 1.000 0.982
Unambiguous 0.756 0.783 0.910 0.953 0.961
Withdrawal 0.769 0.927 0.946 0.950 0.946

Spec. (true) 0.841 0.883 0.954 0.974 0.977
Spec. (false) 0.478 0.731 0.886 0.927 0.902

Req. 0.544 0.852 0.940 0.955 0.959
Req. (inverted) 0.938 0.831 0.930 0.967 0.954

Overall Accuracy 0.741 0.841 0.935 0.961 0.957
Maj. Response 0.742 0.870 0.948 0.963 0.957

TABLE I: Mean Accuracy over 10 Experimental Trials

types. Conditionality was also a requirement that the human
evaluators identified the most disagreements over. In weaker
performing experiments, Informed is a close second in weakest
performance, whereas GPT-4 performs very well for this
requirement. Notably, CoT outperforms all other models and
templates for Informed reaching 99.2% accuracy.

The question RQ2 asks “How does the scenario polarity
affect accuracy?” Within the ground truth dataset, 192 spec-
ifications were generated to satisfy a requirement (true), and
192 specifications were generated to dissatisfy a requirement
(false). In general, we observe in Table I that accuracy falls
when the specification does not satisfy the requirement. The
highest performance loss is GPT-3.5 with the requirements
template TR

6 , dropping to 47.8% accuracy as compared to
73.1% with the generic template. Even the best performing
GPT-4 experiments exhibit a 5-8% difference in performance.

The question RQ3 asks “How does the requirement polarity
affect accuracy?” In this experiment, the requirement was
written as a normative statement describing what a system
should do, and as an inverted statement describing what the
system should not do. The requirement template, the normative
statement and GPT-3.5 shows the lowest accuracy (54.5%)
with less difference among GPT-3.5 CoT and GPT-4.

Finally, RQ4 asks “How does the majority response af-
fect accuracy?” In this experiment, we observe that majority
response generally yields an accuracy close to or slightly
above (2-5%) the mean. This observation means this option
is preferred, since there are trials among these experiments
where the accuracy is below the the mean.

In Table I, we presented the best n-shot CoT experiment,
which is n = 1. In Figure 1, we present the overall mean
accuracy for the GPT-3.5 generic template TG

6 experiment
to represent n = 0 and the CoT template (T7) experiments
for n = 1, 2, 4, 8. The one-shot experiment yields the highest
overall accuracy and declines up to four-shots before increas-
ing again with eight-shot. We discuss an explanation for this
decline in Section VI after performing an error analysis on the
unparsable, non-uniform responses.

80%
82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

0 1 2 4 8

O
ve

ra
l A

cc
ur

ac
y

Number of Shots in Few-Shot Learning

Fig. 1: n-Shot CoT Accuracy with Generic Template

Ans. GPT-3.5 GPT-4
TR
6 TG

6 T71S T72S T74S T78S TR
6 TG

6

0 0 0 11 14 45 37 0 0
1 14 8 5918 5806 5776 5746 0 0
2 0 0 69 158 115 131 0 0
3 0 0 0 20 4 4 0 0
4+ 0 0 0 0 59 13 0 0

TABLE II: Non-uniform Responses among 6000 Total

Table II presents frequencies of non-uniform responses for
each experiment. The first column indicates the number of
parsable answers, with the remaining columns corresponding
to the experiments with each of the requirements (TR

6) and
generic templates (TG

6) tested, the n-shot (nS) CoT template
(T7) and the two models, GPT-3.5 and GPT-4. The rows
correspond to the number of responses out of the total of 6,000
possible responses for each experiment. Nearly all of the CoT
template responses were non-uniform and 4-shot CoT showing
the highest number of non-parsable responses. The generic
template used with GPT-4 shows zero non-uniform responses.

VI. DISCUSSION

We now discuss and interpret our results.
While 1-shot Chain-of-Thought (CoT) prompting shows

improvement over non-CoT prompting with GPT-3.5, we
observed a decreasing accuracy with increasing n and a
high number of non-uniform responses. The pattern with
non-uniform responses shown in Table II for 1-shot CoT is
consistent across all n for n = 1, 2, 4, 8: most responses are
non-uniform, however, the number of unparsable non-uniform
responses where zero answers were received increases in
proportion to the loss of accuracy. We examined the unparsable
responses and observed the model was increasingly ignoring
the instructions with phrases such as “Apologies, but I cannot
fulfill that request.” and in one case “I’m sorry, but I cannot
complete this task as it requires making judgments about legal
and ethical matters.” In 4-shot CoT where overall accuracy was
the least, 33/45 unparsable responses exhibit this pattern.

We attribute these unparsable responses to the practice of
alignment, which aims to produce models that are helpful,
honest and harmless [1]. Alignment is to reduce toxicity in
responses and to prevent providing responses that conflict or

compete with licensed professional advice, such as legal or
medical guidance. Because our chosen application domain
is legal compliance, the CoT prompts may have triggered
alignment protocols. The models that we studied, gpt-3.5-
turbo-1106 and gpt-4-0613, have both been instruction-tuned
and aligned according to OpenAI’s public disclosures. An
alternative to using an aligned model is to use a base model,
such as LLaMA2 or davinci-002, that has not been instruction
tuned nor aligned. The downside is that instruction tuned
models have shown improved performance over base models
on benchmark NLP tasks [43]. That said, aligned models
exhibit an “alignment tax” that reduces NLP performance [31].

We conducted an analysis of the total 3,291 generated
design practices across 384 specifications to identify errors
and other issues in the generation method described in Sec-
tion III-C. Overall, we observed 29 specifications (7.55%) in
which the design practices exhibit the opposite polarity of
the intended requirement. Nine of these specifications were
generated to fit Conditionality, and the remaining 20 to fit
Detriment. We observed 12 specifications with a definition
bias (3.13%), in which certain elements of a definition are
emphasized while others are minimized or missing. For exam-
ple, the practices for Conditionality overemphasize “accepting
terms and conditions” and under-emphasize “bundling consent
with unnecessary data.”

The generated design practices often contained conclusory
statements that explicitly refer to whether the requirement is
satisfied. We identified 256 specifications (66.67%) with con-
clusory statements, among which 66 could be overtly leading.
For example, SCR-G028 states “...the user is consenting to
the processing of their personal data for multiple purposes
related to enhancing the security of their online accounts.
However, since the user cannot choose which specific pro-
cessing purposes they accept or give separate consent for
each purpose, the ’granularity’ requirement is not fulfilled.”
Conclusory statements also appear in the EDPB authoritative
examples, and were ignored (if they were inaccurate) when
creating the ground truth dataset.

We observed that 3.91% of specifications contained irrele-
vant practices with a conclusory statement, e.g., in SCR-G124
“These actions do not directly address the power imbalance
between the data subject and the data controller. However,
it is important to note that the presence of power imbalance
is not negated by these design practices.”Six specifications
(1.56%) exhibited fallacious reasoning, including practice #5
of SCR-G144 “The user saves the collage, indicating that
the data processing was limited to the specific purpose of
creating the collage and not used for other unrelated matters.”
This is unsound, because “saves the collage” does not entail
“processing was limited to the specific purpose.”

We observed a few instances logical inconsistency. Five
specifications (1.30%) contain logically inconsistent design
practices. For example, in SCR-G187, design practice #5
states “The user reads and accepts the terms and conditions,”
while practice #13 states “The user chooses not to accept the
terms and conditions.”Finally, we observed three specifications

(0.78%) with double negatives, including SCR-G080 “This
design practice does not cause ’Detriment’ to be false.”

VII. THREATS TO VALIDITY

We now discuss threats to validity.
Construct validity is the correctness of operational measures

used to collect data, build theory and report findings from the
data [48], and the extent to which an observed measurement
fits a theoretical construct [35]. To reduce this threat, we
developed the knowledge and rubric described in Section III-B
used to generate the design practices and evaluate satisfiability
from the authoritative European Data Protection Board consent
guidelines [12]. In addition, we divided the investigators into
the process group and evaluation group. The process group
evaluated the rubric using the 18 examples described in the
guidelines, and the evaluation group evaluated the specifica-
tions generated using the rubric. Finally, we seeded every
specification using mobile app summaries and data practices
extracted from real descriptions of top, most popular apps used
in the jurisdiction under which the legal requirements apply.

It is likely that the knowledge used to generate the design
practices is incomplete, and that other unforeseen design
practices will arise as technology evolves. At present, industry
only has 18 authoritative examples from which to evaluate
their own designs, and there are few regulatory enforcement
actions and few judicial cases to clarify unforeseen situations.
Thus, future work should study the effects of extending the
knowledge to address new challenges.

In addition, the design practices themselves were generated
by the LM in zero-shot setting with only the knowledge to
guide the generation. This step yields synthetic data that may
not be representative of actual design practices. To mitigate
this threat, the process group reviewed the generated design
practices for anomalies and inconsistencies. However, they did
not evaluate the generated practices using outside knowledge,
e.g., using a survey of industrial practices.

Internal validity is the extent to which measured variables
cause observable effects in the data [48]. In this study, we cre-
ated synthetic data consisting of design practices generated by
the GPT-3.5 language model using knowledge provided by an
authoritative source and the model’s pre-training data. In two
experiments, we used the same model to check whether the
generated specifications satisfy legal requirements described in
the same source of knowledge. It’s possible that the model’s
output in the experiments was biased by the model’s output
in the specification generation step to predict the expected
answer. To mitigate this step, we had two investigators not
involved in the generation process to independently create ex-
pected answers in a ground truth dataset. This dataset was used
in the evaluation to ensure independence between generation
and satisfiability checking. In addition, we employed a second
larger model GPT-4 to evaluate results independently from the
model used to generate the specifications.

It is possible that the EDPB guidelines that were used to
create the knowledge base, including the 18 examples, were

part of the LM pre-training data. The cut-off dates for the GPT-
3.5 model gpt-3.5-turbo-1106 and GPT-4 model gpt-4-0613
are September 2021. This means performance may worsen or
require additional context in cases where the requirements are
completely unseen by a different LM.

External validity determines the scope of environmental
phenomena or domain boundaries to which the theory and
findings generalize [48]. In this study, we examined require-
ments in a legal domain applied to mobile applications. The
requirements cover a range of system behavior described in the
specifications, including obligations of the app developer and
their firm, how data is processed, how consent is collected
and what happens when consent is withdrawn, and how
information is presented to app users. Other phenomena not
covered by this setting include performance requirements,
including concurrency and parallelism in computation, safety
critical requirements, and security requirements.

In addition, prior research has shown that prompt perfor-
mance does not transfer between models in a predictable
way [26]. This is true across different size models of the
same generation (e.g., 13B versus 175B GPT-3). In our experi-
ence, transferabilty is increasingly difficult as models undergo
different fine-tuning practices (e.g., instruction-tuning [43],
alignment [31] and function calling [34]).

VIII. CONCLUSION AND FUTURE WORK

In this paper, we report on experiments to check speci-
fications for requirements satisfiability using large language
models and in-context learning. We studied eight requirements
from the legal domain using two popular models, GPT-3.5
and GPT-4. The experiments were conducted using synthetic
data generated from popular mobile app descriptions that
we acquired from jurisdictions regulated by this domain. In
addition to different prompt templates with and without chain-
of-thought (CoT) prompting, we studied LM performance
when the specification both satisfies and dissatisfies the re-
quirement and when the requirement is written in a normative
and inverted tone. The results indicate that a generic prompt
template outperforms a requirements theory-specific template,
that CoT prompting improves mean accuracy well above non-
CoT prompting with GPT-3.5, and that GPT-4 outperforms all
other approaches studied.

The research highlights a number of challenges for future
work. First, we see a need for more work to studying rela-
tionship between natural language and logical inference and
to understand how these two approaches could complement
one another. Because knowledge evolves, we need new tools
to critique existing satisfaction arguments that no longer hold
under changing requirements definitions. Finally, we see the
ability to generate specifications (i.e., generative requirements
engineering) as a rich opportunity for design space exploration.
However, we need methods to engage humans in the analysis
and comprehension of generative RE that can leverage and
build on emerging work in reinforcement learning with human
feedback (RL4HF) [8].

ACKNOWLEDGMENT

This research was funded by NSF Award #2007298,
#2217572.

REFERENCES

[1] A. Askell, Y. Bai, A. Chen, et al. “A General Language Assistant as a
Laboratory for Alignment,” arXiv:2112.00861, 2021

[2] K. Attwood, T. Kelly, J. McDermid, “The Use of Satisfaction Arguments
for Traceability in Requirements Reuse for System Families: Position
Paper,” International Workshop on Requirements Reuse in System Family
Engineering, 2004.

[3] R. A. Bauer, “Consumer behavior as risk taking,” Risk Taking and
Information Handling in Consumer Behavior 1960, pp. 389-398.

[4] S.R. Bowman, G. Angeli, C. Potts, C.D. Manning. “A large annotated
corpus for learning natural language inference.” Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP), 2015.

[5] Brown et al., “Language Models are Few-Shot Learners,” Advances in
Neural Information Processing Systems (NeurIPS), 33, 2020.

[6] “Judgment of the Court of Justice in Case C-252/21 — Meta Platforms
et al. (General Terms of Use of a Social Network).” (in German) Press
Release No. 113/23, Luxembourg, 4 July 2023.

[7] O-M. Camburu, T. Rocktäschel, T. Lukasiewicz, P. Blunsom. “e-SNLI:
Natural Language Inference with Natural Language Explanations,” Ad-
vances in Neural Information Processing Systems (NeurIPS) v. 31, 2018.

[8] P.F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, D. Amodei.
“Deep reinforcement learning from human preferences.” Advances in
Neural Information Processing Systems (NeurIPS), 2017.

[9] J. Cohen. “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, 20: 37-46, 1960

[10] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, L.
Li and Z. Sui, “Survey on In-context Learning,” arXiv:2301.00234

[11] D. Dua, S. Gupta, S. Singh, M. Gardner. “Successive Prompting for
Decomposing Complex Questions.” Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 1251–1265, 2022.

[12] European Data Protection Board, “Guidelines 05/2020 on consent under
Regulation 2016/679,” Version 1.1, adopted 4 May 2020.

[13] S. Gehman, S. Gururangan, M. Sap, Y. Choi, N.A. Smith. “Real-
ToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models.” Findings of the Association for Computational Linguistics, pp.
3356–3369, 2020.

[14] C.B. Haley, R. Laney, J.D. Moffett, B. Nuseibeh, “Arguing satisfaction
of security requirements.” In: H. Mouratidis, P. Giorgini, eds. Integrating
security and software engineering: advances and future vision. IG Press,
2006.

[15] C. Haley, R. Laney, J. Moffett and B. Nuseibeh, “Security Requirements
Engineering: A Framework for Representation and Analysis,” IEEE
Transactions on Software Engineering, 34(1):133-153, 2008

[16] M. Jackson, “The World and the Machine,” International Conference on
Software Engineering (ICSE), pp. 283-283, 1995.

[17] T. Khot, H. Trivedi, M. Finlayson, Y. Fu, K. Richardson, P. Clark, A.
Sabharwal, “Decomposed Prompting: A Modular Approach for Solving
Complex Tasks” International Conference on Learning Representations,
2023.

[18] T. Kojima, S. Gu, M. Reid, Y. Matsuo, Y. Iwasawa. “Large Language
Models are Zero-shot Reasoners.” Advances in Neural Information
Processing Systems (NeurIPS) 35, pp. 22199-22213, 2022.

[19] J.R. Landis, G.G. Koch. “The measurement of observer agreement for
categorical data.” Biometrics 1977, 33: 159-74.

[20] B. Lester, R. Al-Rfou, N. Constant. “The Power of Scale for Parameter-
Efficient Prompt Tuning,” Empirical Methods in Natural Language
Processing (EMNLP), pp. 3045–3059, 2021.

[21] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel, D. Kiela.
“Retrieval-augmented generation for knowledge-intensive NLP tasks.”
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[22] S. Lin, J. Hilton, O. Evans. “TruthfulQA: Measuring How Models Mimic
Human Falsehoods.” Association for Computational Linguistics (ACL),
pp. 3214–3252, 2022

[23] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, V. Stoyanov, “RoBERTa: A Robustly Optimized BERT
Pretraining Approach,” arXiv:1907.11692 2019.

[24] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, G. Neubug. “Pre-train,
Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing,” ACM Computing Surveys, 55(9): Article
195, 2023.

[25] J. Lockerbie N. Maiden, J. Engmann, D. Randall, S. Jones, D. Bush,
“Exploring the impact of software requirements on system-wide goals:
a method using satisfaction arguments and i* goal modelling,” Require-
ments Engineering Journal, 7:227–254, 2012.

[26] Y. Lu, M. Bartolo, A. Moore, S. Riedel, P. Stenetorp, “Fantastically
Ordered Prompts and Where to Find Them: Overcoming Few-Shot
Prompt Order Sensitivity,” 60th Annual Meeting of the Association for
Computational Linguistics, pp. 8086–8098, 2022.

[27] N. Maiden, J. Lockerbie, D. Randall , S. Jones, D. Bush, “Using
Satisfaction Arguments to Enhance i* Modelling of an Air Traffic
Management System,” IEEE International Requirements Engineering
Conference, pp. 49-52, 2007.

[28] B. MacCartney, C.D. Manning. “Modeling Semantic Containment and
Exclusion in Natural Language Inference,” 22nd International Confer-
ence on Computational Linguistics (Coling), pp. 521–528, 2008.

[29] A. Murugesan, M.W. Whalen, E. Ghassabani, M.P.E. Heimdah, “Com-
plete Traceability for Requirements in Satisfaction Arguments,” IEEE
International Requirements Engineering Conference, RE@Next!,, pp.
359-364, 2016.

[30] N. Nangia, C. Vania, R. Bhalerao, S.R. Bowman “CrowS-Pairs: A
Challenge Dataset for Measuring Social Biases in Masked Language
Models” Empirical Methods in Natural Language Processing (EMNLP),
pp. 1953–1967, 2020.

[31] L. Ouyang, J. Wu, X. Jiang, et al. “Training language models to follow
instructions with human feedback,” Advances in Neural Information
Processing Systems (NeurIPS), 35, pp. 27730-44, 2022.

[32] J.W. Rae, S. Borgeaud, T. Cai, et al.“Scaling Language Models: Meth-
ods, Analysis and Insights from Training Gopher,” arXiv:2112.11446

[33] K. Ryan, “The Role of Natural Language in Requirements Engineering,”
First IEEE International Symposium on Requirements Engineering, pp.
240-242, 1993.

[34] T. Schick, J. Dwivedi-Yu, R. Dessı̀, R. Raileanu, M. Lomeli, R. Hambro,
H. Zettlemoyer, N. Cancedda, T. Scialom. “Toolformer: Language
Models Can Teach Themselves to Use Tools,” Advances in Neural
Information Processing Systems (NeurIPS), 2023.

[35] W.R. Shadish, T.D. Cook, and D.T. Campbell. Experimental and Quasi-
experimental Designs for Generalized Causal Inference. Houghton-
Mifflin Company, Boston, Massachusetts, 2002.

[36] T. Sorensen, J. Robinson, C. Rytting, A. Shaw, K. Rogers, A. Delorey,
M. Khalil, N. Fulda, D. Wingate. “An Information-theoretic Approach
to Prompt Engineering Without Ground Truth Labels.” Association for
Computational Linguistics (ACL), pp. 819–862, 2022.

[37] S.E. Toulmin, The Uses of Argument. Cambridge Univ. Press, 1958
[38] H. Trivedi, N. Balasubramanian, T. Khot, A. Sabharwal. “Inter-

leaving Retrieval with Chain-of-Thought Reasoning for Knowledge-
Intensive Multi-Step Questions,” Association for Computational Linguis-
tics (ACL), pp. 10014–10037, 2023.

[39] A. van Lamsweerde. “Requirements engineering: from craft to disci-
pline.” 16th ACM SIGSOFT International Symposium on Foundations
of software engineering (FSE), pp. 238–249, 2008.

[40] S. Wang, H. Fang, M. Khabsa, H. Mao, H. Ma. “Entailment as Few-
Shot Learner,” Association for Computational Linguistics (ACL), pp.
13803–13817, 2023.

[41] X. Wang, J. Wei, D. Schuurmans, Q. V Le, E. H. Chi, S. Narang, A.
Chowdhery, D. Zhou. “Self-Consistency Improves Chain of Thought
Reasoning in Language Models,” International Conference on Learning
Representations (ICLR), 2023.

[42] L. Wang, W. Xu, Y. Lan, Z. Hu, Y. Lan, R. Ka-Wei Lee, E-P. Lim.
“Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought
Reasoning by Large Language Models,” Association for Computational
Linguistics (ACL), 2023.

[43] J. Wei, M. Bosma, V.Y. Zhao, K. Guu, A.W. Yu, B. Lester, N. Du, A.M.
Dai, Q.V. Le, “Finetuned Language Models Are Zero-Shot Learners,”
International Conference on Learning Representations, 2022

[44] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q.
Le, D. Zhou. “Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models,” Advances in Neural Information Processing Systems
35, pp. 24824-24837, 2022.

[45] J. Wei, D. Huang, Y. Lu, D. Zhou, Q.V. Le “Simple Synthetic Data
Reduces Sycophancy in Large Language Models,” arXiv: 2308.03958 ,
2023

[46] A. Williams, N. Nangia, S. Bowman. “A Broad-Coverage Challenge
Corpus for Sentence Understanding through Inference,” North American
Chapter of the Association for Computational Linguistics (NAACL),
2018.

[47] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, K.R.
Narasimhan, “Tree of Thoughts: Deliberate Problem Solving with Large
Language Models,” Advances in Neural Information Processing Systems
(NeurIPS), 2023.

[48] R.K. Yin. Case study research, 3rd ed. In Applied Social Research
Methods Series, v.5. Sage Publications, 2003.

[49] P. Zave, M. Jackson. “Four Dark Corners of Requirements Engineering,”
ACM Transactions on Software Engineering and Methodology, 6(1): 1-
30, 1997.

[50] T.Z. Zhao, E. Wallace, S. Feng, D. Klein, S. Singh, “Calibrate Before
Use: Improving Few-Shot Performance of Language Models,” 38th
International Conference on Machine Learning (PMLR) 139, 2021.

[51] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuur-
mans, C. Cui, O. Bousquet, Q. Le, E. Chi, “Least-to-Most Prompting
Enables Complex Reasoning in Large Language Models,” International
Conference on Learning Representations, 2023

