
'· 10.
Editing Dialog Models

As In the chapter on visual dialogs the systems described here are
concerned with the problem of data presentaUon. In parUcular. they are
concerned with how lo lnlegrale the presentaUon of the data with the
lnteracUve lnput. Early UIMS attempts concentrated almost exclusively on
the Input side or lnteracUon and the handling or Input events. The visual
dialog systems were concerned with drawing visual portions of the
presentaUon and with establishing relationships !between the appUcaUon
data and the visual presentation.

The approach or the systems In thls chapter Is that the user interface
should be determined by a model or the tnformaUon to be lnteracUvely
manipulated rather than by the commands that the user will ISsue. It can
be asserted that' most interaction consists or either browsing or edlUng
informaUon.1 Tots IS found to a UmJted extent ln the transition from MIKE
to Mickey, discussed in Chapter 8. MIKE was based exclusively on a model
of the commands that were to be tssued. Data types were represented only
by names. In Mickey the type declaration information was used to create
text edit boxes. dialog boxes. check boxes. and radio buttons. Each of
these various lnteracUve techniques IS a form of edJlor for appllcaUon data.
An edlUng UIMS Is drtven by Information about appllcaUon data through
the semantic interface and then provides Interactive techniques for
manlpulaUng lnfonnatlon.

An editor combines Input handling and data presentation in a untiled
fragment of lnteracUon. Take. for example. the slmple text edit box. The
model for a text edit oox Is that It Is edlUng a strtng. Each of the user
Inputs has specific meaning for how the strtng Is to be changed and ts
ugnUy Integrated with how the strtng Is to be displayed. Radio buttons and
check boxes are slmilar editors for particular kinds of data. A dialog box Is
a mechanism for compositing editors together lo form an editor for a
composite piece of information.

&1Uing Dialog Models 183

.. ;. ~...... . ..

.:· .. · •-:
• ~ •• ·,#. · · ~

. r-.:-, '

. ..-':
' ..

4 .

,&, :

.-! , ! \

'.~··'1,;-.

,1. ····
. (...

:·,
! •

i

I,

I

i
. !

!·
i i .
I '

l' i
l !
~ ~
I .,
1 ::

'!I \ I. •

I'·
I

I
.!j

I :

; i

ii

Motivationfor Data-based UIMS Models
Direct engagement with the tnfonnatlon being manJpulated Is a major key
In direct manlpulaUon. In order for a UIMS to support direct engagement
it must have a model of the lnformaUon that It IS manipulating. Early
UIMS work only had a model of the commands and therefore the
Interfaces created by such systems were inherently lndlrecl

There are also a number of features a UIMS can support whlch are
not possible without some model of the underlying application data. An
undo facility must . know about the application data so that it can put the
data back the way they were before the changes to be undone were made.
Many text editors and source code control systems provide facllJUes for
rnan.agtng patches. changes, or versions of text f.tles. Similar facilities are
of value In other tnteracUve environments. A UIMS that understands the
data that ft is manipulating could support such features. Most graphJcal
user Interfaces do not provide search facllltles. Again, if the UIMS
understands the data model then the UIMS can provide such search
facilities automatically. These are Just a few examples of extended features
that can be part of the UIMS and, therefore, be made avaJlable to all
applications built ustng the UIMS. Such facilities require, however. that
the UIMS knows about the application data.

Cousin
The Cousin systern2 was one of the earliest edlUng UIMSs. The heart of
Cousin Is the environment. which is a set of named and typed slots
through that the interactive user can manipulate variables that
communicate With the application. Entering parameters and commands ls
performed by editing the values in the slots.

1l1e environment is controlled by a system description whlch speclfles
all of the lnformaUon that Cousin needs about each slot. Each slot is
described by:

• Name
• Data type
• Default value
• Constratnts on legal values for the slot
• The syntax for values In the slot
• A textual descrlpUon for explanations

For each data type Cousin provides an editor for manJpulattng the values
of the slol

184 Editing Dialog Models

Editing Templates
As the MIKE profile editor was being developed it was recognized that
patterns of commands were being repeated over and over again. A list of
menu items was manipulated In very much the same way as a 11st of
windows, a list of data types, or a list of commands. All of the infonnaUon
about an application's user Interface was stored in a system called S11JF3
{filr.Uctured .Elles). Essentially, this facility provided Pascal-style records
and untons to be stored on d!sk files. The various kinds of lists were all
stored in S11JF structures as linked lists with a great deal of slmJlarity
between them. These slm.IlariUes were exploited in a system called Editing
Templates.4

An editing template Is a particular kind of interactive editor which Is
parameterized In various ways to create particular applicaUon instances of
the editor. An editor template has not only a particular lnteracUve behavior
but also a particular view of the data that it Is editing.

A Unked Ust Editing Template
The linked list editor ls an example of such a template. This template will.
scroll through a list of data objects that are stored in a linked list fonn.
The parameters to this template would be:

%0b[fype - the SfUF data type of the objects in Ille list
%Link - the name of the field that ls used to link successive

objects together to form the linked list
%Curldx - this ls a cursor, or a simple index to the current object

tuple that Is being edited.
%Headfype - the SfUF data type for the object th.at contains the

pointer to the head of the linked lisl
%HeadF'ield · the field in the header object that potnts to the first

element in the list
%XExt and %YExt - the X and Y extent of each element in the list's

display.
%Window - the window that the list Is to be displayed in.
%Ob!D1sp(Obj, X.Y) - an application routine which will display the

Obj in the screen location spec!fled by X and Y.
%0bjDel(Obj) - an application routine to delete Obj.

The parameters represent the tnfonnatlon that will tailor a generic linked
list edllor to a specl.Oc application. The linked list editor template would
then supply the following command procedures whlcli can be exposed
directly to MIKE as part of the user interface.

Editing Templates 185

..
I

:!
i

I
I . ' '

}·
,1 r

, 'i

/lli 1·

·,

;I
I

,, ,

,:

;i
!

I II

%WindowUp - move %Curldx up one item in the list (Because of
MIKE's command orientation all interfaces arc key or event
drtven rather than direct manipulation. There arc no scroll
bars)

%WlndowDown - move %Curidx down one item.
%WindowLeft and %WlndowRJel)t - if the Window 1s wide enough
for mulUple columns of items, this will move %Curldx to

the item immediately to the rtght or left of the current one.
%WtndowPageUp and %W!ndowPaeeDown - moves %Curldx up

or down a full Window's worth.
%W1ndowDe1ete - deletes the object referenced by %Curldx.

In addiUon lo the above command procedures there are several addiUonal
routines whJch can be used by the applicaUon code lo Interface with the
generated Instance of the template.

Restore%Wtndow - will redraw the entire window, by means of
appropriate calls to %ObjD1sp.

%WtndowUpdateCur - will update the display of the current object
in the event that changes have been made by the application.

%Wtndowlnsert(Obj) - will insert the specified object into the
linked list Immediately after %Curidx, make It the current
object and update the display appropriately.
%WJndowChangeCursori0bj) - will make Obj the new current
object in the list.

The editing template is primarily a piece of code that has been
parameterized for a simple macro processor. In early versions of editing
templates, a template user would supply values for each of the parameters
and then run the template code through the macro processor to produce
all of the code for a new instance of the linked list editor. The editor code
would handle all of the edIUng and screen update Issues for mulUple
column presentaUons of lists of anything. This provided a significant
speedup in the creation of similar pieces of interacUon. The rouUnes
shown above would all have applicaUon-speciflc text substituted for the
parameter names (% -).

The applicaUon would then expose some of the routines dlrecUy to
MIKE (as in the case of%WindowUp). The appllcaUon could provide many
other command procedures whJch would all work on the object referenced
by %Curldx. After changing the object they could Invoke
%WindowUpdateCur to get the screen updated. Insertion of new objects
woukl be handled 1n thJs way since only the applicaUon would know how
to create new objects of various kinds.

The llnked Ust template is only an example. Several other editor
templates were created. A simple extension to the linked list Is the sorted

186 Edutng Dialog Models

r

}Jnked list whJch uses an applJcaUon-speclflc compare rouUne lo delennlne
If items are in sorted order. A tree editor provides for traversal and display
of tree structured data. A schemaUc was created which provided editing
facillUes for nodes that were connected by arrows. The applJcaUon data
structures contain only the node and connecUOn tnfonnatlon. the editor
provided all of the layout and malntalned the ncx:le connecUons.

Architecture of Editing Templates
The ortginal editing templates system consisted only of the code for each
template. a set of parameters for each instance of the template. and the
macro processor necessary to create an instance of the template from the
parameters. This simple system was augmented by the creaUon of two
special purpose appllcaUons OED and ICE) which were buU t wtth the

5 cdlllng templates system. Figure 10:1 shows the editing templates
architecture.

Application

Tcmplale
l..ilnrics

Fig. 10:1

Editing
Templates

Architecture of Editing Templates 187

,

_ .. ~·;-. ~
, : . . - ',•

' I

When one creates a new edltlng template, one builds a general Ubrary that
will perform the desired editing functions. A template descrtptor 1s also
created which contains all of the lnfonnatlon about how the template
should be used. A template descriptor Is created by TEO rremplate EDJtor)
and spectOes the parameters to the template as well as the types that u
uses. the appUcaUon routines that It needs from the application. and the
routines that the template will generate.

When an applicaUon programmer wants lo use an editing template
they use ICE (Instance Class Editor) to create a new instance class. An
instance class Is created when a template has parameters substituted Into
lL An instance class can then be used to create Instances of the editor In
multiple windows. For example. one could take the linked Ust editor
template and describe It In a templaie descriptor. One could then create a
student editor from U1e linked Ust template by supplying the lnformaUon
about linked Usts of students. 1bls student editor ls an Instance class. The
student editor can then be used at run time to create lostances of the
editor in different windows for different Usts of students.

Most of the code generated by ICE was to Interface between the
application and the generic code In the template llbrartes. This was
particularly necessary because of Pascal's excessively restrictive
mechanJsm for handlJng callback procedure addresses.

ITS
A more advanced model for editors is called Interactive Transaction
Systems (ITS). 6 The semantic view of the ITS model Js that a user Js
lnt.eracUvely edlllng lnformaUon stored In tables. These tables are slmilar
In nature to relational databases In that they contain tuples with fields of
InformaUon and fields have types. The prime thrust of ITS development
has been In abstracting the style (or presentation) of an Interface from the
rest of the dialog descr1ptlon and elimlnating any syntactic speciflcaUon
Issues by using an edJting model for Interaction.

This section wJII first discuss the four main components of ITS.
followed by a deeper discussion of how dialog Information ls represented.
The generation of a dialog specification tree will then be discussed In
conJuncUon with the Issue of style or presentation Independence. Finally.
some run-tlnle Issues will be covered.

Four Parts of I1S
The spedficaUon of an ITS dialog consists of a data deflnlUon. an Interface
content deflnJUon. style specl.flcatlon, and the run-time structures. All of

188 Editing Dialog Models

these deflnlUons are represented as trees of tagged items. each item having
a number of atlrtbutes.

Data Deflnitlon

The data definJUon specifies the majority of the semantic interface to the
appllcaUon 1n the form of data and table deftnlUons. For example:

:data typc=fullname, structure=dlsjolnt
. :di Oeld=last. type=st.nng

:di Oeld=mJddle, type=str1ng
:di Oeld=first, typc=strtng

:cdata

:data type=sludent struclure=dlsjolnt
:di field=name, typc=fullname, emphasis=speclal
:di field=address, type=us_address
:di field=parenl, type=fullname
:di field=elass, type=lnteger

:edata

:table name---sludents
:U field=sld, types=Studenl

:ctablc

The purpose of the data deOnIUon Is to specify the lnformaUon to be
Interacted with. There are a variety of attributes that can be specified with
each part of the data deflnlUon In order to provide Information to the
dialog about how this data Is to be used and manipulated. Examples of
such attributes are ·structure=dlsjolnl" and ·emphasls=speclal." Such
information ts used by the views and the style rules to control the
presentation.

Dialog Content

The purpose of the dialog content Is to represent the logical (not
presentational) form of the dialog and to specify the nonedJUng acUons
that the dialog ls lo take. The dialog content ts speclfled at a relatively
abstract level which consists of five basic components: Usts, forms.
choices, Info, and frames. The dialog content specificaUon Is a neutral
ground between the data deflnJUon and the style specificaUons.

A Ust ts an arbitrary coUecUon of things to be presented to the user,
such as a list of all students or a list of flies. AU items tn the list are
assumed to be similar 1n structure and amenable to slmllar presentations
for each element of the list. Note that the concept of a Ust does not specify

ITS 189

;, r-~ ...
J
]

1

I . .

.
... ,. ..

r r
.i' ·,

I
I•
•I

' i'

!

I I

' . j.
1·

how It Is ordered. stored. or otherwise accessed (this Is a data deflnltlon
Issue). nor does It specify how the list should be displayed {this Is a styk
Issue). The content specification simply Indicates that a list of Item~
should appear and specl.fies what informaUon should appear. It Is the
business of the dialog content specification to Indicate If all of the
lnformaUon about a student should be presented or only the name of th<:
student For example. a list of student names would be:

:llst llstname=student_names, table::students

:lJ field=name
:elist

A form Is a fixed collection of things. A form corresponds to a dialog box 01

property sheet As with a llsL a form would only specify what II.ems are t.c
appear in the form. The form would not specify how the Items are to be:

displayed.
A choice represents a set of Items from which a usei:- must choose.

Choices subsume constructs like buttons. menus. check boxes. and llst.5
of check boxes. The dialog content specifies what the choices are, as well
as what Is to be done when a choice Is made. A choice might be a choice ol
values such as:

:choice message="Class In School", field=class,
kJnd=I_and_only_l

:ci message="Freshman", value=l
:cl message="Sophomore", value=2
:cl message="Junior·. value--3
:cl message="Senlor· . vaJue=4
:cl message="Graduate·, value=S

:echolce

A choice might also select among a list of acUons to be taken. Such as:

:choice kJnd=l_and_only_l
:cl message="Apply", acUon=Apply
:cl message="Reglster", acUon=Rcglster
:cl messagc="Expel", acUon=Delete

:echolce

Info Items are simply pieces of textual or graphical lnformaUon that are tc
be presented to the user. such as help texts.

The dialog content Is organized into a set of frames. A frame ls a single
conceptual unit of dialog. It would correspond to a top-level window on the
MacIntosh or in X A frame Is also analogous to a card or background Ir.

. 190 &1Uing Dialog Models

HyperCard. It ls a single. IogJcaJ screen of JnfonnaUon. An example frame
might be:

:frame table=students
:choice kind=l_and_only_l

:d message="Apply", actlon=Apply
:d message="Regtster", acUon=Register
:cl message="Expel", actlon=Delete

:c:cholce
:Ust listname=student_names, table::students

:U field=name
:elist

:eframe .

Thls frame would present a llstof names of students and provide three
possible actions to be taken on a student. The enUre dialog content
speclflcaUon consists of a Ust of such frames.

Style Specification

The style specification ls what controls the actual presentatlon of the user
interface. The style specification ts controlled by environments and rules.
An environment ls simply a named set of attribute values. Environments
can also lnher1t attribute values from other environments.

The style rules are the key to the style independence of the dialogs.
Style rules are basic if/then constructs. The lf part specifies a pattern of
attributes to which the rule wlll apply. The then part speclfles an
environment of attributes to inherit as well as additional units to be
instantiated to flesh out the presentaUon.

Take. for example. the following two environments:

define text. vlew=string, font=times, size= 10, Justify=left
define special, parent=text, slze=15

The following style rules could be defined

if ff AG=Form) & (Emphas!S=special) Then (Match special)
if (type=strlng) then (Match text)

The rules and environments map special cases of the attributes into more
extended attribute deflnJUons. The idea ls that issues of font size. color.
font face. JustlflcaUon, IJne width, etc .• should be specified relatJve to the
abstract issues of what the item ls for. A style then. Is a mapping from the
high level content speclflcaUon to a particular presentaUon. as represented
by the attribute settings.

ITS 191

" ·I

ji
'1

'j
?1i .:::i,;.: .
i 'J ·~ L

J1· ., ..
'II
·j
I
i

..

..·-:

., '
·!

The style rules are not ll.miled lo simple attrtbute settings. A style rule
can also elaborate a parUcular Item In the tree to a more complex
structure. Take, for example , an Item In a choice that h as
·k1nd=l_and_only_1.· The style rule may want to specify that this be
Implemented as a radio button. To do this It must generate an Item for the
button and from the message attrtbute of the choice It must generate the
label to go next to the button. The full scope of this rule language Is
beyond the scope of this discussion.

The most important attribute setting ls the view. A view Is a
generalized editor that controls not only the presentation of the
information but also how It responds to Input events In manipulating the
tnfonnation.

; :I , i RWlTime

')

j• At run time all of the frames are represented as trees of views within ITS.
i These trees have had all of the style rules applied and are fully elaborated.
(! When a frame Is made active, its staUc representation Is copied and the
i. copy Is decorated with appropriate lnfonnaUon to tie Its parts to the
,11 appropriate data instances. This forms the actual connection between the
/I ITS d!alog tree and the applicaUon data in the tables.
I ,
-:

, j

Generation of the View Tree
As has been menUoned, the run-time description consists of trees of views
which handle the tnteracUon between the user and the application. The
key to rrs ls In its generation of these trees from the various descriptions.

MtxiJlg of Dialog Ccntent wtth Data DefrnUfon
The first step ls to use the data definition Information lo elaborate the
content definition. In our example list only the field was specified for the
elements of the llsl

:list llstname=student_names, table=students

:li field=name
:ellst

By searching the data definition we can elaborate this It.em with the type of
the name field. which is "f ullname: and the ·emphasls=speclal" altrtbute.
We can further elaborate this list Item with a form that consists of the last.
mJddle, and first name fields. The result might be:

192 Editing Dialog Models

:list listname=studcnt_names, ta.ble=Students
:form fleld:narne, type=fullnarne, cmphasls=special

:Il Oeld:last. type=strtng
:Jl ficld=m!ddk, type=strtng
:fl field:flrst, type=strtng

:eform
:cllst

ThJs dJalog compilation phase fleshes out the dialog content spectOcatlon
by adding the addlUonal lnfonnaUon about the data being presented.

Mtxtng tn of Style

The second step Is style compllaUon. In this phase the style rules are
applied to the new tree to add the necessary addiUonal aUrtbutes. It ls
Important to note that all elements of the tree inherit attributes from their
ancestors In the tree. The fields In our example 11st would Inherit the
·emphasls=spectai- attribute. This would cause the ·special" envtrorunent
to be Invoked which would decorate each of the fields with the attributes
associated with special text.

Summary of ITS
ns ls based on a model of editing tnfonnaUon. It has further refuted the
tradlUonal UIMS model by faclortng out the style rules. In essence, the
style rules are those presentaUon speci.OcaUons that are Independent of a
particular appllcaUon. Mickey forms an Instructive counterpoint to ITS.

Mickey used a semanUc data deflnlUon which had slmllar content to
that of ITS's data definlUon. The programmer, however, must explicitly
control what 1s presented to the user Interface. whereas In ITS the dialog
content spedftcaUon controls what ls seen. The dialog compllaUon phase
of ITS exploits the same semantic lnfonnatlon that Mickey does In fleshing
out the dialog definlUon. Mickey forces a parUcular style for presenting the
abstract Interaction defined by the semantics. ITS, however. has
generalJzed these style Issues In the form of style rules and environments
rather than hard coding them Into the system.

Sushi
Sushi (Raw Eclltable Objects) ls a merge of the concepts found In editing
templates and the architecture of Mickey. In Sushi the semantic model ls
specified by a set of object classes that are defined In COS (C Object
System). COS ls a C preprocessor which provides a simple class structure
and message passing system and has the features needed lo support

Sushi 193

.. .. ,,_ .. .
- is

Sushi. It Is possible that object-oriented languages such as C++ or Eiffel
could support Sushi If rnodillcaUons were made lo the compiler to provide
the needed lnformaUon.

1ne lnteractive model Is provided by object edilors. An object edllor Is
a COS class which Is a subclass of ObJectEdltor. User Interfaces are built
by combining application objects with editors appropriate to their class
and then Instantiating them on the screen.

cos
COS class descriptions are defined ln a special language and then run
through the generator to create C code for compilation and linking with
the appllca Uon program and SushJ. A COS class consists of a superclass
und a list of methods and fields. The following are some example classes
defined In COS.

Enumerated RegStatus Is {NotReglstered, Registered, OnHold)

Class Student Superclass ObJ I ... I {
Data Field string Name:
Data Field Address HomeAdd.r;
Data Field Address SchoolAddr;
Data Field Picture Photo:
Method Field RegStatus Registration

Read(• ... •)
Write(• ... •):

Method void Expel (• ... •J:
Method void Hire(Wages)

{· . . . •):

Class Address Superclass ObJ I ... I {
Data Field string Street:
Data Field string City:
Data Field sttlng State:
Data Field Jong Zip;

I
Class Wages Superclass Obj [... I (

Data Field long Hours;
Data Field long DollarsPerHour.
I

Every class has a superclass and a set of fields and methods. COS defines
both data fields and method fields. Normal methods also have their bodies

194 Editing Dialog Models

programmed In C. A method In COS may or may not return a result. and
may or may not have a single argument. If mulUple values arc needed as
an argument they must be encapsulated In a COS object. This Is
somewhat awkward for programming but Is natural fo r direct
manlpulaUon user interfaces.

A data field defines an actual field In the class's data deflnJUon and
then defines two methods (for example Name and Namej which will read
and write that field. A method field. such as RegStatus. allows the
programmer to code the read and W'Iile methods directly In C. This view of
fields and methods allows a COS facade lo be placed over any data model
that the appUcaUon programmers desire. The COS classes are only a user
Interface view of the appUcaUon.

Aside from the generation of the C code to handle the class
declaraUons and method Invocation. COS also generates descriptive
information for each class which provides two important capabilities.

1. A description of all methods with their names, argumenL types.
and result types.

2. A mechanism for formulating object messages at run time.

The class descriptor Is attached to all COS objects and is used both by
Sushi and by the underlying message-passing mechanism.

Object Editors
The key to Sushi's interactive behavior is the set of edilor classes that il
makes available. An editor class embodies a particular style for interacting
with JnfonnaUon. An editor class is refined or specialized by Its descriptor.
A descriptor is simply a COS object of whatever class is convenient for U1at
class of editor. The descriptor for long integers. for example. would contain
lnformatiori about how many digits to allow. foreground color. text font.
etc. A descriptor for a dialog box is more complex and con ta ins
information about where In the box the labels and subeditors should be
placed. A descriptor contains informaUon similar to the attributes in an
ITS dialog tree. It ls by editing descriptors that the interface designer can
control the presentation aspects of the user Interface. Since all descriptors
are themselves objects. editors can be applied to these descriptors in the
same way that any other portion of the user Interface Is defined.

When an editor class Is combined wHh a particular descriptor an
edilor is formed. Every editor will edit objects of a specific class or any of
Its subclasses. An editor can be combined with an application object of the
correct class and a window to form an editor instance. The role of an editor

Sushi 195

Instance ls to allow interacUve users to browse. modify, and manipulate
the appllcaUon object accorcllng to the dialog speclfied by the cornblnaUon
of editor class and descriptor.

Editor classes generally come in two flavors: class-speciflc editors and
composers. Class-specific editors always apply to a particular class of
objects. The descriptor for a class-speclflc editor is only used to specify the
presentation aspects of the editor. Composers are more general editor
classes whlch can be speciali.7,ed to a wide variety of object classes.

The editors and composers are stored in two lists which belong to the
edUor environment object The prime purpose of the editor environment
object is to maintain these two lists. The edllor list contains editors whose
descriptors have already been defined and spectallzed to a particular class.
Editors are stored in the list by the name of the class that they edit and as
a descripUve name. The descriptive name Is Important since more than
one editor can exist for a given class of objecl Composers are listed by
name and type form (class, enumeration, union, or sequence) since they
have not yet been specialized to a parUcular object class.

When an appllcaUon exposes the editor environment object to the
Interactive user (by using an appropriate object editor for the
environment object's class) the user or interface designer will have access
to the edllors and their descriptors. By selecting editors, editing their
descriptors, or creaUng new editors from the composers, the Interface can
be InleracUvely modifled.

Object Class-specific Editors

The editors specific to parUcular classes include those defined on pr1m!Uve
types. There are editors provided for long integers, character strings, and
Boolean values.

Supplying new class-specific editors Is one of the easiest ways to
extend Sushi. An example Is an Image editor. A COS class has been
defined which prOvides access to Images stored In a variety of formats with
varying ntunbers of bits per pixel. Based on thls class a special editor has
been built and placed In the editor list under the BltMap class. Whenever
BltMap objects are encountered, this special purpose editor ls used. Other
such special purpose editors have been built for color look up tables and
color selection. The application programmer ls completely free to extend
thls scl

Composers

A prime function of a composer Is Its GenerateDefaultDescr1ptor method
which generates a default descr1ptor given a particular object class. As an

196 Editing Dialog Models

example of how th1s works. consider the DlalogBox editor class. Gtven the
class of a particular object the dlalog box editor would generate a default
descriptor that provides a subedJtor for each field in the class and a button
for every method 1n the class. In the case of fields that themselves contain
new objects, the default 1s to generate a button that will open a ~new editor
on the object stored in that.field.

The GcnerateDefaultDescrtptor method will only generate a default
descriptor. Once a new editor has been created by generating the default
descriptor, that desct1ptor can be edited to refine the editor. For e,cample,
many fields and methods might be removed from a dlalog box to create a
summary editor for that class. A new button could be added to th.e dialog
box which would invoke the full editor on the same object

The AppUcatton Programmer's View

As an example of how Sushi works we can trace through the process a
programmer will take In developing a new appllcaUon. Suppose that one
wanted to build a simple · appllcaUon to store students with their plctur:es
and malling lnfonnaUon.

cos
The first step would be to define COS classes for the lnformaUon to be
edited.

Enumerated Rcgstatus Is {NotReglstered, Registered, OnHold)

Class Student Superclass Obj (. .. I {
Data Field strtng Name;
Data Field Address HomeAddr;
Data Field Address Schoo!Addr,
Data Field Picture Photo;
Data l'leld Regstatus ReglslraUon:
Method void Expel {· ... •):
Method void Hire(Wages)

{· . . . •);
}

Class Address _Superclass Obj (... I {
Data Field strtng Street;
Data Field string City:
Data Field strtng State;
Data Field long Zlp;
)

Sushi 197

I

I

j "~
I .I

I
I

i
I

.,

. •: .

"··· • • /I ,.
... .

...

-' . ., .. , ..
' , ..

r

·I.
I .

I;
i

:I

r

Class Wages Superclass Obj (...) {
Data Field long Hours;
Data Field long DollarsPerHour.
}

Class Picture Superclass Obj (...) {
Method Field long Pixelldx

Read(• ... •)
Wrlte (• . . . •);

Method Field long CurPixcl
Read(• ... •)
Wrlte (• . . . •);

Method long XdJmen$Jon
(• ... •);

Method long Y dimension
(• ... •);

Method void ScanPlcture
(• . . . •);

Private F1eld charPtr Image;
}

In the class Student. the Expel and Hire methods would have their
Implementations WTlllen In C by the application programmer. In the
Picture class the fields Pixelldx and CurPixel would need their Read and
Write methods written In C as well as the methods Xdimenslon,
Ydimenslon, and ScanP1cture. The ScanP1cture method might run the
scanner to enter a new picture.

The application programmer can create and manipulate objects of
these classes by using the message-passing macros prOVided with COS.

Ed.UObject

The programmer's primary Interface with Sushi ls via the EdllObject
routine. The programmer passes to EdltObject the object that is to be
shared with the user and the name of an editor to be used on that objecl
In addition, the progranuner can84

Indicate where on the screen the editor should be placed.

EditObject will take the class of the object and search the editor list In
the envlromnent object for an editor with the specified name and class. If
such an editor Is not found, EditObJect will select an appropriate
composer. EdilObject makes a copy of the composer, sets its class name,
and then invokes GenerateDefaultDescriptor to create a default descriptor
for that class of objecl This generation of default editors guarantees that

198 Ed.Uing Dialog Models

an editor ls always avallable for any class of object Flgures I 0:2 and I 0:3
show the editors automatically created for Student and Address.

R.vlrtrotl...,

(>NotRog1st.red
+Rcgls-..d
<> !Wlold

lr-.11
IH1re!

Strwt

Im ... , IM:.

Cit¥

Zip

Fig. 10;2

Defaul.t
Student E4f.J.or

Fig. 10:3 '

DefauU
Address Editor

Once the new descriptor 1s generated the new editor 1s added to the editor
list for future use .. This eliminates regeneraUon of the same editor. Th1s
new _editor ls then copied again and tnstantlaled by asstgntng il the object
to be edited and invoking the editor's Create method. If an appropriate
editor already exJsts In the editor list. then it 1s copied and Instantlated

Sushi 199

i

with the object to be edited.
1l1e programmer's view of Sushi can be summari7..ed as: I) create a

semanUc model as COS classes and 2) call EdttObJecl to have the user
interlace objects displayed. Note that the programmer may onJy need to
call Ed1t0bject once for a root or environment object which can then have
subobjects which will cause new editors to open.

Adding New Editors
In the case of the Picture class the default generated editor would be as
shown In figure 10:4.

Fig. 10:4

Default
Picture EdUor

P!X111ldx

111
Cun'ixel

lx,11_...1on!
!rdt--.ston!
!Sc<rl't c~ I

111is Is not a useful Interface to pictures. The programmer could take the
COS class ObjeclEdltor and create a new subclass called PiclureEdltor.
Inside the PictureEditor class the programmer would Implement all of the
methods necessary to edit pictures graphically. Having written th.ls new
editor class, the programmer would add an object of th.ls ed.ltor class to
the environment object's editor lisl Whenever the programmer, or some
editor, Invokes EdilObject on a Picture object, the new editor will be used.

Applications such as a pamt program or a word processor frequently
have some central editor that characterizes the application. Such a central
editor will often need a user Interface design that Is carefully crafted to
that application. The peripheral portions of the Interface. like selecting
colors. selecting fonts, or opening and closing files can be automatically
supported by Sushi with lltUe or no effort Once that central editor has
been created It Is easily Integrated Into other applications that need to edit
similar data.

200 Editing Dialog Models

Interface Designer's View
The Interface design of a particular appllcaUon ls characterized by the
editors In the editor list and each of their descriptor objects. By sa~ the
class name and descriptor object of every eclltor one can completely
capture the Interface design. The appllcaUon programmer can make the
Interface design avaJlable to users by calling EdltObject on the editor
environment object. The primary purpose of the eclltor for the editor
envlrorunent object ls to allow Interface designers to: 1) create new editors
from the composers: 2) copy existing editors to make new editors; or 3)
modify exisUng editors by ediUng their descriptor objects. The editor for
the editor environment object simply Invokes EditObject on any descriptor
object to allow Interface designers to modify an editor. In their simplest
form an editor for a descriptor may be a dialog box for setting fonts,
patterns. or other resource type Information. A descriptor editor may be a
more complex eclltor like the one for dialog boxes, which allows designers
to move subeditors. labels, and buttons around graphically as well as
deleting subeditors and adding new ones from the editor HsL Since
descriptor objects are edited Just like any other object the Interface design
environment Js Just as extensible as any other part of the Sushi system.

Summary
In ITS eclltors (or views} are generallz.ed by the use of numerous attributes
that can be either spedfied directly or supplied by the environments and
style rules. In X this same lnformaUon ls stored In resources. In Sushi this
lnfonnaUon is stored In descriptors but the descriptors are themselves
editable objects. Sushi does have the capability of some style control In the
use of the GenerateDefault.Descriptor message on ·composers. This is not
as powerful, however, as the style rules of ITS. On the other hand, Sushi
has a mechanism which neither X nor ITS directly support. which is the
ability to apply its own Interface mcx:lel to Itself In ed1Ung the descriptive
lnf ormatlon about the Interface.

All of these systems support more of the data and dialog presentation
parts of the UIMS architecture than the language and automata-based
approaches. They accomplJsh this by explJcJtly representin g the
appllcatlon lnfonnatlon that is to be manipulated. None of these systems
contain an explicit dialog specification. The dia1og specification Js implicitly
derived from the combination of data to be edited with the selecUon of a
particular editable presentation for that data. Systems like ITS and Cousin
represent their presentatlons In a form suitable only for programmers or
programming-oriented professionals. Although such presentation-based

Swnmary 201

..•

: ,

'
: :

l
i

r
I .

l ' !. :

, I

tools are the domain of the graphics designers the tools have not been
geared to their parUcular skills. Sushi does allow the tnteracUve editing of
the tnlerface tn a way that a graphics designer could use. It suffers from
the problem of each design betng unique, whereas the style rules of ITS
can be applled repeatedly to new appllcatlons. 11ie extension of Sushi's
GenerateDefaultDescrlptor method to tnclude ITS-like rules may provide
the best of both worlds . . • ,.

References . . { . ·,
1 Olsen. D.R. ABrowse/uJtModeljor User InJ.erface Management. Graphics lnlcnace

'88. Canadian Informatl~ Processing Soddy. June 1988 •
..:,

2 Ball, E. and P. Hayes. i. ~st-Bed.fr User Interface Designs. Human hct.ora In
Computer Syetcms, March 1982, 85-88.

3 Olsen. D.R. and R.P. e+. St,udured. Fl/.esji:,r lnJ.erodlve GrapNcs Programs. lSECON'
'88 Conference Proc,eeclint•. 1988.

4 Olsen. D.R Edlt1ng Tempj,µes: A User JnJ.erjace General1on Tool. IEEE Coaiputer
Gnphlce and AppBcat1j•6Cll), November 1986.

5 Blackham. G.D. Edlt~~aiplatce. MS Thesis. Computer Science Department, Brigham
Young University, ~ ~'j:[tah. 1986.

6 Wlccha, C., W. Bc:nnctt;'~Bok:s, J. Goold, and S. Greene. ffS: A Tool.for Rap(dJy
Dewlop(ng Jnterodive Ap~. ACM Tranaa.ctlone on Information Systema 8(3):

204·36, July 1990.

202 Edtttng Dialog Models

,.

