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Required reading:  

• Bishop, chapter 3.6,  8.6

Recommended reading:

• Wall et al., 2003

Outline

• Feature selection
– Single feature scoring criteria
– Search strategies

• Unsupervised dimension reduction using all features
– Principle Components Analysis
– Singular Value Decomposition
– Independent components analysis

• Supervised dimension reduction
– Fisher Linear Discriminant
– Hidden layers of Neural Networks

Dimensionality Reduction

Why?

• Learning a target function from data where some 
features are irrelevant  - reduce variance, improve 
accuracy

• Wish to visualize high dimensional data

• Sometimes have data whose “intrinsic” dimensionality is 
smaller than the number of features used to describe it  -
recover intrinsic dimension

Supervised Feature Selection

Supervised Feature Selection

Problem: Wish to learn f: X Y, where X=<X1, …XN>
But suspect not all Xi are relevant

Approach: Preprocess data to select only a subset of the Xi

• Score each feature, or subsets of features
– How?

• Search for useful subset of features to represent data
– How?

Scoring Individual Features Xi

Common scoring methods:
• Training or cross-validated accuracy of single-feature 

classifiers  fi: Xi Y

• Estimated mutual information between Xi and Y :  

• χ2 statistic to measure independence between Xi and Y

• Domain specific criteria
– Text: Score “stop” words (“the”, “of”, …) as zero
– fMRI: Score voxel by T-test for activation versus rest condition
– …
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Choosing Set of Features to learn F: X Y

Common methods:

Forward1: Choose the n features with the highest scores

Forward2:
– Choose single highest scoring feature Xk

– Rescore all features, conditioned on the set of 
already-selected features

• E.g., Score(Xi | Xk) = I(Xi,Y |Xk) 
• E.g, Score(Xi | Xk) = Accuracy(predicting Y from Xi and Xk)

– Repeat, calculating new scores on each iteration, 
conditioning on set of selected features

Choosing Set of Features
Common methods:

Backward1:  Start with all features, delete the n with lowest 
scores

Backward2: Start with all features, score each feature 
conditioned on assumption that all others are included. 
Then:
– Remove feature with the lowest (conditioned) score
– Rescore all features, conditioned on the new, reduced feature set
– Repeat

Feature Selection: Text Classification
[Rogati&Yang, 2002]

IG=information gain, chi= χ2 , DF=doc frequency, 

Approximately 105 words in English

Impact of Feature Selection on Classification of 
fMRI Data [Pereira et al., 2005]

Accuracy classifying 
category of word read 

by subject

Voxels scored by p-value of regression to predict voxel value from the task

Summary: Supervised Feature Selection

Approach: Preprocess data to select only a subset of the Xi

• Score each feature
– Mutual information, prediction accuracy, …

• Find useful subset of features based on their scores
– Greedy addition of features to pool
– Greedy deletion of features from pool
– Considered independently, or in context of other selected features

Always do feature selection using training set only (not test 
set!)
– Often use nested cross-validation loop:

• Outer loop to get unbiased estimate of final classifier accuracy
• Inner loop to test the impact of selecting features

Unsupervised Dimensionality Reduction
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Unsupervised mapping to lower dimension

Differs from feature selection in two ways:

• Instead of choosing subset of features, create new 
features (dimensions) defined as functions over all 
features  

• Don’t consider class labels, just the data points

Principle Components Analysis

• Idea: 
– Given data points in d-dimensional space, project into lower 

dimensional space while preserving as much information as 
possible

• E.g., find best planar approximation to 3D data
• E.g., find best planar approximation to 104 D data

– In particular, choose projection that minimizes the squared error 
in reconstructing original data

PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors, where nth vector is

We can represent these in terms of any d orthogonal basis vectors 

x1

x2

u2
u1PCA: given M<d.  Find 

that minimizes

where 

Mean 

PCA
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x2

u2
u1

Note we get zero error if M=d.

Therefore, 

PCA: given M<d.  Find 

that minimizes

where 

Covariance matrix:

This minimized when ui
is eigenvector of Σ, i.e., 
when:

PCA

x1

x2

u2
u1

Minimize

Eigenvector of Σ
Eigenvalue

PCA algorithm 1:

1. X Create N x d data matrix, with 
one row vector xn per data point

2. X subtract mean x from each row 
vector xn in X

3. Σ covariance matrix of X

4. Find eigenvectors and eigenvalues
of Σ

5. PC’s the M eigenvectors with 
largest eigenvalues

PCA Example

mean
First 
eigenvector

Second 
eigenvector
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PCA Example

mean
First 
eigenvector

Second 
eigenvector

Reconstructed data using 
only first eigenvector (M=1)

Very Nice When Initial Dimension Not Too Big

What if very large dimensional data?

• e.g., Images (d ≥ 10^4)

Problem:

• Covariance matrix Σ is size (d x d)

• d=104 | Σ | = 108

Singular Value Decomposition (SVD) to the rescue!

• pretty efficient algs available, including Matlab SVD

• some implementations find just top N eigenvectors

[from Wall et al., 2003]

SVD

Data X, one 
row per data 
point

Rows of VT are unit 
length eigenvectors of 
XTX.  

If cols of X have zero 
mean, then XTX = c Σ
and eigenvects are the 
Principle Components

S is diagonal, 
Sk > Sk+1,     
Sk

2 is kth
largest 
eigenvalue

US gives 
coordinates 
of rows of X
in the space 
of principle 
components

Singular Value Decomposition

To generate principle components:

• Subtract mean                         from each data point, to 
create zero-centered data

• Create matrix X with one row vector per (zero centered) 
data point

• Solve SVD:  X = USVT

• Output Principle components: columns of V (= rows of VT)
– Eigenvectors in V are sorted from largest to smallest eigenvalues
– S is diagonal, with sk

2 giving eigenvalue for kth eigenvector

Singular Value Decomposition

To project a point (column vector x) into PC coordinates:
VT x

If xi is ith row of data matrix X, then 
• (ith row of US) = VT xi

T

• (US)T = VT XT

To project a column vector x to M dim Principle Components 
subspace, take just the first M coordinates of VT x

Independent Components Analysis

• PCA seeks directions <Y1 … YM> in feature space X that 
minimize reconstruction error

• ICA seeks directions <Y1 … YM> that are most statistically 
independent.  I.e., that minimize I(Y), the mutual 
information between the Yj :

Which maximizes their departure from Gaussianity!
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• ICA seeks to minimize I(Y), the mutual information 
between the Yj :

• Example: Blind source separation
– Original features         are microphones at a cocktail party 
– Each receives sounds from multiple people speaking 
– ICA outputs directions that correspond to individual speakers

Independent Components Analysis

… …

ICA with independent spatial components

Supervised Dimensionality Reduction

1. Fisher Linear Discriminant

• A method for projecting data into lower dimension to 
hopefully improve classification

• We’ll consider 2-class case

Project data onto vector that connects class means?

Fisher Linear Discriminant

Project data onto one dimension, to help classification

Define class means:

Could choose w according to:

Instead, Fisher Linear Discriminant chooses:

Fisher Linear Discriminant

Project data onto one dimension, to help classification

Fisher Linear Discriminant :

is solved by :

Where SW is sum of within-class covariances:
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Fisher Linear Discriminant

Fisher Linear Discriminant :

Is equivalent to minimizing sum of squared error if we assume 
target values are not +1 and -1, but instead N/N1 and –N/N2

Where N  is total number of examples, Ni is number in class i

Also generalized to K classes (and projects data to K-1 dimensions)

Summary: Fisher Linear Discriminant

• Choose n-1 dimension projection for n-class 
classification problem

• Use within-class covariances to determine the projection
• Minimizes a different sum of squared error function

2. Hidden Layers in Neural Networks

When # hidden units < # inputs, hidden layer also 
performs dimensionality reduction.

Each synthesized dimension (each hidden unit) is logistic 
function of inputs

Hidden units defined by gradient descent to (locally) 
minimize squared output classification/regression error

Also allow networks with multiple hidden layers
highly nonlinear components (in contrast with linear 

subspace of Fisher LD, PCA)

Training neural network to 
minimize reconstruction error
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What you should know

• Feature selection
– Single feature scoring criteria
– Search strategies

• Common approaches: Greedy addition of features, or greedy deletion

• Unsupervised dimension reduction using all features
– Principle Components Analysis

• Minimize reconstruction error
– Singular Value Decomposition

• Efficient PCA
– Independent components analysis

• Supervised dimension reduction
– Fisher Linear Discriminant

• Project to n-1 dimensions to discriminate n classes
– Hidden layers of Neural Networks

• Most flexible, local minima issues

Further Readings

• “Singular value decomposition and principal component analysis,” Wall, M.E, 
Rechtsteiner, A., and L. Rocha, in A Practical Approach to Microarray Data Analysis
(D.P. Berrar, W. Dubitzky, M. Granzow, eds.) Kluwer, Norwell, MA, 2003. pp. 91-109. 
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