Reducing Data Dimension

Required reading:

• Bishop, chapter 3.6, 8.6

Recommended reading:

• Wall et al., 2003

Machine Learning 10-701 November 2005

Tom M. Mitchell Carnegie Mellon University

Outline

- · Feature selection
 - Single feature scoring criteria
 - Search strategies
- Unsupervised dimension reduction using all features
 - Principle Components Analysis
 - Singular Value Decomposition
 - Independent components analysis
- Supervised dimension reduction
 - Fisher Linear Discriminant
 - Hidden layers of Neural Networks

Dimensionality Reduction

Why?

- Learning a target function from data where some features are irrelevant - reduce variance, improve accuracy
- · Wish to visualize high dimensional data
- Sometimes have data whose "intrinsic" dimensionality is smaller than the number of features used to describe it recover intrinsic dimension

Supervised Feature Selection

Supervised Feature Selection

Problem: Wish to learn f: $X \rightarrow Y$, where $X=<X_1, ...X_N>$ But suspect not all X_i are relevant

Approach: Preprocess data to select only a subset of the \boldsymbol{X}_{i}

- Score each feature, or subsets of features
 - How?
- Search for useful subset of features to represent data
 - How?

Scoring Individual Features X_i

Common scoring methods:

- Training or cross-validated accuracy of single-feature classifiers $f_i\colon X_i \to Y$
- Estimated mutual information between X_i and Y:

$$\hat{I}(X_i, Y) = \sum_k \sum_y \hat{P}(X_i = k, Y = y) \log \frac{\hat{P}(X_i = k, Y = y)}{\hat{P}(X_i = k)\hat{P}(Y = y)}$$

- χ^2 statistic to measure independence between X_i and Y
- Domain specific criteria
 - Text: Score "stop" words ("the", "of", ...) as zero
 - fMRI: Score voxel by T-test for activation versus rest condition
 - ...

Choosing Set of Features to learn F: X→Y

Common methods:

Forward1: Choose the n features with the highest scores

Forward2

- Choose single highest scoring feature Xk
- Rescore all features, conditioned on the set of already-selected features
 - E.g., $Score(X_i | X_k) = I(X_i, Y | X_k)$
 - E.g, Score(X_i | X_k) = Accuracy(predicting Y from X_i and X_k)
- Repeat, calculating new scores on each iteration, conditioning on set of selected features

Choosing Set of Features

Common methods:

Backward1: Start with all features, delete the n with lowest scores

Backward2: Start with all features, score each feature conditioned on assumption that all others are included.

- Remove feature with the lowest (conditioned) score
- Rescore all features, conditioned on the new, reduced feature set
- Repeat

Impact of Feature Selection on Classification of fMRI Data [Pereira et al., 2005] Accuracy classifying category of word read by subject 233B 424B 474B 0.55 0.533 0.783 0.817 0.75 0.85 0.735 0.8 0.783 0.7420.7830.750.5830.7370.7830.5170.8170.8830.783300 0.75 0.8 0.817 0.567 0.8330.883 0.75 0.583 0.767 0.742 0.735 0.8 0.833 0.783 0.583 0.567 0.85 0.833 0.833 0.833 0.75 400 800 1600 0.45 0.7830.833all (~2500)

Table 1: Average accuracy across all pairs of categories, restricting the procedure to use a certain number of voxels for each subject. The highlighted line corresponds to the best mean accuracy, obtained using 300 voxels.

Voxels scored by p-value of regression to predict voxel value from the task

Summary: Supervised Feature Selection

Approach: Preprocess data to select only a subset of the $\boldsymbol{X}_{\!\scriptscriptstyle i}$

- · Score each feature
 - Mutual information, prediction accuracy, ...
- · Find useful subset of features based on their scores
 - Greedy addition of features to pool
 - Greedy deletion of features from pool
 - Considered independently, or in context of other selected features

Always do feature selection using training set only (not test set!)

- Often use nested cross-validation loop:
 - Outer loop to get unbiased estimate of final classifier accuracy
 - Inner loop to test the impact of selecting features

Unsupervised Dimensionality Reduction

Unsupervised mapping to lower dimension

Differs from feature selection in two ways:

- · Instead of choosing subset of features, create new features (dimensions) defined as functions over all features
- · Don't consider class labels, just the data points

Principle Components Analysis

- · Idea:
 - Given data points in d-dimensional space, project into lower dimensional space while preserving as much information as
 - E.g., find best planar approximation to 3D data
 - E.g., find best planar approximation to 10⁴ D data
 - In particular, choose projection that minimizes the squared error in reconstructing original data

PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors, where nth vector is $\mathbf{x}^n = \langle x_1^n \dots x_d^n \rangle$

We can represent these in terms of any d orthogonal basis vectors

$$\mathbf{x}^n = \sum_{i=1}^{d} z_i^n \mathbf{u}_i; \quad \mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}$$

PCA: given M<d. Find $\langle \mathbf{u}_1 \dots \mathbf{u}_M \rangle$

PCA

PCA: given M<d. Find $\langle \mathbf{u}_1 \dots \mathbf{u}_M \rangle$

that minimizes $E_M \equiv \sum\limits_{n=1}^N ||\mathbf{x}^n - \bar{\mathbf{x}}^n||^2$ where $\bar{\mathbf{x}}^n = \bar{\mathbf{x}} + \sum\limits_{i=1}^M z_i^n \mathbf{u}_i$

Note we get zero error if M=d. Therefore, $E_M = \sum_{i=M+1}^d \sum_{n=1}^N [\mathbf{u}_i^T(\mathbf{x}^n - \bar{\mathbf{x}})]^2$

 $=\sum_{i=M+1}^d \mathbf{u}_i^T \mathbf{\Sigma} \ \mathbf{u}_i$

is eigenvector of Σ , i.e., when: $\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i$

Covariance matrix: $\Sigma = \sum_{\bar{\mathbf{x}}} (\mathbf{x}^n - \bar{\mathbf{x}}) (\mathbf{x}^n - \bar{\mathbf{x}})^T$

Minimize $E_M = \sum_{i=M+1}^d \mathbf{u}_i^T \mathbf{\Sigma} \ \mathbf{u}_i$

ightarrow $\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i$ Eigenvector of Σ

- X ← Create N x d data matrix, with one row vector xⁿ per data point
- 2. $X \leftarrow \text{subtract mean } \overline{x} \text{ from each row}$ vector x^n in X
- Σ ← covariance matrix of X
- 4. Find eigenvectors and eigenvalues
- PC's ← the M eigenvectors with largest eigenvalues

PCA Example

 $\hat{\mathbf{x}}^n = \bar{\mathbf{x}} + \sum_{i=1}^M z_i^n \mathbf{u}_i$

Very Nice When Initial Dimension Not Too Big

What if very large dimensional data?

• e.g., Images (d ≥ 10^4)

Problem:

- Covariance matrix Σ is size (d x d)
- d=10⁴ \rightarrow | Σ | = 10⁸

Singular Value Decomposition (SVD) to the rescue!

- pretty efficient algs available, including Matlab SVD
- some implementations find just top N eigenvectors

Singular Value Decomposition

To generate principle components:

- Subtract mean $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^n$ from each data point, to create zero-centered data
- Create matrix X with one row vector per (zero centered) data point
- Solve SVD: $X = USV^T$
- Output Principle components: columns of V (= rows of V^T)
 - Eigenvectors in V are sorted from largest to smallest eigenvalues
 - S is diagonal, with s_k^2 giving eigenvalue for kth eigenvector

Singular Value Decomposition

To project a point (column vector x) into PC coordinates: $V^T x$

If x_i is ith row of data matrix X, then

- (ith row of US) = $V^T x_i^T$
- $(US)^T = V^T X^T$

To project a column vector x to M dim Principle Components subspace, take just the first M coordinates of $V^T x$

Independent Components Analysis

- PCA seeks directions $<\!Y_1 \dots Y_M\!>$ in feature space X that minimize reconstruction error
- ICA seeks directions <*Y₁* ... *Y_M*> that are most statistically independent. I.e., that minimize *I(Y)*, the mutual information between the *Y_i*:

$$I(Y) = \left[\sum_{j=1}^{J} H(Y_j)\right] - H(Y)$$

Which maximizes their departure from Gaussianity!

Independent Components Analysis

• ICA seeks to minimize I(Y), the mutual information between the Y_j : $I(Y) = \left\lceil \sum_{i=1}^J H(Y_j) \right\rceil - H(Y)$

$$\begin{vmatrix} y_1(t) \\ \vdots \\ y_m(t) \end{vmatrix} = \mathbf{W} \quad \begin{vmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{vmatrix}$$

- · Example: Blind source separation
 - Original features $x_i(t)$ are microphones at a cocktail party
 - Each receives sounds from multiple people speaking
 - ICA outputs directions that correspond to individual speakers $y_k(t)$

Fig. 1. Spatially to dependent components Fig. 1. Spatially to dependent components of the blood dought of the component of the blood dought blood

Supervised Dimensionality Reduction

1. Fisher Linear Discriminant

- A method for projecting data into lower dimension to hopefully improve classification
- We'll consider 2-class case

Project data onto vector that connects class means?

Fisher Linear Discriminant

Project data onto one dimension, to help classification

$$y = \mathbf{w}^T \mathbf{x}$$

Define class means: $\mathbf{m}_i \equiv \frac{1}{N_i} \sum_{n \in C} \mathbf{x}^n$

Could choose w according to: $\arg\max_{\mathbf{w}}\mathbf{w}^T(\mathbf{m}_2-\mathbf{m}_1)$

Instead, Fisher Linear Discriminant chooses: $\arg\max_{\mathbf{w}}\frac{(m_2-m_1)^2}{s_1^2+s_2^2}$

$$m_i \equiv \mathbf{w}^T \mathbf{m}_i$$
 $s_i^2 \equiv \sum_{n \in C_i} (y^n - m_i)^2$

Fisher Linear Discriminant

Project data onto one dimension, to help classification

$$y = \mathbf{w}^T \mathbf{x}$$

Fisher Linear Discriminant : $\arg\max_{\mathbf{w}}\frac{(m_2-m_1)^2}{s_1^2+s_2^2}$

is solved by : $~w \propto {\bf S_W}^{-1} (m_2 - m_1)$

Where $\boldsymbol{S}_{\!\scriptscriptstyle W}$ is sum of within-class covariances:

$$\mathbf{S_W} \equiv \sum_{n \in C_1} (\mathbf{x}^n - \mathbf{m_1}) (\mathbf{x}^n - \mathbf{m_1})^T + \sum_{n \in C_2} (\mathbf{x}^n - \mathbf{m_2}) (\mathbf{x}^n - \mathbf{m_2})^T$$

Fisher Linear Discriminant

 $\mbox{Fisher Linear Discriminant}: \ \ \arg \max_{\mathbf{w}} \frac{(m_2-m_1)^2}{s_1^2+s_2^2}$

Is equivalent to minimizing sum of squared error if we assume target values are not +1 and -1, but instead $N\!/N_1$ and $-N\!/N_2$

Where N is total number of examples, N_i is number in class i

Also generalized to K classes (and projects data to K-1 dimensions)

Summary: Fisher Linear Discriminant

- Choose n-1 dimension projection for n-class classification problem
- Use within-class covariances to determine the projection
- Minimizes a different sum of squared error function

2. Hidden Layers in Neural Networks

When # hidden units < # inputs, hidden layer also performs dimensionality reduction.

Each synthesized dimension (each hidden unit) is logistic function of inputs

$$h_k(\mathbf{x}) = \frac{1}{1 + exp(w_0 + \sum_{i=1}^N w_i x_i)}$$

Hidden units defined by gradient descent to (locally) minimize squared output classification/regression error

$$E = \sum_{n=1}^{N} \sum_{k} (\hat{y_k}(x^n) - y_k(x^n))^2$$

Also allow networks with multiple hidden layers

→ highly nonlinear components (in contrast with linear subspace of Fisher LD, PCA)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Section Contracts	
$\begin{array}{c c} \text{Input} & \text{Output} \\ \hline 10000000 \rightarrow 10000000 \\ 01000000 \rightarrow 01000000 \\ 00100000 \rightarrow 00100000 \\ 00010000 \rightarrow 00010000 \\ \end{array}$			
$\begin{array}{ccc} 01000000 \rightarrow & 01000000 \\ 00100000 \rightarrow & 00100000 \\ 00010000 \rightarrow & 00010000 \end{array}$	A targe	Input Output	
$00010000 \rightarrow 00010000$		$01000000 \rightarrow 01000000$	

What you should know

- Feature selection
 - Single feature scoring criteria
 - Search strategies
 - Common approaches: Greedy addition of features, or greedy deletion
- Unsupervised dimension reduction using all features
 - Principle Components Analysis
 Minimize reconstruction error
 Singular Value Decomposition

 - Efficient PCA
 - Independent components analysis
- Supervised dimension reduction
 Fisher Linear Discriminant

 - Project to n-1 dimensions to discriminate n classes
 - Hidden layers of Neural Networks
 Most flexible, local minima issues

Further Readings

"Singular value decomposition and principal component analysis," Wall, M.E, Rechtsteiner, A., and L. Rocha, in *A Practical Approach to Microarray Data Analysis* (D.P. Berrar, W. Dubitzky, M. Granzow, eds.) Kluwer, Norwell, MA, 2003. pp. 91-109. LANL LA-UR-02-4001