Reducing Data Dimension

Required reading:

« Bishop, chapter 3.6, 8.6
Recommended reading:
«Wall et al., 2003
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Dimensionality Reduction

Why?

« Learning a target function from data where some
features are irrelevant - reduce variance, improve
accuracy

« Wish to visualize high dimensional data

« Sometimes have data whose “intrinsic” dimensionality is
smaller than the number of features used to describe it -
recover intrinsic dimension
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Supervised Feature Selection

Problem: Wish to learn f: X 2 Y, where X=<X,, ...X>
But suspect not all X; are relevant

Approach: Preprocess data to select only a subset of the X;
« Score each feature, or subsets of features
— How?

« Search for useful subset of features to represent data
— How?
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Outline

* Feature selection
— Single feature scoring criteria
— Search strategies

« Unsupervised dimension reduction using all features
— Principle Components Analysis
— Singular Value Decomposition
— Independent components analysis

« Supervised dimension reduction
— Fisher Linear Discriminant
— Hidden layers of Neural Networks

Supervised Feature Selection
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Scoring Individual Features X;

Common scoring methods:

« Training or cross-validated accuracy of single-feature
classifiers fi: X; 2Y

» Estimated mutual information between X;and Y :

Srar vy B — b v P(X;=kY =y)
!L\Qx)—%%!(‘\!—}..& —y)logip(_\_lzmp(j_:y)

* 2 statistic to measure independence between X; and Y

» Domain specific criteria
— Text: Score “stop” words (“the”, “of”, ...) as zero
— fMRI: Score voxel by T-test for activation versus rest condition
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Choosing Set of Features to learn F: XY

Common methods:

Forward1: Choose the n features with the highest scores

Forward2:
— Choose single highest scoring feature X,
— Rescore all features, conditioned on the set of
already-selected features
« E.g., Score(X;| X,) = I1(X,Y |X,)
« E.g, Score(X;| X,) = Accuracy(predicting Y from X; and X,)
— Repeat, calculating new scores on each iteration,
conditioning on set of selected features
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Feature Selection: Text Classification

[Rogati&Yang, 2002]

Approximately 105 words in English
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Figure 2: Top 3 feature selection methods for Reuters-21578 (Macro F1)

IG=information gain, chi= y2 , DF=doc frequency,

[ e — g —

Summary: Supervised Feature Selection

Approach: Preprocess data to select only a subset of the X;
* Score each feature
— Mutual information, prediction accuracy, ...
« Find useful subset of features based on their scores
— Greedy addition of features to pool
— Greedy deletion of features from pool
— Considered independently, or in context of other selected features

Always do feature selection using training set only (not test
set!)
— Often use nested cross-validation loop:
« Outer loop to get unbiased estimate of final classifier accuracy
« Inner loop to test the impact of selecting features
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Choosing Set of Features

Common methods:

Backwardl: Start with all features, delete the n with lowest
scores

Backward2: Start with all features, score each feature
conditioned on assumption that all others are included.
Then:

— Remove feature with the lowest (conditioned) score
— Rescore all features, conditioned on the new, reduced feature set
— Repeat
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Impact of Feature Selection on Classification of
fMRI Data

[Pereira et al., 2005]
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: Average accuracy across all pairs of categories, restricting the procedure to

certain number of voxels for each subject. The highlighted line corresponds to the

best e awenracy, obtained using 300 voxels

Voxels scored by p-value of regression to predict voxel value from the task

Unsupervised Dimensionality Reduction
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Unsupervised mapping to lower dimension

Differs from feature selection in two ways:

¢ Instead of choosing subset of features, create new
features (dimensions) defined as functions over all
features

« Don't consider class labels, just the data points

PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors, where nth vector is
= (xf . 2lf)

We can represent these in terms of any d orthogonal basis vectors
d

PCA: given M<d. Find {ug...uyy)
N
that minimizes Ey = 3 ||x" — "]
[T
where 3" — % 4 pOEE
. i=1
Mean
1
NG
PCA

o
Minimize Eyy = Y. u!/s w
i=M+1
—  Eu; = Au;
~_ “Eigenvector of £
Eigenvalue

PCA algorithm 1:

o
— Em= ) Z Ai 1. X € Create N x d data matrix, with
i=M+1 one row vector x" per data point

2. X € subtract mean X from each row
vector x"in X

3. X € covariance matrix of X

IS

. Find eigenvectors and eigenvalues
of £

5. PC's € the M eigenvectors with
largest eigenvalues
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Principle Components Analysis

¢ ldea:

— Given data points in d-dimensional space, project into lower
dimensional space while preserving as much information as
possible

* E.g., find best planar approximation to 3D data
» E.g., find best planar approximation to 10 D data

— In particular, choose projection that minimizes the squared error
in reconstructing original data

PCA

(AT ' ET) )

PCA: given M<d. Find

.

e ~ 2|2
that minimizes £x = 3 [[x" = &"||
=1

M
where " =x + 5 zl'u;
i=1

Note we get zero error if M=d.
d N
Therefore, Ey = Z Z [“:‘ (x" — 2)]2

i=M+1n=1
d //Jhis minimized when u;
= ¥ “;!'E u; s is elggnvector of 3, ie,
. when:
i=M+1 Tu; = Ay

Covariance matrix: £ = Z(x" —®)(x" - x)!
m
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PCA Example
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PCA EX&H“D'e Very Nice When Initial Dimension Not Too Big
=%+ Y 2w i . . .
%1 Oﬁf’ycﬁr”si‘y;;i‘iggﬁm% What if very large dimensional data?
T T sl = * e.g.,, Images (d > 10"4)
oczealil Rans ¢« DA/ =0 De@ali Rans® ¢ 08«0
. | Problem:

mean

; i G » Covariance matrix X is size (d x d)
| \ First
5 eigenvector # . d:lo4 > | s I - 108

Second

eigenvector 3 Singular Value Decomposition (SVD) to the rescue!

T « pretty efficient algs available, including Matlab SVD

» some implementations find just top N eigenvectors

= e e
SVvD . ..
Y= Us) Singular Value Decomposition
Elgemaxsay Singalar Eigerngene ) .
a o “u, P ) " To generate principle components:
— Nt o v
X U = S \'.J_ _ 1M
- - d % ¢ Subtract mean *= % '?fl* from each data point, to
" " create zero-centered data
"I-- o .
1 | % « Create matrix X with one row vector per (zero centered)
" data point
m
men mEn HEn nEn * Solve SVD: X = USVT
L . _ -
Data X, one US gives Sis diagonal, Rows of VT are unit « Output Principle components: columns of V (= rows of VT)
row per data coordinates S, > Seuns length eigenvectors of — Eigenvectors in V are sorted from largest to smallest eigenvalues
point of rows of X S2is kth XTX. - Sis diagonal, with s,2 giving eigenvalue for kth eigenvector
in the space largest
of principle eigenvalue If cols of X have zero
mean, then XX =c¢ X
components !
and eigenvects are the
Principle Components
[from Wall et al., 2003]
Singular Value Decomposition Independent Components Analysis
. . . . . i i < >
To project a point (column vector x) into PC coordinates: PCA s_eeks dlrecnons_, Y ... Yyy> In feature space X that
VTx minimize reconstruction error

« ICA seeks directions <Y, ... Y,,> that are most statistically
independent. I.e., that minimize I(Y), the mutual
information between the Y; :

y)y= LEI H(‘:_’,)] —- H(Y)
j=1

If x; is i" row of data matrix X, then
o (i row of US) = VT x,T
. (US)T=VTXT

To project a column vector x to M dim Principle Components

Which maximizes their departure from Gaussianity!
subspace, take just the first M coordinates of VT x
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Independent Components Analysis

* ICA seeks to minimize I(Y), the mutual information
between the Y; : J
y)= LZ H('.»;)] - H(Y)
=1
y1(t) (1)
: =W :

ym (1) alt)

« Example: Blind source separation
— Original features x;(t) are microphones at a cocktail party
— Each receives sounds from multiple people speaking
— ICA outputs directions that correspond to individual speakers (%)

Supervised Dimensionality Reduction

Fisher Linear Discriminant

Project data onto one dimension, to help classification

y=wrx

Define class means: m, = — 3"
N; &2
tneC;
Could choose w according to: arg max wT(mg —my)

2
) . B my —m
Instead, Fisher Linear Discriminant chooses: arg max M
w 32 + 32
1 2
m; = wlm; 2= 3 - m;)?

nel;

—

ICA with independent spatial components

I \ | Fig. 1. Spatially independent com-

| ponents and associated  time
courses of the bood xpgen bevel
dependent (BOLE] signal respore
o repetithvie scanner sounds ane
projected on individual anatormical
whoes  [radiclogical  convention)
positioned through the sctivation
areas of indhidual subjects (51 16
58). Spatial Ca blindly decom.
posed the presumptive primary
and secondary auditory  cortex
The associated time course was

generally characterized by an ini-
tial peak at about § 1o 10 1 after
stimulation omet and  evolved
o 3 stationary platea of acti-
wation. The intial traraent phe-
romenon was highly consistert
across sbjects, whereas the sus-
tained phase was assoclated with
considerable interindiesual varia-
tion and irmegular  cocilations.
{Baottom right] The mean * SE of
the indiidual Signals

1. Fisher Linear Discriminant

« A method for projecting data into lower dimension to
hopefully improve classification

« We'll consider 2-class case

Project data onto vector that connects class means?

Fisher Linear Discriminant

Project data onto one dimension, to help classification

y=wrx

(mg — ”"1)2

Fisher Linear Discriminant : arg max 5 ]
Vooosits3

is solved by : w o< Sy~ L(mg — my)
Where S, is sum of within-class covariances:

Sw= ¥ G -m)Gm-m) T T (6 ma) ("~ ma)T
nely nells




Fisher Linear Discriminant

(ms —my)?

Fisher Linear Discriminant : arg max 5? T S%

Is equivalent to minimizing sum of squared error if we assume
target values are not +1 and -1, but instead N/N, and —N/N,

Where N is total number of examples, N; is number in class i

Also generalized to K classes (and projects data to K-1 dimensions)
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2. Hidden Layers in Neural Networks

When # hidden units < # inputs, hidden layer also
performs dimensionality reduction.

Each synthesized dimension (each hidden unit) is logistic
function of inputs

h,‘.(x) = 1

1+ exp(wo + Y00 wiz;)

Hidden units defined by gradient descent to (locally)
minimize squared output classification/regression error

y
E= 3 Y Gla") - yl=")?
n=1 k
Also allow networks with multiple hidden layers

- highly nonlinear components (in contrast with linear
subspace of Fisher LD, PCA)

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:
Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 -+ .01 .11 88 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 97 . Q0010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — (00000100
00000010 — .80 .01 98 — 00000010
00000001 — .60 .94 .01 (0000001
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Summary: Fisher Linear Discriminant

« Choose n-1 dimension projection for n-class
classification problem

« Use within-class covariances to determine the projection
* Minimizes a different sum of squared error function

Learning Hidden Layer Representations -

Training neural network to
minimize reconstruction error

A target function:
Input Output
10000000 — 10000000
01000000 = 01000000
00100000 = 00100000
0010000 — 00010000
00001000 — DOOO1000
00000100 =+ 00000100
00000010 — 00000010
00000001 — 000D0O01

Can this be learned??

Neural Nets for Face Recognition

left strt rght up
=

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces




Learned Hidden Unit Weights .

left strt rght up Learned Weights
< -

Il . e EE

Typical input images

http:// www.cs.cmu.edu/~tom/faces. html

What you should know

« Feature selection

— Single feature scoring criteria

— Search strategies

« Common approaches: Greedy addition of features, or greedy deletion

« Unsupervised dimension reduction using all features
— Principle Components Analysis

+ Minimize reconstruction error
— Singular Value Decomposition

« Efficient PCA
— Independent components analysis

« Supervised dimension reduction
— Fisher Linear Discriminant
+ Project to n-1 dimensions to discriminate n classes
— Hidden layers of Neural Networks
+ Most flexible, local minima issues
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Further Readings

“Singular value decomposition and principal component analysis,” Wall, M.E,
Rechtsteiner, A., and L. Rocha, in A Practical Approach to Microarray Data Analysis
(D.P. Berrar, W. Dubitzky, M. Granzow, eds.) Kluwer, Norwell, MA, 2003. pp. 91-109.
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