
1 

Topics in Machine Learning Theory 
 

Lecture 7: Boosting 

Avrim Blum 
09/24/14 

Boosting 
• A great practical algorithm 

• A great theoretical result about basic 
definitions in the PAC model. 

• A surprising connection between topics in 
online and distributional learning. 

PAC learning and Weak learning 
• Def 1: Alg 𝐴 PAC-learns class 𝐶 if for any 𝑐 ∈ 𝐶, any 

distribution 𝐷, any 𝜖, 𝛿 > 0, 𝐴 produces a hypothesis 
of error ≤ 𝜖 with prob ≥ 1 − 𝛿. 

 

• Def 2: Alg 𝐴 Weak-learns class 𝐶 if for any 𝑐 ∈ 𝐶, 
any distribution 𝐷, there exists  𝛾, 𝜏 > 1/𝑝𝑜𝑙𝑦(𝑛) s.t. 

𝐴 produces a hyp of error ≤
1

2
− 𝛾 with prob ≥ 𝜏. 

 

– In other words, 𝐴 has a non-negligible chance of doing 
non-negligably better than random guessing. 

PAC learning and Weak learning 
• Def 1: Alg 𝐴 PAC-learns class 𝐶 if for any 𝑐 ∈ 𝐶, any 

distribution 𝐷, any 𝜖, 𝛿 > 0, 𝐴 produces a hypothesis 
of error ≤ 𝜖 with prob ≥ 1 − 𝛿. 

 

• Def 2: Alg 𝐴 Weak-learns class 𝐶 if for any 𝑐 ∈ 𝐶, 
any distribution 𝐷, there exists  𝛾, 𝜏 > 1/𝑝𝑜𝑙𝑦(𝑛) s.t. 

𝐴 produces a hyp of error ≤
1

2
− 𝛾 with prob ≥ 𝜏. 

 

• Suppose we defined the PAC model using Def 2.  
Would this change the notion of what is efficiently 
learnable and what is not? 
 

• Ans: No. 

PAC learning and Weak learning 
• Def 1: Alg 𝐴 PAC-learns class 𝐶 if for any 𝑐 ∈ 𝐶, any 

distribution 𝐷, any 𝜖, 𝛿 > 0, 𝐴 produces a hypothesis 
of error ≤ 𝜖 with prob ≥ 1 − 𝛿. 

 

• Def 2: Alg 𝐴 Weak-learns class 𝐶 if for any 𝑐 ∈ 𝐶, 
any distribution 𝐷, there exists  𝛾, 𝜏 > 1/𝑝𝑜𝑙𝑦(𝑛) s.t. 

𝐴 produces a hyp of error ≤
1

2
− 𝛾 with prob ≥ 𝜏. 

– Given any alg that satisfies Def 2, can “boost” it to an 
algorithm that satisfies Def 1.  This was the 
weak⇒strong learning result of Schapire. 

– Later turned into very practical algorithm AdaBoost by 
Freund and Schapire. 

PAC learning and Weak learning 
• Def 1: Alg 𝐴 PAC-learns class 𝐶 if for any 𝑐 ∈ 𝐶, any 

distribution 𝐷, any 𝜖, 𝛿 > 0, 𝐴 produces a hypothesis 
of error ≤ 𝜖 with prob ≥ 1 − 𝛿. 

 

• Def 2: Alg 𝐴 Weak-learns class 𝐶 if for any 𝑐 ∈ 𝐶, 
any distribution 𝐷, there exists  𝛾, 𝜏 > 1/𝑝𝑜𝑙𝑦(𝑛) s.t. 

𝐴 produces a hyp of error ≤
1

2
− 𝛾 with prob ≥ 𝜏. 

– Note: can handle 𝜏 ⇒ 𝛿 easily: just repeat 
1

𝜏
log

1

𝛿
 times 

and whp at least one was successful.  Then draw fresh 
data and use to pick out the good one. 

– The real issue is 𝛾 ⇒ 𝜖.   From now on, we’ll ignore 𝛿 and 

assume that each time we get a hyp of error ≤
1

2
− 𝛾. 
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Boosting: discussion 
• We’re going to prove this in a very constructive 

way. 

– Given a weak-learning algorithm 𝐴, we will view it 
as a black box, feeding in different distributions, 
and either boost up its accuracy as much as we 

like or else find a distrib 𝐷 where error >
1

2
− 𝛾. 

– As a practical matter, can think of boosting 
procedure as a way of creating good “challenge 
distributions”. 

An easy case: algorithms that 
know when they don’t know 

• Suppose 𝐴 produces a hypothesis that on any given 
𝑥 either makes a prediction or says “not sure”. 

– Always correct when it predicts. 

– Says “not sure” at most 1 − 𝜖′ fraction of time. 
(It’s trivial to do this for 𝜖′ = 0). 

• In this case can boost using a decision list. 

– Run 𝐴 on 𝐷 to get ℎ1 and put at top of DL. 

– Run 𝐴 on 𝐷 ℎ1 𝑥 =𝑛𝑜𝑡 𝑠𝑢𝑟𝑒 and get ℎ2, etc. 

– Just need to continue for 𝑂
1

𝜖′ log
1

𝜖
 runs. 

An easy case: algorithms that 
know when they don’t know 

• Basic idea: focus on where previous hypotheses had 
trouble.  Force next one to learn something new. 

• We will use this in the general case in the AdaBoost 
algorithm, but it won’t be so simple. 

AdaBoost preliminaries 

• Will be most convenient to draw a sample S and 
then do our work on distributions defined over S. 

• Let’s assume A chooses h’s from class C with 
𝐶 𝑚 = 𝑂 𝑚𝑑 .  Our final rule will be from larger 

class H with 𝐻 𝑚 = 𝑂(𝑚
𝑂

1

𝛾2 log
1

𝜖
𝑑

). 

• So, just draw S sufficiently large to get uniform 
convergence.  Can now focus on performance on S. 

• Onto the board for the rest of the discussion…. 


