15-859(B) Machine Learning Theory

Avrim Blum 01/20/14

Lecture 3: The Winnow Algorithm

Recap from end of last time

RWM (multiplicative weights alg)

scaling so costs in [0,1]

 $(1-\varepsilon c_1^2)(1-\varepsilon c_1^1)1$ $(1-\varepsilon c_2^2)(1-\varepsilon c_2^1)1$ $(1-\varepsilon c_3^2)(1-\varepsilon c_3^1)1$ $(1-\epsilon c_n^2)(1-\epsilon c_n^{-1})1$

Guarantee: do nearly as well as fixed row in hindsight $E[cost] \le OPT(1+\epsilon) + \frac{1}{\epsilon}\log n \le OPT + \log n + O(\sqrt{T \cdot \log n})$

Which implies doing nearly as well (or better) than minimax optimal

A natural generalization

- A natural generalization of our regret goal (thinking of driving) is: what if we also want that on rainy days, we do nearly as well as the best route for rainy days.
- And on Mondays, do nearly as well as best route for
- More generally, have N "rules" (on Monday, use path P). Goal: simultaneously, for each rule i, guarantee to do nearly as well as it on the time ste
- For all i, want E[cost_i(alg)] ≤ (1+ε)cost_i(i) + O(ε-1log N). $(cost_i(X) = cost of X on time steps where rule i fires.)$
- · Can we get this?

A natural generalization

- This generalization is esp natural in machine learning for combining multiple if-then rules.
- E.g., document classification. Rule: "if <word-X> appears then predict <Y>". E.g., if has football then classify as
- So, if 90% of documents with football are about sports, we should have error \leq 11% on them.

"Specialists" or "sleeping experts" problem.

- Assume we have N rules.
- For all i, want E[cost_i(alg)] ≤ (1+ε)cost_i(i) + O(ε⁻¹log N). $(cost_i(X) = cost of X on time steps where rule i fires.)$

A simple algorithm and analysis (all on one slide)

- Start with all rules at weight 1.
- At each time step, of the rules i that fire, select one with probability $p_i \propto w_i$.
- Update weights:
 - If didn't fire, leave weight alone.
 - If did fire, raise or lower depending on performance compared to weighted average:

 • $r_i = [\sum_j p_j \cos t(j)]/(1+\epsilon)$ - $\cos t(i)$ • $w_i \leftarrow \leftarrow w_i(1+\epsilon)^{r_i}$
- So, if rule i does exactly as well as weighted average, its weight drops a little. Weight increases if does better than weighted average by more than a (1+ε) factor. This ensures sum of weights doesn't increase.
 Final w_i = (1+ε)E[cost_i(a]₂]/(1+ε)-cost_i(i). So, exponent ≤ ε-llog N.
- So, $E[cost_i(alg)] \leq (1+\epsilon)cost_i(i) + O(\epsilon^{-1}log N)$.

Application: adapting to change

- What if we want to adapt to change do nearly as well as best recent expert?
- For each expert, instantiate copy who wakes up on day t for each $0 \le t \le T-1$.
- Our cost in previous t days is at most (1+ ϵ)(best expert in last t days) + $O(\epsilon^{-1}\log({\rm NT}))$.
- (not best possible bound since extra log(T) but not bad).

Next topic: learning more interesting classes in the mistake-bound model

Equivalently: assuming some expert (target function) is perfect, but there are too many to list explicitly.

Recap: disjunctions

- Suppose features are boolean: $X = \{0,1\}^n$.
- Target is an OR function, like x₃ v x₉ v x₁₂.
- Can we find an on-line strategy that makes at most n mistakes?
- Sure.
 - Start with $h(x) = x_1 \vee x_2 \vee ... \vee x_n$
 - Invariant: $\{vars in h\} \supseteq \{vars in f\}$
 - Mistake on negative: throw out vars in h set to 1 in x. Maintains invariant and decreases |h| by 1.
 - No mistakes on positives. So at most ${\bf n}$ mistakes total.
 - We saw this is optimal.

Recap: disjunctions

- But what if most features are irrelevant?
- Target is an OR of r out of n.
- In principle, what kind of mistake bound could we hope to get?
- Ans: $\log(n^r) = O(r \log n)$, using halving.

Can we get this efficiently?

Yes - using Winnow algorithm.

Winnow Algorithm

Winnow algorithm for learning a disjunction of r out of n variables. eg $f(x)=x_3 \vee x_9 \vee x_{12}$

- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w = 1 for all i.
 - Mistake on pos: $w_i \leftarrow 2w_i$ for all $x_i=1$.
 - Mistake on neg: $w_i \leftarrow 0$ for all $x_i=1$.

Theorem: Winnow makes at most $1 + 2r(1 + \lg n) = O(r \log n)$ mistakes.

<u>Proof</u>

Thm: Winnow makes $\leq 1 + 2r(1 + \lg n)$ mistakes.

- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w_i = 1 for all i.
 - Mistake on pos: $w_i \leftarrow 2w_i$ for all x_i =1.
 - Mistake on neg: $w_i \leftarrow 0$ for all x_i =1.

Proof, step 1: how many mistakes on positive exs?

Ans:

- each such mistake doubles at least one relevant weight.
- Any such weight can be doubled at most $\lceil \lg n \rceil$ times.
- So, at most $r[\lg n] \le r(1 + \lg n)$ such mistakes.

Proof

Thm: Winnow makes $\leq 1 + 2r(1 + \lg n)$ mistakes.

- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w_i = 1 for all i.
 - Mistake on pos: $w_i \leftarrow 2w_i$ for all $x_i=1$.
 - Mistake on neg: $w_i \leftarrow 0$ for all $x_i=1$.

Proof, step 1: at most $r(1 + \lg n)$ mistakes on positives Proof, step 2: how many mistakes on negatives?

- Total sum of weights is initially n.
- Each mistake on positives adds at most n to the total.
- Each mistake on negatives removes at least n from total.
- So, $\#(mistakes on negs) \le 1 + \#(mistakes on positives)$.

Proof

Thm: Winnow makes $\leq 1 + 2r(1 + \lg n)$ mistakes.

- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w; = 1 for all i.
 - Mistake on pos: $w_i \leftarrow 2w_i$ for all $x_i=1$.
 - Mistake on neg: $w_i \leftarrow 0$ for all $x_i=1$.

Proof, step 1: at most $r(1 + \lg n)$ mistakes on positives Proof, step 2: at most $1 + r(1 + \lg n)$ mistakes on negs Done.

Open question: efficient alg with mistake bound poly(r, log(n)) for length-r decision lists?

Extensions

Winnow algorithm for learning a k-of-r function: e.g., $x_3 + x_9 + x_{10} + x_{12} \ge 2$.

- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w; = 1 for all i.
 - Mistake on pos: $w_i \leftarrow w_i(1+\epsilon)$ for all $x_i=1$.
 - Mistake on neg: $w_i \leftarrow w_i/(1+\epsilon)$ for all $x_i=1$.
 - Use ϵ = 1/2k.

Thm: Winnow makes O(rk log n) mistakes. Idea: think of alg as adding/removing chips.

Extensions

- Winnow algorithm for learning a k-of-r function:
 e.a., x₃ + x₀ + x₁₀ + x₁₂ > 2.
- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w_i = 1 for all i.
 - Mistake on pos: $w_i \leftarrow w_i(1+\epsilon)$ for all $x_i=1$.
 - Mistake on neg: $w_i \leftarrow w_i/(1+\epsilon)$ for all x_i =1.
 - Use ϵ = 1/2k.

Analysis:

• Each m.op. adds at least k relevant chips, and each m.o.n removes at most k-1 relevant chips. At most $r(1/\epsilon)\log n$ relevant chips total.

Extensions

- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w_i = 1 for all i.
 - Mistake on pos: $w_i \leftarrow w_i(1+\epsilon)$ for all $x_i=1$.
 - Mistake on neg: $w_i \leftarrow w_i/(1+\epsilon)$ for all x_i =1.
 - Use ϵ = 1/2k.

Analysis:

- Each m.op. adds at least k relevant chips, and each m.o.n removes at most k-1 relevant chips. At most r(1/ε)log n relevant chips total.
- Each m.o.n. removes almost as much total weight as each m.o.p. adds. At most ϵn added in m.o.p., at least $\epsilon n/(1+\epsilon)$ removed in m.o.n. Can't be negative.

Extensions

- $k \cdot M_{pos} (k-1) \cdot M_{neg} \le \left(\frac{r}{\epsilon}\right) \log n$.
- $n + M_{pos} \cdot \epsilon n M_{neg} \cdot \frac{\epsilon n}{1+\epsilon} \ge 0$.
 - I.e., $\frac{1+\epsilon}{\epsilon} + (1+\epsilon)M_{pos} \ge M_{neg}$.
- · Plug in to first equation and solve.

Analysis:

- Each m.op. adds at least k relevant chips, and each m.o.n removes at most k-1 relevant chips. At most $r(1/\epsilon)\log n$ relevant chips total.
- Each m.o.n. removes almost as much total weight as each m.o.p. adds. At most ϵn added in m.o.p., at least $\epsilon n/(1+\epsilon)$ removed in m.o.n. Can't be negative.

Extensions

•
$$k \cdot M_{pos} - (k-1) \cdot M_{neg} \le \left(\frac{r}{\epsilon}\right) \log n$$
.

•
$$n + M_{pos} \cdot \epsilon n - M_{neg} \cdot \frac{\epsilon n}{1+\epsilon} \ge 0.$$

• I.e.,
$$\frac{1+\epsilon}{\epsilon} + (1+\epsilon)M_{pos} \ge M_{neg}$$
.

Plug in to first equation and solve.

$$k \cdot M_{pos} - (k-1)(1+\epsilon)M_{pos} \le \left(\frac{r}{\epsilon}\right)\log n + (k-1)\left(\frac{1+\epsilon}{\epsilon}\right).$$

We set
$$\epsilon = \frac{1}{2k}$$
 so $(k-1)(1+\epsilon) \le k - \frac{1}{2}$.

Get:
$$\frac{1}{2}M_{pos} \le \left(\frac{r}{\epsilon}\right)\log n + (k-1)\left(\frac{1+\epsilon}{\epsilon}\right) = O(rk\log n).$$

So, M_{pos}, M_{neg} are both $O(rk\log n)$.

If don't know k,r, can quess-&-double: get $O(r^2 \log n)$

How about learning general LTFs?

E.g.,
$$4x_3 - 2x_9 + 5x_{10} + x_{12} \ge 3$$
.

Will look at two algorithms (one today, one next time) each with different types of guarantees:

- · Winnow (same as before)
- Perceptron

Winnow for general LTFs

E.g.,
$$4x_3 - 2x_9 + 5x_{10} + x_{12} \ge 3$$
.

 First, add variable x'_i = 1 - x_i so can assume all weights positive.

E.g.,
$$4x_3 + 2x_9' + 5x_{10} + x_{12} \ge 5$$
.

 Also conceptually scale so that all weights w_i* of target are integers (not needed but easier to think about)

Winnow for general LTFs

- Idea: suppose we made W copies of each variable, where $W=w_1^*+\ldots+w_n^*$.
- Then this is just a " \mathbf{w}_0^* out of W" function!

E.g.,
$$4x_3 + 2x_9' + 5x_{10} + x_{12} > 5$$
.

- So, Winnow makes $O(W^2 \log(Wn))$ mistakes.
- And here is a cool thing: this is equivalent to just initializing each w_i to W and using threshold of nW. But that is same as original Winnow!

Winnow for general LTFs

More generally, can show the following (will do the analysis on hwk2):

Suppose ∃ w* s.t.:

- $w^* \cdot x \ge c$ on positive x,
- $w^* \cdot x \le c \gamma$ on negative x.

Then mistake bound is

• $O((L_1(w^*)/\gamma)^2 \log n)$

Multiply by $L_{\infty}(X)$ if examples not in $\{0,1\}^n$

Perceptron algorithm

An even older and simpler algorithm, with a bound of a different form.

Suppose ∃ w* s.t.:

- $w^* \cdot x \ge \gamma$ on positive x,
- $w^* \cdot x \le -\gamma$ on negative x.

Then mistake bound is

• $O((L_2(w^*)L_2(x)/\gamma)^2)$

L₂ margin of examples