15-859(B) Machine Learning Theory

Avrim Blum
01/20/14
Lecture 3: The Winnow Algorithm

RWM (multiplicative weights alg)

Guarantee: do nearly as well as fixed row in hindsight

$$
E[\cos t] \leq O P T(1+\epsilon)+\frac{1}{\epsilon} \log n \leq O P T+\log n+O(\sqrt{T \cdot \log n})
$$

Which implies doing nearly as well (or better)
than minimax optimal

A natural generalization

- This generalization is esp natural in machine learning for combining multiple if-then rules.
- E.g., document classification. Rule: "if <word-X> appears then predict $\langle y\rangle$ ". E.g., if has football then classify as sports.
- So, if 90% of documents with football are about sports, we should have error $\leq 11 \%$ on them.
"Specialists" or "sleeping experts" problem.

- Assume we have N rules.

- For all i, want $E\left[\operatorname{cost}_{i}(a l g)\right] \leq(1+\varepsilon) \operatorname{cost}_{i}(i)+O\left(\varepsilon^{-1} \log N\right)$. ($\operatorname{cost}_{i}(X)=\operatorname{cost}$ of X on time steps where rule i fires.)

Recap from end of last time

A natural generalization

- A natural generalization of our regret goal (thinking of driving) is: what if we also want that on rainy days, we do nearly as well as the best route for rainy days.
- And on Mondays, do nearly as well as best route for Mondays.
- More generally, have N "rules" (on Monday, use path P). Goal: simultaneously, for each rule i, guarantee to do nearly as well as it on the time steps in which it fires.
- For all i, want $E\left[\operatorname{cost}_{i}(a l g)\right] \leq(1+\varepsilon) \cos t_{i}(i)+O\left(\varepsilon^{-1} \log N\right)$. $\left(\operatorname{cost}_{i}(X)=\operatorname{cost}\right.$ of X on time steps where rule i fires.)
- Can we get this?

Application: adapting to change

- What if we want to adapt to change - do nearly as well as best recent expert?
- For each expert, instantiate copy who wakes up on day \dagger for each $0 \leq \dagger \leq \mathrm{T}-1$.
- Our cost in previous \dagger days is a most $(1+\epsilon)$ (best exper \dagger in last \dagger days $)+O\left(\epsilon^{-1} \log (N T)\right)$.
- (not best possible bound since extra $\log (T)$ but not bad).

Recap: disjunctions

- Suppose features are boolean: $X=\{0,1\}^{n}$.
- Target is an OR function, like $x_{3} \vee x_{9} \vee x_{12}$.
- Can we find an on-line strategy that makes at most n mistakes?
- Sure.
- Start with $h(x)=x_{1} \vee x_{2} \vee \ldots \vee x_{n}$
- Invariant: $\{$ vars in h$\} \supseteq\{$ vars in f$\}$
- Mistake on negative: throw out vars in h set to 1 in x. Maintains invariant and decreases $|h|$ by 1.
- No mistakes on positives. So at most n mistakes total.
- We saw this is optimal.

Winnow Algorithm

Winnow algorithm for learning a disjunction of r out of n variables. eg $f(x)=x_{3} \vee x_{9} \vee x_{12}$

- $h(x)$: predict pos iff $w_{1} x_{1}+\ldots+w_{n} x_{n} \geq n$.
- Initialize $w_{i}=1$ for all i.
- Mistake on pos: $w_{i} \leftarrow 2 w_{i}$ for all $x_{i}=1$.
- Mistake on neg: $w_{i} \leftarrow 0$ for all $x_{i}=1$.

Theorem: Winnow makes at most $1+2 r(1+\lg n)=O(r \log n)$ mistakes.

Next topic: learning more interesting classes in the mistakebound model

Equivalently: assuming some expert (target function) is perfect, but there are too many to list explicitly.

Recap: disjunctions

- But what if most features are irrelevant?
- Target is an OR of r out of n.
- In principle, what kind of mistake bound could we hope to get?
- Ans: $\log \left(n^{r}\right)=O(r \log n)$, using halving.

Can we get this efficiently?
Yes - using Winnow algorithm.

Proof

Thm: Winnow makes $\leq 1+2 r(1+\lg n)$ mistakes.

- $h(x)$: predict pos iff $w_{1} x_{1}+\ldots+w_{n} x_{n} \geq n$.

Initialize $w_{i}=1$ for all i.

- Mistake on pos: $w_{i} \leftarrow 2 w_{i}$ for all $x_{i}=1$.
- Mistake on neg: $w_{i} \leftarrow 0$ for all $x_{i}=1$.

Proof, step 1: at most $r(1+\lg n)$ mistakes on positives Proof, step 2: how many mistakes on negatives?

Total sum of weights is initially n.
Each mistake on positives adds at most n to the total.
Each mistake on negatives removes at least n from total.
So, \#(mistakes on negs) $\leq 1+\#$ (mistakes on positives).

Extensions

Winnow algorithm for learning a k-of-r
function: e.g., $x_{3}+x_{9}+x_{10}+x_{12} \geq 2$.

- $h(x)$: predict pos iff $w_{1} x_{1}+\ldots+w_{n} x_{n} \geq n$.
- Initialize $w_{i}=1$ for all i.
- Mistake on pos: $w_{i} \leftarrow w_{i}(1+\epsilon)$ for all $x_{i}=1$.
- Mistake on neg: $w_{i} \leftarrow w_{i} /(1+\epsilon)$ for all $x_{i}=1$.
- Use $\epsilon=1 / 2 \mathrm{k}$.

Thm: Winnow makes $O(r k \log n)$ mistakes.
Idea: think of alg as adding/removing chips.

Extensions

- $h(x)$: predict pos iff $w_{1} x_{1}+\ldots+w_{n} x_{n} \geq n$.
- Initialize $w_{i}=1$ for all i.
- Mistake on pos: $w_{i} \leftarrow w_{i}(1+\epsilon)$ for all $x_{i}=1$.
- Mistake on neg: $w_{i} \leftarrow w_{i} /(1+\epsilon)$ for all $x_{i}=1$.
- Use $\epsilon=1 / 2 k$.

Analysis:

- Each m.op. adds at least k relevant chips, and each m.o.n removes at most k-1 relevant chips. At most $r(1 / \epsilon) \log n$ relevant chips total.
- Each m.o.n. removes almost as much total weight as each m.o.p. adds. At most ϵn added in m.o.p., at leas \dagger n $/(1+\epsilon)$ removed in m.o.n. Can't be negative.

Proof

Thm: Winnow makes $\leq 1+2 r(1+\lg n)$ mistakes.

- $h(x)$: predict pos iff $w_{1} x_{1}+\ldots+w_{n} x_{n} \geq n$.
- Initialize $w_{i}=1$ for all i.
- Mistake on pos: $w_{i} \leftarrow 2 w_{i}$ for all $x_{i}=1$.
- Mistake on neg: $w_{i} \leftarrow 0$ for all $x_{i}=1$.

Proof, step 1: at most $r(1+\lg n)$ mistakes on positives Proof, step 2: at most $1+r(1+\lg n)$ mistakes on negs Done.

Open question: efficient alg with mistake bound poly(r, $\log (n)$) for length-r decision lists?

Extensions

Winnow algorithm for learning a k-of-r function:
e.g., $x_{3}+x_{9}+x_{10}+x_{12} \geq 2$.

- $h(x)$: predict pos iff $w_{1} x_{1}+\ldots+w_{n} x_{n} \geq n$.

Initialize $w_{i}=1$ for all i.

- Mistake on pos: $w_{i} \leftarrow w_{i}(1+\epsilon)$ for all $x_{i}=1$.
- Mistake on neg: $w_{i} \leftarrow w_{i} /(1+\epsilon)$ for all $x_{i}=1$.
- Use $\epsilon=1 / 2 k$.

Analysis:

- Each m.op. adds at least k relevant chips, and each m.o.n removes at most $k-1$ relevant chips. At most $r(1 / \epsilon) \log n$ relevant chips total.

Extensions

$$
\begin{gathered}
\text { - } k \cdot M_{p o s}-(k-1) \cdot M_{n e g} \leq\left(\frac{r}{\epsilon}\right) \log n . \\
-n+M_{p o s} \cdot \epsilon n-M_{n e g} \cdot \frac{\epsilon n}{1+\epsilon} \geq 0 . \\
\text { - I.e. } \frac{1+\epsilon}{\epsilon}+(1+\epsilon) M_{\text {pos }} \geq M_{n e g} .
\end{gathered}
$$

- Plug in to first equation and solve.

Analysis:

- Each m.op. adds at least k relevant chips, and each m.o.n removes at most $k-1$ relevant chips. At most $r(1 / \epsilon) \log n$ relevant chips total.
- Each m.o.n. removes almost as much total weight as each m.o.p. adds. At most ϵn added in m.o.p., at least $\epsilon n /(1+\epsilon)$ removed in m.o.n. Can't be negative.

Extensions

- $k \cdot M_{p o s}-(k-1) \cdot M_{n e g} \leq\left(\frac{r}{\epsilon}\right) \log n$.

- $n+M_{\text {pos }} \cdot \epsilon n-M_{n e g} \cdot \frac{\epsilon n}{1+\epsilon} \geq 0$.
- I.e., $\frac{1+\epsilon}{\epsilon}+(1+\epsilon) M_{\text {pos }} \geq M_{n e g}$.

Plug in to first equation and solve.
$k \cdot M_{p o s}-(k-1)(1+\epsilon) M_{p o s} \leq\left(\frac{r}{\epsilon}\right) \log n+(k-1)\left(\frac{1+\epsilon}{\epsilon}\right)$.
We set $\epsilon=\frac{1}{2 k}$ So $(k-1)(1+\epsilon) \leq k-\frac{1}{2}$.
Get: $\frac{1}{2} M_{p o s} \leq\left(\frac{r}{\epsilon}\right) \log n+(k-1)\left(\frac{1+\epsilon}{\epsilon}\right)=O(r k \log n)$.
So, $M_{\text {pos }}, M_{n e g}$ are both $O(r k \log n)$.
If don't know k,r, can guess-\&-double: get $O\left(r^{2} \log n\right)$.

Winnow for general LTFs

E.g., $4 x_{3}-2 x_{9}+5 x_{10}+x_{12} \geq 3$.

- First, add variable $x_{i}^{\prime}=1-x_{i}$ so can assume all weights positive.
E.g., $4 x_{3}+2 x_{9}^{\prime}+5 x_{10}+x_{12} \geq 5$.
- Also conceptually scale so that all weights w_{i}^{*} of target are integers (not needed but easier to think about)

How about learning general LTFs?

$$
\text { E.g., } 4 x_{3}-2 x_{9}+5 x_{10}+x_{12} \geq 3 .
$$

Will look at two algorithms (one today, one next time) each with different types of guarantees:

- Winnow (same as before)
- Perceptron

Winnow for general LTFs

- Idea: suppose we made W copies of each variable, where $W=\mathrm{w}_{1}^{*}+\ldots+\mathrm{w}_{\mathrm{n}}^{*}$.
- Then this is just a " w_{0}^{*} out of $W^{\prime \prime}$ function!
E.g., $4 x_{3}+2 x_{9}^{\prime}+5 x_{10}+x_{12} \geq 5$.
- So, Winnow makes $O\left(W^{2} \log (W n)\right)$ mistakes.
- And here is a cool thing: this is equivalent to just initializing each w_{i} to W and using threshold of $n W$. But that is same as original Winnow!

Winnow for general LTFs

More generally, can show the following (will do the analysis on hwk2):
Suppose $\exists w^{\star}$ s.t.:

- $w^{\star} \cdot x \geq c$ on positive x,
- $w^{*} \cdot x \leq c-\gamma$ on negative x.

Then mistake bound is

- $O\left(\left(L_{1}\left(w^{*}\right) / \gamma\right)^{2} \log n\right)$

Multiply by $L_{\infty}(X)$ if
examples not in $\{0,1\}^{\text {n }}$

Perceptron algorithm

An even older and simpler algorithm, with a bound of a different form.
Suppose $\exists w^{\star}$ s.t.:

- $w^{\star} \cdot x \geq \gamma$ on positive x,
- $w^{\star} \cdot x \leq-\gamma$ on negative x.

Then mistake bound is

- $O\left(\left(L_{2}\left(w^{\star}\right) L_{2}(x) / \gamma\right)^{2}\right)$
L_{2} margin of examples

