ICU-CMU MSE 2008-2009

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

Pma

DON'T SHOUT THE MESSENGER

April 8, 2009

the CruX

Bokuk Seo
Do-Hoon Kim
Yong Gyu Kim
Sang-hyun Lee

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

Revision History

Version Date Revision Author Brief Description of Changes

Updated
0.1 04-01-2009 Yong Gyu Kim Initial document created
0.2 04-07-2009 Yong Gyu Kim Updated for tool experimentation result
0.3 04-08-2009 Yong Gyu Kim Updated for tool experience detail (FP)
1.0 04-08-2009 Yong Gyu Kim Updated for reference sites

Instructions:

For the suggested topics below, replace <text within brackets> with project specific
information. Some of the topics may not apply to all projects. In the topics where a response is optional,
a choice, ["N/A for this report”] is included in the instructions.

TTA-the CruX

Assignment Report
Template Version 1.0

Doc. Version 1.10
Page 2 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

Table of Contents

< Generated Automatically. To update table based on changes in the document, select the table and
hit F9. >

IS | 0 1 10 L 0 I 0 4
1.1 REPORT GENERAL ...ccciccureessssssessssssesssssssessssssssessssssesssssnsessassnsesssssnsesssssnsesssssasssssssanessasans 4

1.2 RUNNING PIVIDcoiiiceiiecrceresssssse e sssssne e s s sms e s s mn e s sssms e e snssmn e s ssssnnesssssnseessnsnnessnssnsessasans 4

2. TOOL EXPERIENCGE e s msmn e s s e s mm s e s e s s e mmn e e e e e e s e n s nnmnnns 6
21 BASIC USE OF PIMID ... cicmsin s mms e s mn e e a e mmmn e e s s s 6

2.2 CUSTOM USE OF PIMIDcoissssssssssssasssnsnsnnnnnnn 8

B 1 0 o 2 O 0 9
31 ANALYSIS OVERALL....ccitiiiriirssessssssesesseeeesereeeeeeesen 9

3.2 FINDINGS IN DETAIL ..ceetcuuuuuieserrennmnssssssessesnmssssssssseemnnsmnssssssssrsmsnnnssssssssessnnmnnsssnssssessnnnnnnnnns 10

3.3 USELESSNESS (TRUE POSITIVE IRRELEVANT)uuumtmmreriisssssssmsensessssssssssssssssssssssssnsnsssesssnnss 11

34 FALSE POSITIVESccciiiiiismesersiassassssmnssesssssssssssmse s e s sas s s smsns s e s s saa s smnnse s essanssssnnnnnsnnssnsnn 12

L0 1110 10 15 [0 13
APPENDIXcoiiiiceieiisserenssssresssssseesssssresssssssesssssssesssssssesasssssessasssnsesassnnenssssnnnnssssnnenssssnnnnsssssnnnns 14

51 REFERENCES......uuuetttiiiiiiiiasmstaeseaaassssssmnsassssssssssmsnsassssasssassmssasssasaasassnmsssesssssnsssnnnesssssnnsnn 14

Assignment Report Doc. Version 1.10

TTA-the CruX Template Version 1.0 Page 3 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

1.Introduction

This document is to describe the Java static analysis tool, PMD which is famous for detecting
bugs before running.

1.1 Report general

PMD is the Open Source (BSD licensed) tool of Tom Copeland and has functionality to find
bugs as analyzing Java source code. It is similar with FindBugs and Lint4j for general
perspectives. But here we tried to catch essential functions and usefulness of PMD as focusing
on various viewpoints.

Indeed, PMD checks for a long list of possibly bad programming practices and possible error
conditions in source programs. Our feeling about it is mixed -- it is undoubtedly very useful,
but the number of warnings about things which actually OK were excessive. Of course, what
we should be doing it apply the rules so it diagnoses what we think are important.

1.2 Running PMD

1.2.1 Installation

PMD is made in Java and it can be used the way of standalone or plug in.

- Standalone: It can be downloaded from SourceForge.net

- Plug-in Eclipse : http://pmd.sourceforge.net/eclipse

() PMD - Installing PMD

€ C ¢ httpfpmd.sourceforge. netfinstalling. html O F-

SOURCEFORGE.NET*

TON'T SHOUT THE MESSENGER

Hbotd Get the ook ! *## @ | SourceFarge.net Froject Page @ | Hasted by SourceFarge 5

Overview

Davrlasd 7D How to install PMD (and CPD)
What's new in PMD

4.2.5 @

PMD in th "

PHD-related. Windows

products and books
Best practices
Future directions
Similar projects
Cradits + IDK 1.4 or higher
Licenss o Winzip

What does 'PMD"

Prerequisites:

Download the latest binary distrisution - i.e., pmd-bin-x.xx.2ip

Usage

Installation Unzip it into any directory, i.e., ci\pmd,

Command line usage

Ant task usage

Maven plugin usags .

Myn plugin usage Unix

IDE plugin usags

Suppressing

e Prerequisites:
Finding duplicated
cade » IDK 1.4 or higher
15P support + The Urix "zip" utility Infozip @
Customizing PMD
Compiling PMD Dowrload the latest binary distribution - i.e., pmd-bin-x.x.zip
How to write a ruls
il AL Unzip it inta any directory

How to make a rule

set

o e {torm@hal tmp]§ unzip -g pmd-bin-4.2.5.zip
For example [tom@hal tmp]§ Is -1

Run PMD on a total 4640

Sourceforge project drwxrwxx - 5tom tom 4096 Apr 17 16:38 pmd-4.2 5
Rule Sets -rwerw-t- 1 tom tom 4733312 Jun 9 15:44 pmd-bin-4.25 zip
nce [torn@hal tmp]$ z

[Ficurel. PDM PROJECT SITE]

Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 4 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

1.2.2 How it works

At the heart of PMD is the JavaCC parser generator, which PMD uses in conjunction with an
Extended Backus-Naur Formal (EBNF) grammar and JJTree to parse Java source code into an
Abstract Syntax Tree (AST). That was a big sentence with a lot of acronymes, so let's break it
down into smaller pieces.

Java source code is, at the end of the day, just plain old text. As your compiler will tell you,
however, that plain text has to be structured in a certain way in order to be valid Java code. That
structure can be expressed in a syntactic metalanguage called EBNF and is usually referred to as
a "grammar." JavaCC reads the grammar and generates a parser that can be used to parse
programs written in the Java programming language.

[TABLE1. SAMPLE CODE]

- Source Code public class Foo {
public void bar () {

System.out.println ("hello
world") ;
}
}
- Abstract Syntax Tree CompilationUnit
TypeDeclaration
ClassDeclaration
UnmodifiedClassDeclaration
ClassBody
ClassBodyDeclaration
MethodDeclaration
ResultType
MethodDeclarator
FormalParameters
Block
BlockStatement
Statement
StatementExpression
PrimaryExpression
PrimaryPrefix
Name
PrimarySuffix
Arguments
ArgumentList
Expression
PrimaryExpression
PrimaryPrefix
Literal

Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 5 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

2. Tool Experience

2.1 Basic Use of PMD

2.1.1 Current Rulesets

PMD uses the Rulesets to check and validate the code and they are called as Basic Rules for pre-
defined. And list of rulesets and rules contained in each ruleset. [1]

¢ Android Rules: These rules deal with the Android SDK, mostly related to
best practices. To get better results, make sure that the auxclasspath is defined
for type resolution to work.

e Basic JSF rules: Rules concerning basic JSF guidelines.

e Basic JSP rules: Rules concerning basic JSP guidelines.

¢ Basic Rules: The Basic Ruleset contains a collection of good practices which
everyone should follow.

e Braces Rules: The Braces Ruleset contains a collection of braces rules.

¢ Clone Implementation Rules: The Clone Implementation ruleset contains a
collection of rules that find questionable usages of the clone() method.

¢ Code Size Rules: The Code Size Ruleset contains a collection of rules that
find code size related problems.

e Controversial Rules: The Controversial Ruleset contains rules that, for
whatever reason, are considered controversial. They are separated out here to
allow people to include as they see fit via custom rulesets. This ruleset was
initially created in response to discussions over UnnecessaryConstructorRule
which Tom likes but most people really dislike :-)

¢ Coupling Rules: These are rules which find instances of high or inappropriate
coupling between objects and packages.

e Design Rules: The Design Ruleset contains a collection of rules that find
questionable designs.

e Finalizer Rules: These rules deal with different problems that can occur with
finalizers.

e Import Statement Rules: These rules deal with different problems that can
occur with a class' import statements.

e J2EE Rules: These are rules for J2EE

e JavaBean Rules: The JavaBeans Ruleset catches instances of bean rules not
being followed.

e JUnit Rules: These rules deal with different problems that can occur with
JUnit tests.

e Jakarta Commons Logging Rules: The Jakarta Commons Logging ruleset
contains a collection of rules that find questionable usages of that framework.

e Java Logging Rules: The Java Logging ruleset contains a collection of rules
that find questionable usages of the logger.

e Migration Rules: Contains rules about migrating from one JDK version to
another. Don't use these rules directly, rather, use a wrapper ruleset such as
migrating_to_13.xml.

e Migration13: Contains rules for migrating to JDK 1.3

e Migration14: Contains rules for migrating to JDK 1.4

e Migration15: Contains rules for migrating to JDK 1.5

e MigratingToJava4: Contains rules for migrating to JDK 1.5

Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 6 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

¢ Naming Rules: The Naming Ruleset contains a collection of rules about
names - too long, too short, and so forth.

e Optimization Rules: These rules deal with different optimizations that
generally apply to performance best practices.

e Strict Exception Rules: These rules provide some strict guidelines about
throwing and catching exceptions.

e String and StringBuffer Rules: These rules deal with different problems that
can occur with manipulation of the class String or StringBuffer.

e Security Code Guidelines: These rules check the security guidelines from
Sun, published at http://java.sun.com/security/seccodeguide.html#gcg

e Type Resolution Rules: These are rules which resolve java Class files for
comparisson, as opposed to a String

¢ Unused Code Rules: The Unused Code Ruleset contains a collection of rules
that find unused code.

& Software Updates and Add-ons - O E |
Installed Software | Available Software
| .lype filker text] -
Name “ersion
B[O \q.r Crystal Static Analysis Framework
= r 3
® [[] % EPP Usage Data Collector Update Site
B [%] Garymede Update Site |
=] \{r, hitp: //pmd. sourcefarge. net/eclipse
=N kr: hitp: 4 /pmd. sourcetorge. net/eclipse

[v; hitp: //update. eclemma.org £dd Site...

B[O \f: tylyn for Eclipse 3.4

=N \1: Plural Object Protocol Checker Manssedicse

=N \mr The Eclipze Project Updates

=N | \r: “Web Tools [WTF) Update Site
£ I [2]|

] Show anly the Jatest versions of available software

Include items that have alieady been installed

Open the ‘Automatic Updates' preference page to set up an automatic update schedule.

D

Cloze

[FIGURE2. PDM PLUG—IN WITH ECLIPSE]

2.1.2 Case of basic use

[TABLE2. PMD XML REPORT]

<?xml version="1.0"?>

<pmd>

<file name="/Users/elharo/src/ImageGrabber.java">
<violation line="32" rule="ShortVariable" ruleset="Naming Rules" priority="3">
Avoid variables with short names like j

</violation>

<violation line="105" rule="VariableNamingConventionsRule" ruleset="Naming Rules"

priority="1">

Variables that are not final should not contain underscores

(except for u

nderscores in standard prefix/suffix).

TTA-the CruX

Assignment Report Doc. Version 1.10
Template Version 1.0 Page 7 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

</violation>
<ffile>
<error filename="/Users/elharo/src/ImageGrabber.java"
msg="Error while processing /Users/elharo/ImageGrabber.java"/>
</pmd>

In table 2, PMD shows the 2 problems in the code list. Line 32 and 105 with underscore
violated ImageGrabber.java.

2.2 Custom Use of PMD
2.2.1 Rule Coding

We used JavaCC and J]Tree to use an EBNF grammar to turn our source code into an
structured object hierarchy. Now we can put those objects to use by writing some rules to look
for problems.

Generally, a PMD rule is a visitor that traverses the AST looking for a particular pattern of
objects that indicates a problem. This can be as simple as checking for occurrences of new
Thread, or as complex as determining whether or not a class is correctly overriding both equals
and hashcode.

2.2.2 How to write a PMD rule

Writing PMD rules is cool because you don't have to wait for us to get around to implementing

feature requests. Here's a simple PMD rule that checks for empty if statements

[TABLE3. WRITE PMD RULE: IF]

// Extend AbstractRule to enable the Visitor pattern
public class EmptyIfStmtRule extends AbstractRule implements Rule ({
// This method gets called when there's a Block in the source code
public Object visit (ASTBlock node, Object data) {
// If the parent node is an If statement and there isn't anything
// inside the block
if ((node.jjtGetParent () .jjtGetParent () instanceof ASTIfStatement)
&& node.jjtGetNumChildren ()==0) {
// then there's a problem, so add a RuleViolation to the Report
RuleContext ctx = (RuleContext)data;
ctx.getReport () .addRuleViolation (createRuleViolation (ctx,
node.getBeginLine ())) ;
}
// Now move on to the next node in the tree
return super.visit(node, data);

Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 8 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

3. PMD in practice
3.1 Analysis Overall
3.1.1 Experiment Setup
(1) Target Source

CHECKERS: ASSIGNMENT WE DID

B Major Concerns
- Basic rule verification: Unfamiliar with Java
- Design Concern: Not much experience for design
- Others are usual but controversial

3.1.2 Analysis Results from PMD

[FIGURES. PMD VIOLATION RPORT]

5] Winlations Overview (2 rd | OI J| 2 08 OY
Element fViolation: # Violations/LOC # Violations/Method Project
-H {edu. cmumse. D oredrw | 1 37 /1000 0.0z Checker
C B AvoidThrawingFawE kceptionT ypes 1 37 /1000 0.0z Checker
E| 1 edu.cmumse pidgin Checkers 4 E.1/1000 010 Checker
C g AvoidThrowingPiawE keeptionT ypes 4 141000 010 Checker
EE} edu.cmumse. ui 14 181 /1000 0.23 Checker
[SystemPrintin 8 10.49/1000 013 Checker
--,J‘ Integerlnstantiation 1 1.4 /1000 ooz Checker
[ConstructorCalis0veridableb ethod 3 4.1./1000 0.0s Checker
--,ﬁ‘ AwoidT hrowingR awE kceptionT ypes 2 2.7 /1000 003 Checker

PMD has 5 levels of violation from 1 to 5: High Error, Error, High warning, Warning,
and Information. According to 1 and 2 are considered as critical to run the program,
we have to solve them firstly. Here are the actual results of violation summary of our

target application.
[TABLE4. PMD RESULT]

1 10 5.5
2 9 12.3
3 366 274.5
4 0 0

5 46 34.15

[Note] http://pmd.sourceforge.net/scoreboard.html would show the detail benchmark data
using PMD for open sources.

Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 9 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

3.2 Findings in detail

During our practice, we focused on trying to catch exact conformance with tool and our
project codes. From this point of approaches, we can get the useful information out projects
and additional guides to improve them. Here are the main rulesets we tried as following

cases:
B Basic Rules

B Design Rules

B Controversial Rules

3.2.1 Useless (True positives relevant)

- Basic Rules: ConfusingTernary
When we tried to check the code to write the IF statement, we wrote the command prior to

else statement. At this case, we must use the Object .equal to follow the rule but we did not.

This ruleset clearly shows the misuse of code

= b} =0

P
Error Message

154 The mathod main) has an NPath complexic

1 The method ‘main' has 2 Cydomatic Cample

o The dlass 'SecurityArmindowsSensors' has

1 Parameter ‘et is not assigned and could be

! Parameter ‘args'is not assigned and could | 53
15 Parameter ‘SecuricyArm' is not assigned an| 5o

1 Parameter ‘Eventhumber' is not assigned &

1 Package name contains upper case characl
Method names should nok start with capita
¢ Local variable 'glen’ could be dedlared final
! Local variable 'mw' could be dedared Final
¢ Local variable 'evt’ could be declared Final
! Local variable 'Delay’ could be declared fine
! Avoid wariables with short names fke rw
154 Ao variables with short names fke eq
! Avoid wariables with short names like em
i Awoid variables with short names like ei

1o vaid wariables with short names like Evt
i Avoid unused local variables such as "wind:
! vaid Unused imparts such as Instrument
! awid unused imports such as ‘EventPackar
14 Ao really long methods.

o Bvoid i (x 1= y)) else .}

1 Pvid excessively long variable names ke
15 il methods are static. Consider using Sing

*SecurityrmWindowsensors. javs 52

57

58 // Here we check to see if registration worked. If ef is null then the
59 // event manager interface was noj mronar li_croata £l

60 = HiU Mg

61 (

sz /7 We create & message window

53 NessageWindow mu = new Messag
64 mw. WriteMessage ("Registered o
65 try

66 ¢

87 mw.WriteMessage (" Parti
68 mw. WriceMessage (" Regis
59 Y /S otry

70 catch (Exception 2]

71 [

7z L WriteNessage ("Error:
as } // eateh

a2 R RTER AT E RGN TERAEE IR RS EN
75 #% Here Wwe sStart the main sin
76 R EA AT REERTEATEIARE RN
d nw. WriceMessage ("Beginning 51
78

79 while { !Done)

a0 [

a1 // Get the message gueus
a2 N

83 } /7 while

a4 }

as else

36 {

a7 System. cut.println("Tnable to
a8 yoAAf

a9 y o4/ mmin

a0

RuleSet name :

Since :

Rule name :
ConfusingTernary

Rule implementation class :

et sourceforge, pmd. ules. design.ConfusingTernary

Message :
Avodif (x 1=y} . ; else . ;
Priority :

Description :

In an " expression with an “else” dlause, avoid negation in|

the test, For example, rephrase:
I (x 1= y) dFF); else same();
a5

o
if x == y) samet); efse dff(;

Most i (x 1= v cases withaLt an “else" are often return
cases, 5o consistent uss of this rule makes the code easier

External Info URL

it /pmd.sourceforge. net rules/design. html#CanfusingTernary

Examples :

public class Foo {
boolean bar (int x,

i

APath:

int ¥) ¢
return (x !'= y) 2 diff :

Open in Browser

ame;

[FIGURE3. BASIC RULES: CONFUSINGTERNARY]

- Design Rules: UseSingleton
In case of every static method in the class, the tool recommend to use the Singleton pattern

for design.

TTA-the CruX

Assignment Report
Template Version 1.0

Doc. Version 1.10
Page 10 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

E= 2 x 7 7 O 0|) *securtyArmontroller.java &2

Errar Message [=~] 1 package cmu.mse.theCruX.srch.ad.i:
o Avaid F (x 1=) ..; elsa..; z#import InstrumentationPackage.*:[]
/8l methods are static, Consider using Singleton inst. . 5

i 6 class SecurityirmController

= U0 H o] >
HuHlugin m public static veid main(String args[])

RuleSet name : Rule R {
e string EvtMgrIP; /¢ Event Manager IF address
Event Evt = null: /7 Event ohject
Rule name | i :
EventQueus =g = null; // Message Queue
Lsesingleton int EveId = O; // User specified event ID
Rule implementation dass : EventManagerInterface em = null:;// Interface object to the e
hoolean WindowState = false; // Window state: false == di
net sourceforge pmd. rules. design, UseSingleton .
boolean Dooritate = false: /¢ Door state: false == disa
Messages boolean MotionState = false: // Motion stare: false == di
All methods are static, Consider using Singleton instead. hoolean Done = false: ¢/ Loop termination £lag
Priarity :
if (args.length == O)
Description : ¢
1f you have a class that has nothing but static methads, cansider making it a .
Singleton. v FE bE
Mok that this doesn't apply to abstract classes, since thelr subclasses may
well include non-static methods. Also, i you want this class to be a } /f wain

Singleton,
remember ko add a private constructor te prevent instantiation. static private void ConfirmMessageWindow (EventManagerInterface e
{

External Info URL // Here we create the event.
seme e : e roneel Event evt = new Event((int) —28, m):
http:/fpmd. sourceforge. netfrules/design. html#UseSingleton

Examples ; 3 /¢ ConfirmMessageVindow

public class MaybedSingleton { static private woid ConfirmMessageDoor (EventManagerInterface ei,
public statie woid foo() () (
public statie woid bar() €}

i // Here we create the event.
Event evi Sinew Fventllint) 2o j.

[FIGURE4. DESIGN RULES: USESINGLETON] o

3.2.2 Uselessness (True positive irrelevant)

Here we put two examples we found as the true positive things which are not relevant to goal
of project.

- Design Rule: ConstructorCallsOverridableMethod
When we call override-able methods during construction, it poses a risk of invoking
methods on an incompletely constructed object and can be difficult to discern.

[FIGURES. DESIGN RULES: CONSTRUCTORCALLSOVERRIDABLEMETHOD]

[

2ll { wvalue="gameCbhjectcState™, reguires="nolInst:
public CheckerWindow () {

loadConfiguration()

game = getGamelInstance () :I

chkFrm = new CheckerJFrame () :
chkFrm.addCaller (this)
chkFrm.setVisikble (troe) -
chkFrm.initBoard() ;
=

K
arctGame (trae) ;

m

- Controversial Rules: NullAssignment

Assigning a "null" to a variable (outside of its declaration) is usually bad form.

[FIGUREE. CONTROVERSIAL RULES: NULLASSIGNMENT]

FAAf it i=s second click of making mowve
else{
Svstem.oubt.printlin("second click™) H
if(tmpPiece ==mmll) {

if{ reguestMove (prePoint, new Point (xP,vP), getTurn
onMowveFg =false;
prePoint = 5
preCapPoint=new Point (xP,vE):

Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 11 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

3.2.3 False positives

Here are the results taken to find out “False positives” with PMD. Actually, it might not the
big problem but it could be somewhere certain conditions as below:

- Basic Rule: JumbledIncrementer
It inevitably avoids jumbled loop incrementers. Although it is a usual mistake, it's still
confusing even if it's what has intended.

[FIGURE7. BASIC RULE: JUMBLEDINCREMENTER]

public vold setInitImage () {
int inx=0;
int jnx=0;
for(inx=0; inx < cellCnt; inx++){
for{ inx=0; jnx < cellCnt; inx++){
1f((Inx+inx) 32=0)
boardCell [inx] [Jnx] .=setlIcon (PCSIcon) ;
else
boardCell [inx] [jnx] .setIcon (EMTIcon) ;

- Design Rule: MissingBreakInSwitch
In case of switch = loop structure, it does not warn about the “break”-missing case of
switch statement. If we are correct, it must show the message of MissingBreakInSwitch.

[FIGURES. BASIC RULE: MISSINGBREAKINSWITCH]

poblic wvoid setInitSwitch2Z (int cnt) {
int tmpCnt=0;
switch (| cnt33) {
case 1:
tmpCnt=3;
case Z:
for({ int inx=0; inx < cellCnt; inx++){
tmpCnt=tmpCnt+inx;
breaki
defaualt:
tmpCnt=1;

Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 12 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

4. Conclusion

PMD has typical static analysis tool’s characteristics and we can summarize the
PMD’s own characteristics as below:

B Strength
. Have access to the actual instructions the software will be executing
. No need to guess or interpret behavior
. Full access to all of the software’s possible behaviors
B Weakness
. Will not find issues related to operational deployment environments

And we can agree with additional but realistic meaning of PMD usage such as

* Cheap for tool but expensive for extension (painful)
* This tool can be easily learned and operated

* Very Shiny
* When it finds REALLY hidden errors.
* But it does not impressive to us because free editor simply covers most

of possible error.

» Still needs to test

* PMD cannot substitutes the unit test and acceptance test

Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 13 of 14

17-654: Analysis of Software Artifacts
Mini-Project: Tool or Analysis Practicum

5. Appendix

5.1 References

[1] SourceForge Project Site: http://pmd.sourceforge.net/
[2] OnJava.com, Custom PMD Rules:
http://www.onjava.com/pub/a/onjava/2003/04/09/pmd rules.html

Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 14 of 14

