
ICU-CMU MSE 2008-2009

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

April 8, 2009

thethethethe CruXCruXCruXCruX

Bokuk Seo

Do-Hoon Kim

Yong Gyu Kim

Sang-hyun Lee

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 2 of 14

Revision History

Version Date
Updated

Revision Author Brief Description of Changes

0.1 04-01-2009 Yong Gyu Kim Initial document created

0.2 04-07-2009 Yong Gyu Kim Updated for tool experimentation result

0.3 04-08-2009 Yong Gyu Kim Updated for tool experience detail (FP)

1.0 04-08-2009 Yong Gyu Kim Updated for reference sites

Instructions: For the suggested topics below, replace <text within brackets> with project specific

information. Some of the topics may not apply to all projects. In the topics where a response is optional,

a choice, [“N/A for this report”] is included in the instructions.

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 3 of 14

Table of Contents

< Generated Automatically. To update table based on changes in the document, select the table and

hit F9. >

1. INTRODUCTION ... 4

1.1 REPORT GENERAL .. 4
1.2 RUNNING PMD ... 4

2. TOOL EXPERIENCE .. 6

2.1 BASIC USE OF PMD ... 6
2.2 CUSTOM USE OF PMD .. 8

3. PMD IN PRACTICE .. 9

3.1 ANALYSIS OVERALL .. 9
3.2 FINDINGS IN DETAIL ... 10
3.3 USELESSNESS (TRUE POSITIVE IRRELEVANT) ... 11
3.4 FALSE POSITIVES .. 12

4. CONCLUSION .. 13

5. APPENDIX .. 14

5.1 REFERENCES .. 14

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 4 of 14

1. Introduction
This document is to describe the Java static analysis tool, PMD which is famous for detecting

bugs before running.

1.1 Report general

PMD is the Open Source (BSD licensed) tool of Tom Copeland and has functionality to find

bugs as analyzing Java source code. It is similar with FindBugs and Lint4j for general

perspectives. But here we tried to catch essential functions and usefulness of PMD as focusing

on various viewpoints.

Indeed, PMD checks for a long list of possibly bad programming practices and possible error

conditions in source programs. Our feeling about it is mixed -- it is undoubtedly very useful,

but the number of warnings about things which actually OK were excessive. Of course, what

we should be doing it apply the rules so it diagnoses what we think are important.

1.2 Running PMD

1.2.1 Installation

PMD is made in Java and it can be used the way of standalone or plug in.

- Standalone: It can be downloaded from SourceForge.net

- Plug-in Eclipse : http://pmd.sourceforge.net/eclipse

[F[F[F[FIGUREIGUREIGUREIGURE1.1.1.1. PDMPDMPDMPDM PROJECT SITEPROJECT SITEPROJECT SITEPROJECT SITE]]]]

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 5 of 14

1.2.2 How it works

At the heart of PMD is the JavaCC parser generator, which PMD uses in conjunction with an

Extended Backus-Naur Formal (EBNF) grammar and JJTree to parse Java source code into an

Abstract Syntax Tree (AST). That was a big sentence with a lot of acronyms, so let's break it

down into smaller pieces.

Java source code is, at the end of the day, just plain old text. As your compiler will tell you,

however, that plain text has to be structured in a certain way in order to be valid Java code. That

structure can be expressed in a syntactic metalanguage called EBNF and is usually referred to as

a "grammar." JavaCC reads the grammar and generates a parser that can be used to parse

programs written in the Java programming language.

[T[T[T[TABLEABLEABLEABLE1.1.1.1. SSSSAMPLE AMPLE AMPLE AMPLE CCCCODEODEODEODE]]]]

- Source Code

public class Foo {

 public void bar() {

 System.out.println("hello

world");

 }

}

- Abstract Syntax Tree

CompilationUnit

 TypeDeclaration

 ClassDeclaration

 UnmodifiedClassDeclaration

 ClassBody

 ClassBodyDeclaration

 MethodDeclaration

ResultType

 MethodDeclarator

 FormalParameters

 Block

 BlockStatement

 Statement

 StatementExpression

 PrimaryExpression

 PrimaryPrefix

 Name

 PrimarySuffix

 Arguments

 ArgumentList

 Expression

 PrimaryExpression

 PrimaryPrefix

 Literal

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 6 of 14

2. Tool Experience

2.1 Basic Use of PMD

2.1.1 Current Rulesets

PMD uses the Rulesets to check and validate the code and they are called as Basic Rules for pre-

defined. And list of rulesets and rules contained in each ruleset. [1]

� Android Rules: These rules deal with the Android SDK, mostly related to

best practices. To get better results, make sure that the auxclasspath is defined

for type resolution to work.

� Basic JSF rules: Rules concerning basic JSF guidelines.

� Basic JSP rules: Rules concerning basic JSP guidelines.

� Basic Rules: The Basic Ruleset contains a collection of good practices which

everyone should follow.

� Braces Rules: The Braces Ruleset contains a collection of braces rules.

� Clone Implementation Rules: The Clone Implementation ruleset contains a

collection of rules that find questionable usages of the clone() method.

� Code Size Rules: The Code Size Ruleset contains a collection of rules that

find code size related problems.

� Controversial Rules: The Controversial Ruleset contains rules that, for

whatever reason, are considered controversial. They are separated out here to

allow people to include as they see fit via custom rulesets. This ruleset was

initially created in response to discussions over UnnecessaryConstructorRule

which Tom likes but most people really dislike :-)

� Coupling Rules: These are rules which find instances of high or inappropriate

coupling between objects and packages.

� Design Rules: The Design Ruleset contains a collection of rules that find

questionable designs.

� Finalizer Rules: These rules deal with different problems that can occur with

finalizers.

� Import Statement Rules: These rules deal with different problems that can

occur with a class' import statements.

� J2EE Rules: These are rules for J2EE

� JavaBean Rules: The JavaBeans Ruleset catches instances of bean rules not

being followed.

� JUnit Rules: These rules deal with different problems that can occur with

JUnit tests.

� Jakarta Commons Logging Rules: The Jakarta Commons Logging ruleset

contains a collection of rules that find questionable usages of that framework.

� Java Logging Rules: The Java Logging ruleset contains a collection of rules

that find questionable usages of the logger.

� Migration Rules: Contains rules about migrating from one JDK version to

another. Don't use these rules directly, rather, use a wrapper ruleset such as

migrating_to_13.xml.

� Migration13: Contains rules for migrating to JDK 1.3

� Migration14: Contains rules for migrating to JDK 1.4

� Migration15: Contains rules for migrating to JDK 1.5

� MigratingToJava4: Contains rules for migrating to JDK 1.5

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 7 of 14

� Naming Rules: The Naming Ruleset contains a collection of rules about

names - too long, too short, and so forth.

� Optimization Rules: These rules deal with different optimizations that

generally apply to performance best practices.

� Strict Exception Rules: These rules provide some strict guidelines about

throwing and catching exceptions.

� String and StringBuffer Rules: These rules deal with different problems that

can occur with manipulation of the class String or StringBuffer.

� Security Code Guidelines: These rules check the security guidelines from

Sun, published at http://java.sun.com/security/seccodeguide.html#gcg

� Type Resolution Rules: These are rules which resolve java Class files for

comparisson, as opposed to a String

� Unused Code Rules: The Unused Code Ruleset contains a collection of rules
that find unused code.

[F[F[F[FIGUREIGUREIGUREIGURE2222.... PDMPDMPDMPDM PPPPLUGLUGLUGLUG----IN WITH IN WITH IN WITH IN WITH EEEECLIPSECLIPSECLIPSECLIPSE]]]]

2.1.2 Case of basic use

[T[T[T[TABLEABLEABLEABLE2222.... PMDPMDPMDPMD XMLXMLXMLXML RRRREPORTEPORTEPORTEPORT]]]]

<?xml version="1.0"?>
<pmd>
<file name="/Users/elharo/src/ImageGrabber.java">
<violation line="32" rule="ShortVariable" ruleset="Naming Rules" priority="3">
Avoid variables with short names like j
</violation>
<violation line="105" rule="VariableNamingConventionsRule" ruleset="Naming Rules"

priority="1">
Variables that are not final should not contain underscores
(except for underscores in standard prefix/suffix).

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 8 of 14

</violation>
</file>
<error filename="/Users/elharo/src/ImageGrabber.java"
 msg="Error while processing /Users/elharo/ImageGrabber.java"/>
</pmd>

In table 2, PMD shows the 2 problems in the code list. Line 32 and 105 with underscore

violated ImageGrabber.java.

2.2 Custom Use of PMD

2.2.1 Rule Coding

We used JavaCC and JJTree to use an EBNF grammar to turn our source code into an

structured object hierarchy. Now we can put those objects to use by writing some rules to look

for problems.

Generally, a PMD rule is a visitor that traverses the AST looking for a particular pattern of

objects that indicates a problem. This can be as simple as checking for occurrences of new

Thread, or as complex as determining whether or not a class is correctly overriding both equals

and hashcode.

2.2.2 How to write a PMD rule

Writing PMD rules is cool because you don't have to wait for us to get around to implementing

feature requests. Here's a simple PMD rule that checks for empty if statements

[T[T[T[TABLEABLEABLEABLE3333.... WWWWRITE RITE RITE RITE PMDPMDPMDPMD RRRRULEULEULEULE:::: IFIFIFIF]]]]

// Extend AbstractRule to enable the Visitor pattern

public class EmptyIfStmtRule extends AbstractRule implements Rule {

 // This method gets called when there's a Block in the source code

 public Object visit(ASTBlock node, Object data){

 // If the parent node is an If statement and there isn't anything

 // inside the block

 if ((node.jjtGetParent().jjtGetParent() instanceof ASTIfStatement)

 && node.jjtGetNumChildren()==0) {

 // then there's a problem, so add a RuleViolation to the Report

 RuleContext ctx = (RuleContext)data;

 ctx.getReport().addRuleViolation(createRuleViolation(ctx,

 node.getBeginLine()));

 }

 // Now move on to the next node in the tree

 return super.visit(node, data);

 }

}

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 9 of 14

3. PMD in practice

3.1 Analysis Overall

3.1.1 Experiment Setup

(1) Target Source

CHECKERS: ASSIGNMENT WE DID

� Major Concerns

- Basic rule verification: Unfamiliar with Java

- Design Concern: Not much experience for design

- Others are usual but controversial

3.1.2 Analysis Results from PMD

[F[F[F[FIGUREIGUREIGUREIGURE3333.... PMDPMDPMDPMD VVVVIOLATION IOLATION IOLATION IOLATION RRRRPORTPORTPORTPORT]]]]

PMD has 5 levels of violation from 1 to 5: High Error, Error, High warning, Warning,

and Information. According to 1 and 2 are considered as critical to run the program,

we have to solve them firstly. Here are the actual results of violation summary of our

target application.
[T[T[T[TABLEABLEABLEABLE4444.... PMDPMDPMDPMD RRRRESULTESULTESULTESULT]]]]

Level # of Violation Count # of Violations / LOC

1 10 5.5

2 9 12.3

3 366 274.5

4 0 0

5 46 34.15

[Note] http://pmd.sourceforge.net/scoreboard.html would show the detail benchmark data

using PMD for open sources.

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 10 of 14

3.2 Findings in detail

During our practice, we focused on trying to catch exact conformance with tool and our

project codes. From this point of approaches, we can get the useful information out projects

and additional guides to improve them. Here are the main rulesets we tried as following

cases:

� Basic Rules

� Design Rules

� Controversial Rules

3.2.1 Useless (True positives relevant)

- Basic Rules: ConfusingTernary

When we tried to check the code to write the IF statement, we wrote the command prior to

else statement. At this case, we must use the Object .equal to follow the rule but we did not.

This ruleset clearly shows the misuse of code

[F[F[F[FIGUREIGUREIGUREIGURE3333.... BBBBASIC ASIC ASIC ASIC RRRRULESULESULESULES:::: CCCCONFUSINGONFUSINGONFUSINGONFUSINGTTTTERNARYERNARYERNARYERNARY]]]]

- Design Rules: UseSingleton

In case of every static method in the class, the tool recommend to use the Singleton pattern

for design.

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 11 of 14

[F[F[F[FIGUREIGUREIGUREIGURE4444.... DDDDESIGN ESIGN ESIGN ESIGN RRRRULESULESULESULES:::: UUUUSESESESESSSSINGLETONINGLETONINGLETONINGLETON]]]]

3.2.2 Uselessness (True positive irrelevant)

Here we put two examples we found as the true positive things which are not relevant to goal

of project.

- Design Rule: ConstructorCallsOverridableMethod

When we call override-able methods during construction, it poses a risk of invoking

methods on an incompletely constructed object and can be difficult to discern.

[F[F[F[FIGUREIGUREIGUREIGURE5555.... DDDDESIGN ESIGN ESIGN ESIGN RRRRULESULESULESULES:::: CCCCONSTRUCTORONSTRUCTORONSTRUCTORONSTRUCTORCCCCALLSALLSALLSALLSOOOOVERRIDABLEVERRIDABLEVERRIDABLEVERRIDABLEMMMMETHODETHODETHODETHOD]]]]

- Controversial Rules: NullAssignment

Assigning a "null" to a variable (outside of its declaration) is usually bad form.

[F[F[F[FIGUREIGUREIGUREIGURE6666.... CCCCONTROVERSIAL ONTROVERSIAL ONTROVERSIAL ONTROVERSIAL RRRRULESULESULESULES:::: NNNNULLULLULLULLAAAASSIGNMENTSSIGNMENTSSIGNMENTSSIGNMENT]]]]

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 12 of 14

3.2.3 False positives

Here are the results taken to find out “False positives” with PMD. Actually, it might not the

big problem but it could be somewhere certain conditions as below:

- Basic Rule: JumbledIncrementer

It inevitably avoids jumbled loop incrementers. Although it is a usual mistake, it's still

confusing even if it's what has intended.

[F[F[F[FIGUREIGUREIGUREIGURE7777.... BBBBASIC ASIC ASIC ASIC RRRRULEULEULEULE:::: JJJJUMBLEDUMBLEDUMBLEDUMBLEDIIIINCREMENTERNCREMENTERNCREMENTERNCREMENTER]]]]

- Design Rule: MissingBreakInSwitch

In case of switch � loop structure, it does not warn about the “break”-missing case of

switch statement. If we are correct, it must show the message of MissingBreakInSwitch.

[F[F[F[FIGUREIGUREIGUREIGURE8888.... BBBBASIC ASIC ASIC ASIC RRRRULULULULEEEE:::: MMMMISSINGISSINGISSINGISSINGBBBBREAKREAKREAKREAKIIIINNNNSSSSWITCHWITCHWITCHWITCH]]]]

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 13 of 14

4. Conclusion
PMD has typical static analysis tool’s characteristics and we can summarize the

PMD’s own characteristics as below:

� Strength

� Have access to the actual instructions the software will be executing

� No need to guess or interpret behavior

� Full access to all of the software’s possible behaviors

� Weakness

� Will not find issues related to operational deployment environments

And we can agree with additional but realistic meaning of PMD usage such as

� Cheap for tool but expensive for extension (painful)

• This tool can be easily learned and operated

•

� Very Shiny

• When it finds REALLY hidden errors.

• But it does not impressive to us because free editor simply covers most

of possible error.

� Still needs to test

• PMD cannot substitutes the unit test and acceptance test

17-654: Analysis of Software Artifacts

Mini-Project: Tool or Analysis Practicum

 Assignment Report Doc. Version 1.10
TTA-the CruX Template Version 1.0 Page 14 of 14

5. Appendix

5.1 References
[1] SourceForge Project Site: http://pmd.sourceforge.net/

[2] OnJava.com, Custom PMD Rules:

http://www.onjava.com/pub/a/onjava/2003/04/09/pmd_rules.html

