
ANALYSIS OF SOFTWARE ARTIFACTS - CARNEGIE MELLON UNIVERSITY

FxCop Tool Evaluation

Project Report

Authors:

Ramesh Seela

Ryan Miller

Derek Chang

Ali Shojaeddini

Ankit Sengar

3/25/2008

FxCop Tool Evaluation Project Report

2

Contents

1 Introduction ..4

2 How FxCop Works...4

2.1 Summary of Analysis Techniques..5

2.2 Applicable Development Environments ...6

2.3 Process ..6

2.3.1 Output and Graphical User interface..6

3 Quantitative Evaluation ..7

3.1 Sample Project Selection ..7

3.2 Experiment Process...8

3.3 Empirical Findings ...8

3.3.1 Issue Distribution before Customization ..8

3.3.2 Issue Distribution after Customization ...10

3.4 Issue Classification as True Positive and False Positive ..12

3.4.1 Sample True Positives – Relevant ...12

3.4.2 Sample True Positives – Irrelevant..14

3.4.3 Sample False Positives ..15

4 Qualitative Evaluation...16

4.1 Report Content ...16

4.2 Usability ..17

4.3 Customization and Rule Extension..17

4.4 Documentation and Community Support...18

5 Visual Studio Team System Integration ..18

5.1 Rule Categories ...18

5.1.1 Maintainability Rules ..19

5.1.2 Reliability Rules ...19

5.2 Code Metrics ...19

FxCop Tool Evaluation Project Report

3

6 Conclusion...20

7 References ..21

FxCop Tool Evaluation Project Report

4

1 Introduction

FxCop is a static code analysis tool that checks .NET managed code assemblies for code correctness and

conformance to the Microsoft .NET Framework Design Guidelines. FxCop is primarily aimed at

supporting the adoption of the .NET Framework design guidelines, establish best practices that minimize

code defects and maintenance costs, and transfer expert knowledge regarding technical issues and

common programming errors to developers. FxCop helps developers create more consistent APIs

(critical in framework and library development,) performant code, and secure applications.

The current version of FxCop (1.36 Beta 2) uses over 200 rules to categorize the defects in the following

areas:

1. Design

2. Globalization

3. Interoperability

4. Naming Conventions

5. Mobility

6. Performance

7. Portability

8. Security

9. Usage

FxCop analyzes all constructs in .NET Framework applications including resource files, assemblies,

modules, types, properties, events, and exceptions.

2 How FxCop Works

FxCop uses the following features for code analysis:

• Targets: These are managed code assemblies, used for analysis.

• Rules: These are the checks either provided by FxCop or created by the developers

executed on the targets.

• Messages: These are the feedback reported as XML based output based on application

of Rules.

FxCop uses an analysis engine that deconstructs the assemblies using meta-data APIs [Source: MSDN].

The engine calls in the relevant rules for each target or each assembly. It manages the messages that

result from analysis and ignores excluded messages.

The tool allows developers to define new rules and integrate them seamlessly to the existing rule set.

Moreover, the rule sets can be customized to avoid the use of inapplicable rules and suppress messages

generated by the tool. FxCop includes interface to define and add new rules that are specific to the

standards and policies set forth by the project.

FxCop Tool Evaluation Project Report

5

C#,

VB,

.Net modules

MSIL code assemblies

(.dll and .exe) FxCop

G

L

O

B

A

L

I

Z

A

T

I

O

N

P

E

R

F

O

R

M

A

N

C

E

M

O

B

I

L

I

T

Y

U

S

A

G

e

I

N

T

E

R

O

P

E

R

A

B

I

L

I

T

y

FxCop Analysis

FxCop

Rules

Custom

Rules

Rules

Figure 1: Program analysis using FxCop

2.1 Summary of Analysis Techniques

FxCop uses Reflection exposed type system [Source: MSDN] in the assemblies to disassemble

Intermediate Language, build call graphs from assemblies, and generate control flow graphs from

Methods. FxCop implements a combination of MSIL parsing, static analysis, and call graph analysis

techniques to identify and report code defects.

MSIL parsing : FxCop includes an in-built parser to verify Microsoft Intermediate Language code that

includes CPU-independent set of instructions for loading, storing, initializing, and calling methods on

objects, as well as instructions for arithmetic and logical operations, control flow, direct memory access,

exception handling, and other operations.

Static data analysis: FxCop analyses various methods in managed code assemblies by applying both pre-

defined and customized rules defined for the project. Using this analysis, the tool identifies code defects

that do not adhere to .NET Framework design guidelines. The informative messages help guide the

developer understand the anomalies and make necessary corrections to the underlying code.

Call-graph analysis: FxCop internally generates graphs that represent calling relationships among

various methods in the managed code assemblies. These call graphs are used to detect anomalies of

program execution, violation of recommended guidelines, and possible code injection attacks.

The implementation details of algorithms implemented by FxCop are proprietary and are not published

to developer communities.

FxCop Tool Evaluation Project Report

6

2.2 Applicable Development Environments

FxCop is designed for analyzing code assemblies of .NET 1.x, .NET 2.0 and .NET 3.x components for

conformance to the Microsoft .NET Framework. A project that is built using code that does not include

.NET code assemblies does not benefit from this tool.

FxCop includes both GUI and command line versions of the tool and is geared for Windows platform that

uses .NET framework version 2.0 or above. The tool support extends to operating systems such as

Windows 2000, Windows XP, Windows Vista, Windows 2000 Server, and Windows Server 2003.

FxCop is highly scalable and can be used code bases containing millions of lines of code assemblies.

2.3 Process

FxCop application comes in two flavors: 1) GUI driven analysis tool (FxCop.exe) and 2) Command driven

analysis tool (FxCopCmd.exe)

 Before performing analysis of code assemblies, the developer needs to provide the information of

target assemblies (.exe file or .dll file) and the applicable rules. The following steps can be used with GUI

based tool to perform the analysis:

1. Launch FxCop application

2. Click “Project” Menu, Choose “Add Targets” and choose one or more .NET Assemblies

3. Enable Rules in the configuration pane and/or choose “Project Menu”, choose “Add

Rules” and pick the file that includes custom FxCop Rule assemblies.

4. Click “Analyze” button on toolbar.

The application displays progress of analysis and the name of analysis engine used to perform the

analysis. At the end of analysis, a summary of analysis is displayed that includes statistics and error

messages corresponding to the completed analysis. The report also includes the messages, the number

of message, start and end time of analysis, and problems encountered while performing the analysis.

2.3.1 Output and Graphical User interface

Following the completion of analysis, the FxCop application window displays the targets and rules

included in a project, and the generated messages. The window is divided into three major areas: the

configuration pane on the left, the messages pane on the right, and the properties pane at the bottom,

as shown in the following screen shot.

FxCop Tool Evaluation Project Report

7

Figure 2 Screenshot of the FxCop 1.36 user interface

 FxCopCmd can be used as a stand-alone tool, added to automated build processes, or integrated with

Microsoft Visual Studio .NET as an external tool.

3 Quantitative Evaluation

This section explains the quantitative approach used for evaluating the tool and determining its

strengths and weaknesses.

3.1 Sample Project Selection

Two projects were selected as sample targets for performing test analysis runs and collecting

quantitative data on tool performance. These projects are introduced below.

• QuickGraph
1

The application provides .NET-based generic graph data structures and algorithms. This

package seems ideal for an analysis because of its computation intensive nature.

1
 http://www.codeplex.com/quickgraph

FxCop Tool Evaluation Project Report

8

Moreover, many easy to find defects are probably worked out (the product is on release

2.0,) and the tool can be tested for detecting obscure and hard to find bugs.

• MSDN Reader
2

This application provides offline/caching of MSDN articles and content annotation and

sharing. It is based on the new Syndicated Client Experiences Starter Kit Beta SDK

released by Microsoft. This project is chosen because it uses some of the .NET

Framework technologies such as Windows Presentation Foundation that we intend to

use in our Studio project.

3.2 Experiment Process

The following steps were planned and followed for testing tool performance and collecting quantitative

data.

1. Initially, the tool is run on selected projects with all the rule categories enabled. This

step is used to collect information on all supported rules and collect information to be

used as the basis for customization in the following steps.

In this step, the distribution of reported issues over different Rule Categories and

Severity Levels is reported.

2. In this step, the tool is customized in two steps to exclude certain categories of rules as

well as specific rules from remaining categories.

3. After rule customization, the analysis is performed again to collect the new warning

distribution data.

4. Finally, a subset of warnings from included rules are inspected manually to:

a. Determine accuracy of reported warnings and classify them as True Positive, True

Positive – Don’t Care, and False Positive.

b. Project the number of warnings in each classification mentioned above

according to sample data.

3.3 Empirical Findings

3.3.1 Issue Distribution before Customization

The information provided in this section is the outcome of the first step in the process outlined earlier.

Table 1 and Table 2 present the summary of reported issues for the MSDN Reader and QuickGraph

projects respectively.

2
 http://code.msdn.microsoft.com/msdnreader

FxCop Tool Evaluation Project Report

9

Table 1 Summary of reported issues for the MSDN Reader project

Severity Level Design Globalization Interoperability Mobility Naming Performance Portability Security Usage

Critical Error 39 0 0 0 8 0 0 7 4

Error 29 20 0 0 49 0 5 0 10

Critical Warning 30 0 0 0 56 8 0 0 8

Warning 84 0 5 0 0 79 0 0 29

Total 182 20 5 0 113 87 5 7 51

Table 2 Summary of reported issues for the QuickGraph project

Severity Level Design Globalization Interoperability Mobility Naming Performance Portability Security Usage

Critical Error
5 0 0 0 0 0 0 0 7

Error
42 45 0 0 26 0 0 0 1

Critical Warning
7 0 0 0 132 0 0 0 0

Warning
7 0 0 0 0 17 0 0 2

Total
61 45 0 0 158 17 0 0 10

According to an investigation of rules supported by each category and the empirical information

presented above, the following rule categories were excluded according to the first planned

customization step:

• Naming: adherence to organization and project naming conventions may override those

of the .NET Framework Design Guidelines

• Globalization: applicability of these rules depends on project needs and may not apply

to all products

• Interoperability: interacting with COM clients may not be required or desirable in many

projects

• Mobility: these rules support efficient power usage which is applicable only to certain

projects

After performing intermediate test runs (without the excluded categories,) the following criteria were

used to exclude specific rules according to individual rule importance, severity level, and accuracy level
3
.

The following list provides brief description of the strategy used for two major categories:

• For design issues, we skip rules that result only in warnings with low certainty

percentage and low severity level. Examples of such rules include “Avoid Namespaces

with Few Types”, “Use Properties Where Appropriate”, or “Indexers Should Not Be

Multidimensional.”

3
 The severity and accuracy levels are provided by the rule as part of the reported issues.

FxCop Tool Evaluation Project Report

10

• For performance, security, and usage warnings, we inspect all rules to ensure no issues

are overlooked. For example, we include the “Review Visible Event Handlers” rule, even

though it results in low-certainty warnings.

3.3.2 Issue Distribution after Customization

The information presented in this section reflects the results of executing step 3 in the process outlined

above.

Figure 3 and Figure 4 demonstrate the distribution of reported issues for the two sample projects.

0

10

20

30

40

50

60

70

80

90

100

Design Performance Portability Security Usage

Warning

Critical Warning

Error

Critical Error

Figure 3 Distribution of reported issues for MSDN Reader after customization

FxCop Tool Evaluation Project Report

11

0

5

10

15

20

25

30

35

40

45

50

Design Performance Portability Security Usage

Warning

Critical Warning

Error

Critical Error

Figure 4 Distribution of reported issues for QuickGraph after customization

As demonstrated in these figures, the majority of reported issues fall in Design, Usage, and Performance

categories. This is consistent with the original purpose of the tool, which is ensuring that the application

or library complies with .NET Framework Design Guidelines. Figure 5 the percentage of issues reported

in each category for both sample projects.

Design

39%

Performance

36%

Usage

21%

Security

2%

Portability

2%

Figure 5 Combined distribution of reported issues over categories after customization

FxCop Tool Evaluation Project Report

12

Of course, more sample projects from different application domains are needed before concluding on

performance of the tool in each category. However, based on stated purpose of the tool, the number of

important rules in the categories, and the empirical findings presented here, the following rule

categories are the strongest within the tool: Design, Usage, and Performance.

3.4 Issue Classification as True Positive and False Positive

We believe that the certainty provided by the rule as part of the issue report provides a good measure

of confidence in the accuracy of the report. Furthermore, inspecting every single issue in the

applications that we are not familiar with is an infeasible and error-prone process. Therefore, we

employed a sampling mechanism for efficiency—if the certainty was above 60% for the same rule, we

inspected half of the reported issues randomly; if it was below 60%, we inspected all of them.

As a result of the process described above, we achieved the following statistical information for the rate

of reported issues within each classification (relevant true positives, irrelevant true positives, and false

positives.)

Table 3 True Positive and False Positive classification of issues for MSDN Reader

Severity Level Design Performance Portability Security Usage All Categories

True Positive – Relevant 56 65 0 0 16 137

True Positive - Irrelevant 12 18 5 7 35 77

False Positive 4 0 0 0 0 4

Total 72 83 5 7 51 218

Table 4 True Positive and False Positive classification of issues for QuickGraph

Severity Level Design Performance Portability Security Usage All Categories

True Positive – Relevant 37 10 0 0 2 49

True Positive - Irrelevant 10 7 0 0 8 25

False Positive 0 0 0 0 0

Total 47 17 0 0 10 74

3.4.1 Sample True Positives – Relevant

MSDN Reader

Method 'MsdnStoryImageHyperlink.MsdnStoryImageHyperlink(Uri, Story)' passes parameter name

'navigateUri' as the 'message' argument to a 'ArgumentException' constructor. Replace this argument

with a descriptive message and pass the parameter name in the correct position.

Warning Message

CriticalError, Certainty 95, for InstantiateArgumentExceptionsCorrectly

FxCop Tool Evaluation Project Report

13

{
 Resolution : "Method 'MsdnStoryImageHyperlink.MsdnStoryImageHyperlink(
 Uri, Story)' passes parameter name 'navigateUri' as

 the 'message' argument to a 'ArgumentException'

constructor.

 Replace this argument with a descriptive message and

 pass the parameter name in the correct position."
 Category : Microsoft.Usage (String)
 CheckId : CA2208 (String)
}

The Code Fragment

public MsdnStoryImageHyperlink(Uri navigateUri, Story story) : base()
{
 if (navigateUri == null)
 {
 throw new ArgumentException("navigateUri");
 }

 if (story == null)
 {
 throw new ArgumentNullException("story");
 }

 NavigateUri = navigateUri;
 _story = story;
 _imageReference = null;
 _isImageReferenceLink = false;
}

Quickgraph

Do not declare static members on generic types(This is a critical issue and we cannot compile our

program with generic types defined as static)

Warning Message

Error, Certainty 95, for DoNotDeclareStaticMembersOnGenericTypes
 {
 Resolution : "Remove 'Edge<TVertex>.VertexType' from 'Edge<TVertex>'
 or make it an instance member."
 Category : Microsoft.Design (String)
 CheckId : CA1000 (String)
 }

The Code Fragment

using System;
 namespace QuickGraph
 {
 [Serializable]

FxCop Tool Evaluation Project Report

14

 public class Edge<TVertex> : IEdge<TVertex>
 {
 private readonly TVertex source;
 private readonly TVertex target;

 public Edge(TVertex source, TVertex target)
 {
 GraphContracts.AssumeNotNull(source, "source");
 GraphContracts.AssumeNotNull(target, "target");
 this.source = source;
 this.target = target;
 }

 public static Type VertexType
 {
 get { return typeof(TVertex); }
 }

 public TVertex Source
 {
 get { return this.source; }
 }

 public TVertex Target
 {
 get { return this.target; }
 }

 public override string ToString()
 {
 return String.Format("{0}->{1}", this.Source, this.Target);
 }
 }
 }

}

3.4.2 Sample True Positives – Irrelevant

MSDN Reader

We don’t really care about the design issues because basically it is an RSS reader that the user will not

requires or has any mechanism to write collection data back to the back-end server.

Warning Message

Warning, Certainty 75, for CollectionPropertiesShouldBeReadOnly
{
 Resolution : "Change 'MainStoryControl.Stories' to be read-only
 by removing the property setter."
 Category : Microsoft.Usage (String)
 CheckId : CA2227 (String)

FxCop Tool Evaluation Project Report

15

}

The Code Fragment

/// <summary>
/// The StoryCollection this control is currently binding to.
/// </summary>
public StoryCollection Stories
{
 get { return (StoryCollection)GetValue(StoriesProperty); }
 set { SetValue(StoriesProperty, value); }
}

Quickgraph

Remove unused locals(We can ignore errors related to performance because they do not break our

application.)

Warning Message

 Warning, Certainty 95, for RemoveUnusedLocals
 {
 Resolution : "'ImplicitEdgeDepthFirstSearchAlgorithm<TVertex,
 TEdge>.Visit(TEdge, int)' declares a variable, 'c',
 of type 'GraphColor', which is never used or is only
 assigned to. Use this variable or remove it."
 Category : Microsoft.Performance (String)
 CheckId : CA1804 (String)
 }

The Code Fragment

if (!this.EdgeColors.ContainsKey(e))
 {
 OnDiscoverTreeEdge(se, e);
 Visit(e, depth + 1);
 }
 else
 {
 GraphColor c = this.EdgeColors[e];
 if (EdgeColors[e] == GraphColor.Gray)
 OnBackEdge(e);
 else
 OnForwardOrCrossEdge(e);
 }

3.4.3 Sample False Positives

MSDN Reader

FxCop Tool Evaluation Project Report

16

The code actually implemented with the base type. We believe that they might be some

compiling/building transformation causes the false positives. And actually four identified issues are also

false positives.

Warning Message

Error, Certainty 50, for ConsiderPassingBaseTypesAsParameters
{
 Resolution : "Consider changing the type of parameter 'e' in
 'MsdnViewManager.OnImageHyperlinkRequestNavigate(object,

 RequestNavigateEventArgs)' from 'RequestNavigateEventArgs'

 to its base type 'RoutedEventArgs'. This method appears

 to only require base class members in its implementation.

 Suppress this violation if there is a compelling reason

 to require the more derived type in the method signature."
 Category : Microsoft.Design (String)
 CheckId : CA1011 (String)
}

The Code Fragment

 /// <summary>
 /// Static handler for image hyperlink's request navigate event
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 public void OnImageHyperlinkRequestNavigate(object sender, RoutedEventArgs
e)
 {
 // actuall code here….
 //…………………
 //…………………
 // actuall code here….

 }

4 Qualitative Evaluation

4.1 Report Content

The warnings reported by the tool contain comprehensive information that explain cause of the warning

and guide the developers in fixing the issues. The following table lists some of the important items

included in each warning.

Item Description

Message Level The importance of the issue that is identified by the rule (the four levels

are Critical Error, Error, Critical Warning, and Warning)

Certainty The estimate of the probability that the issue is detected correctly (an

integer between 1 and 99)

Breaking Change Whether the fix for a violation of the rule constitutes a breaking change

FxCop Tool Evaluation Project Report

17

Breaking change means that an assembly that has a dependency on the

target that caused the violation will not re-compile with the new fixed

version or might fail at runtime because of the change

How to Fix Violations Explains how to change the source code to satisfy the rule and prevent it

from generating a warning

When to Exclude Warnings Describes when it is safe to exclude a warning from the rule

4.2 Usability

The user interface of the tool is designed in a way that can guide users in operating the tool without

referring to any manual. Moreover, the main functionalities of the tool are accessible through main

application view, and don’t require exploring options and settings dialogs. Especially, rule customization

and navigation can be easily done through the left Rules pane.

However, inspecting reported issues is not done as easiest possible way since the tool relies on external

editors to direct the users to the origin of the reported issue. This is because FxCop handles .NET

assemblies rather than source files. Therefore, tracing the issues back to source will require more effort

from the users.

4.3 Customization and Rule Extension

As demonstrated in Figure 6, the tool allows entire categories or specific rules within categories to be

excluded in the analysis. Rule customization is stored in the FxCop analysis project file. Therefore, it is

possible to use various customizations for different projects according to their needs. The tool also

allows specific rules to be excluded through inspection of issues reported by that rule.

Figure 6 Rule customization in FxCop analysis projects

FxCop Tool Evaluation Project Report

18

In addition, FxCop allows users to extend the tool by providing custom rule sets. All rule sets are stored

in .NET assemblies, and the rule assemblies are loaded at run-time to access and execute the rules.

Therefore, adding a new rule set involves developing a new .NET assembly containing the new rules and

configuring the tool to load the assembly in addition to default rule assemblies.

The FxCop SDK contains the two following assemblies that must be referenced by developed rule sets:

• FxCopSdk.dll

• Microsoft.Cci.dll

After referencing these assemblies, the API will be accessible through the “Microsoft.FxCop.Sdk”

namespace.

4.4 Documentation and Community Support

Microsoft developer network contains sufficient documentation and guidelines for using the tool.

Moreover, the built-in rules are well-documented and accompanied by recommended ways to fix the

issues and example violations of the rule in different .NET languages.

However, limited documentation is available on the internal methods and analysis techniques used by

the tool. Similarly, limited documentation was available regarding development of custom rules by using

the FxCop SDK, and we relied on third-party articles to gather information on how the tool can be

extended. As a result, there is no large repository of community developed rules that can be

downloaded and plugged in the tool.

5 Visual Studio Team System Integration

Starting with Visual Studio 2005, the FxCop analysis engine is integrated in the Team System edition of

the Visual Studio product family. The following sections briefly explain the static analysis features

available in Visual Studio Team System 2008.

Integration of the static analysis engine in Visual Studio enhances the usability and lifecycle integration

of the tool. Static analysis can be configured directly in Visual Studio solution and project properties and

enforced at check-in time when accessing code through supported source control products. Moreover,

the errors and warnings are reported in the standard build output windows and code inspection does

not require launching an external source editor.

5.1 Rule Categories

Visual Studio Team System 2008 supports all categories and rules available in FxCop 1.36 engine.

However, two additional rule categories are introduced in Visual Studio. These rule categories are briefly

explained below.

FxCop Tool Evaluation Project Report

19

5.1.1 Maintainability Rules

These rules mainly rely on the new Code Metrics feature of Visual Studio 2008 to detect unmaintainable

code. The Code Metrics features of Visual Studio are briefly introduced later in this section. The

following is the list of rules under this category:

• Avoid excessive class coupling

• Avoid excessive complexity

• Avoid excessive inheritance

• Avoid unmaintainable code

• Review misleading field names

• Variable names should not match field names

5.1.2 Reliability Rules

These rules support reliability of the library or application by ensuring correct memory management and

thread usage. The rules in this category include:

• Avoid calling problematic methods

• Do not lock on objects with weak identity

• Do not treat fibers as threads

• Remove calls to GC.KeepAlive

• Use SafeHandle to encapsulate native resources

5.2 Code Metrics

As mentioned above, Code Metrics is a new feature introduced in Visual Studio Team System 2008. This

feature is accessible through the “Code Metrics Results” window (Figure 7) and helps users detect

complex and unmaintainable areas in the code. This feature is also the basis for the new Maintainability

category of static analysis rules.

FxCop Tool Evaluation Project Report

20

Figure 7 Code Metrics Results tool window in Visual Studio Team System 2008

The five metrics calculated by the Code Metrics feature are listed below:

• Class Coupling

Indicates the total number of dependencies that the item has on other types

• Depth of Inheritance

Indicates the number of types that are above the type in the inheritance tree

• Cyclomatic Complexity

Indicates the total number of individual paths through the code

• Lines of Code

Indicates the total number of executable lines of code, which excludes white space,

comments, braces and the declarations of members, types and namespaces

• Maintainability Index

Indicates the overall maintainability index (0 to 100) of a member or type based on

several metrics, including Halstead Volume, Cyclomatic Complexity and Lines of Code

6 Conclusion

Based on analysis, we conclude that FxCop is a simple, easy-to-use tool with rich features to catch

possible code violations early in the development and build secure and performant code. The tool

Moreover, the tool is available free and is enhanced on a regular basis by the leading company in

software. The only drawback, limited documentation available for the tool, is alleviated through the use

of online forums by the DotNet community.

FxCop Tool Evaluation Project Report

21

6.1 Strengths

• Well suited for enforcing design and usage guidelines in .Net applications

• Self intuitive user interface offers adequate guidance to developers

• False positives reported by the tool are very minimal (based on our analysis)

• Messages and warnings reported during analysis are very informative

• Extensible and customizable rule sets

• Integrates seamlessly with Microsoft Visual Studio

6.2 Weaknesses

• Limited documentation on tool internals

• Insufficient guidance on creating customized rules

• Plugins for custom rules not available on MSDN communities

6.3 Recommendations

We recommend FxCop to teams developing software using .Net framework. As the tool integrates

seamlessly with VS.net, the teams using Visual Studio IDE are advised to include the tool in development

lifecycle and automate program analysis. In particular, the tool will prove useful to aid enforcement of

best design practices in the teams that include less experienced developers.

6.4 Applicability to MSE Studio

The software development for our studio project relies on .Net framework to build the platform to

support authoring and viewing cases. For a team constrained by human resource, FxCop comes very

handy in ensuring best programming practices and design guidelines. The ability to integrate the tool

with Visual Studio 2008 allows the team to catch the errors during code check-in and fix the code.

Performance, Portability, Security, and Robustness are a few quality attributes that are critical to the

success of the project. The team can use the rules offered by the tool along these categories and benefit

from customizing the rule sets to the requirements of the project.

7 References

• The Visual Studio Code Analysis Team Blog (http://blogs.msdn.com/fxcop/)

• FxCop overview (http://msdn2.microsoft.com/en-

us/library/bb429476%28VS.80%29.aspx)

• Code Correctness with FxCop

(http://msdn.microsoft.com/msdntv/transcripts/20031204FxCopMMTranscript.aspx)

