
Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

1�  

Tool Overview 
The tool we chose to analyze was the Java static analysis tool FindBugs 
(http://findbugs.sourceforge.net/).  
 
FindBugs is  

• A framework for writing static analyses 
• Developed at the University of Maryland  
• Actively maintained 
• Open source 
• Written in Java 

 
FindBugs does 

• Static analysis of java code 
• Class structure analysis 
• Linear code scans 
• Control sensitive analysis 
• Dataflow analysis 

 
FindBugs uses 

• A java parser called BCEL 
• Around 40 pre-written static analyses  
• “Bug patterns” to find bugs 

 

Purpose 
The purpose of FindBugs is to show that a large amount of bugs can be found by writing 
small and simple analyses.  FindBugs believes this is true because developers tend to 
make frequent mistakes and many times these mistakes are simple.  For example, in a 
Java serializable class it is very common to forget the version id, or to have a reference to 
a non-serializable class.  These types of bugs are sometimes hard to track down by 
running the application or by code reviews; however, they are simple to discover using 
simple static analyses. 
 

BCEL 
Byte Code Engineering Library (BCEL) is a library written by apache that parses java 
byte code.  Java byte code contains all of the symbolic information needed to do static 
analyses, including methods, fields, inheritance, and byte code instructions.   
 
BCEL has written a custom Java Virtual Machine (JVM) class loader that reads in java 
byte code and dumps out a file in its own custom format.  It then provides an OO 
interface to that file which allows FindBugs to access everything that it needs to do its 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

2�  

static analysis. 
 

Bug Patterns 
After noticing that developers make similar, simple mistakes FindBugs developed the 
concept of a bug pattern.  A bug pattern is a code idiom that has a high probability of 
being an error.  For example, not checking return values from functions that are known to 
return error values.  Most of the time forgetting to check these return values is an error.  
Furthermore, since the problem would only been seen through an uncommon error path it 
isn’t likely to be caught in black box testing.   
 
FindBugs ships with over detector for over 200 bug patterns.  They range from 
synchronization errors to bad exception handling to hard coded references.  Each bug 
pattern has varying levels of soundness and accuracy but most of them are simple.  The 
longest detector is around 1000 LOC but over ½ are less then 100 LOC. 
 
An interesting aspect of FindBugs is that all of the bug patterns are heuristic based.  This 
means the tool isn’t sound or correct, but it is still useful (as our data shows).  Find bugs 
isn’t trying to find all the bugs in your application nor is it trying to only report valid 
bugs.  It is trying to report the low hanging fruit.  By using bug patterns it is trying to 
report the bugs that will be easy to verify and easy to fix.     
 

Find Bugs as a Framework 
The pre-written bug pattern detectors in FindBugs are written using FindBugs powerful 
framework.  Even though FindBugs main use case is to use the pre-written detectors, it is 
easy to write your own analysis. 
 
The find bugs framework provides the ability to do: 

• Class structure analyses: An analysis can look at the structure of the class to 
find possible defects.  Some examples of what an analysis can look at are 
inheritance, methods, fields, as well as the access modifiers on methods and 
fields. 

• Linear code scans: An analysis can do a linear code scan through byte code to 
drive a state machine.  These analyses can approximate a control flow graph but 
they don’t make use of a complete control flow graph. 

• Context sensitive analyses:  An analysis can make use of an accurate control 
flow graph to do analysis of methods. 

• Dataflow analyses: An analysis can make sure of both control and data flow 
information.  These analyses are more complex then the other 3 but are more 
powerful.  An example is FindBugs pre-written null point analysis (which isn’t as 
good as the one we wrote). 

 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

3�  

Tool Usage 
FindBugs can be run as a standalone application utilizing a Swing interface, a command-
line application, or an Eclipse plug-in. There is even an Ant task provided so that 
FindBugs can be easily incorporated into an Ant-based project. 
 

Standalone Application 
The standalone, Swing version of FindBugs is very simple to get started with. The GUI 
presents the user with a blank window at first. To setup a project to analyze you go to 
File->New Project.  
 
You are then presented with a window with places to browse for and add each of the 
required sets of files and directories. To analyze a program, FindBugs requires the 

• Source files. 
• Compiled class files. 
• Libraries (jars or class files). 

The main window is shown in Figure 1. After supplying the required files and directories, 
you click the “Find Bugs!” button at the bottom of the window. 
 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

4�  

 

Figure 1 The main FindBugs window. 

 
FindBugs provides a few customization features. It separates bugs into 6 categories: 

1. Correctness 
2. Multithreaded correctness 
3. Performance 
4. Style 
5. Internationalization 
6. Malicious code vulnerability 
 

Each category can be turned off if you don’t care about those kinds of bugs. Additionally, 
you can tell FindBugs how much effort to put into detecting bugs 

• Low 
• Medium 
• High 
 

The higher the effort, the longer the analysis takes. You supposedly find more bugs by 
making FindBugs put in more effort. 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

5�  

 

Figure 2 FindBugs bug report window. 

 
FindBugs also comes with many detectors. A detector is a module designed to find a 
specific type of bug. The application provides a nice table listing all of the detectors in 
Settings->Configure Detectors. The resulting window lists the detectors by 
name, how fast they are, and whether they are enabled or not. You can toggle any 
detector’s active state from this window. 
 
The analysis time will vary depending on which of the above options you chose. We 
never saw it take longer than about 5 minutes on a project consisting of 237 classes with 
all of the options maxed out. 
 
After the program analyzes your code, you are presented with an error window if it had 
trouble finding any classes. If it did, it will still present you with the results of the tests 
that worked. 
 
In the window that presents the bugs found, there are 5 tabs that give you the information 
in different ways: 

1. By Class 
2. By Package 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

6�  

3. By Bug Type 
4. By Bug Category 
5. Summary 

 
You can also change what bugs you see by changing the warning filters in View-
>Filter Warnings. The program prioritizes warnings from Low to High and 
Experimental which seems to lie below the Low priority. The Experimental warnings are 
those associated with experimental detectors or features of detectors. 
 
Clicking on a reported bug shows you a description of the bug is the lower pane by 
default. Here, the developers were smart and nice enough to not only describe the bug, 
but also suggestions on how to check if it is a bug (they admit many times that not 
everything reported is a genuine bug) and if it is, they offer suggestions on how to fix it.  
 
The lower pane has 2 other tabs in addition to the bug description pane. The second one 
shows where in the source code the bug occurs including the surrounding lines. The third 
tab shows any annotations. 
 

Eclipse Plug-in 
The FindBugs Eclipse Plug-in is very easy to install and use. As a plug-in FindBugs 
works seamlessly with the code editor, which makes the task of verifying and fixing bugs 
very easy. 
 
To install the plug-in, you can download it from 
http://prdownloads.sourceforge.net/findbugs/de.tobject.findbugs_0.0.20.zip?download  
and unzip it in your Eclipse plugin directory. Once installed, FindBugs will be accessible 
through the right-click menu of the Java project. To run FindBugs, simply right click on 
the project and select “Find Bugs”. 
 
In the testing environment where we used the plug-in, Findbugs plugin ran within a 
minute. After completing its run, FindBugs displays the bugs found in the Eclipse 
Problems Tab, as shown in Figure 3 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

7�  

 

Figure 3 - FindBugs reporting bugs in Eclipse Problems tab 

 
The problems are associated with lines in the source code which simplifies the navigation 
between the different bugs: simply double click on the problem and Eclipse will show the 
file and line where the problem is. 
 
FindBugs provide its own custom window called “Bug Details”. If you need more detail 
on the type of bug that was found, you can right click on the bug in the Problems tab, and 
choose “Show bug details”.  
 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

8�  

 

Figure 4 - Bug details in Eclipse 

 
The same configurations (bug detector, effort, etc) that are available in the standalone 
version are available with the plugin. 
 

Testing Environment 
We tested FindBugs with two Java projects:  

1. TeamBots 
2. SuDuelKu 

 

TeamBots 
TeamBots is a open source API to control intelligent mobile agents.  More information 
can be found here: http://www.cs.cmu.edu/~trb/TeamBots/ 
 
The general size of TeamBots: 
Team Bots Info  

KLOC 20865 

Number of 

Classes 231 

Table 1 – Size of TeamBots 

 

SuDuelKu 
SuDuelKu is an EJB multiplayer SuDoKu game.  More information can be found here:  



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

9�  

http://www.ece.cmu.edu/~ece749/teams-06/team1/html/index.html 
 
The general size of SuDuelKu: 
SuDuelKu Info  

KLOC 7715 

Number of 

Classes 183 

Table 2 – Size of SuDuelKu 

 

Setup 
We ran FindBugs on both WindowsXP and MacOSX. We mostly ran it as the standalone 
application but we did play with the Eclipse plug-in. 
 
We decided to filter out all of the warnings from the Style, Internationalization, and 
Malicious Code Vulnerability categories. We did this because we wanted to focus on the 
most significant bugs that FindBugs was capable of analyzing. The malicious code 
vulnerability bugs were originally considered but it turned out they were all warnings 
about disclosing a class’s implementation, or making a variable package protected. While 
these would be important to look at eventually, we wanted to see if there were any bugs 
that might cause a malfunction of the program. 
 
We set the effort to maximum and ran the analyses with all of the detectors. We filtered 
out all of the results whose priorities were not low or experimental. We also ignored the 
Unread Field and Unused Field errors because we felt those were not serious, program-
breaking errors. 
 

Results 

Highlights 
The bugs that FindBugs reported were 

• Mostly “valid” (27% false positives) 
• Easy to validate (Median 1 minute, Mean 1.57 minutes) 
• Easy to fix (Median 1 minute, Mean 2 minutes) 

 
However, the vast majority of our bugs were fault and not errors.  They were problems 
that the user would never see; however, if the classes were used differently, or changed 
they could easily become errors. 
 
In our experimentation, we missed the opportunity to classify the bugs found by their 
severity. Severity categorization could take in consideration either faults and errors, and 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

10�  

evaluate their potential impact on the final product. FindBugs classify the bugs according 
to priorities (High or Medium) but we could not establish a connection between priority 
and severity. The severity categorization would have allowed us to evaluate FindBugs 
value, for a real environment situation when bugs are scheduled to be fixed according to a 
severity categorization. 

Totals 
Generally, FindBugs reported few false positives 
 
Total reported bugs 65 

Total false positives 18 

Total bugs 47 

% of false positives 27.69% 

Table 3 – Total bugs reported by Find Bugs 

 

Runtime 
FindBugs runs relatively fast, although we are worried about how well it scales. 
 

Project 

Time 

(secs) 

TeamBots 26 

SuDuelKu 15 

Table 4 – Runtime of Find Bugs 

 

Verification 
Find bugs reported bugs that were easy to verify. 
 
Verification  

All Bugs  

    Total time to verify 102.00 

    Mean time to verify 1.57 

    Max time to verify 5.00 

    Min time to verify 1.00 

    Median time to verify 1.00 

    Standard deviation on time to verify 1.13 

False Positives  

    Total time to verify 37.00 

    Mean time to verify 2.06 

    Max time to verify 5.00 

    Mix time to verify 1.00 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

11�  

    Median time to verify 1.00 

    Standard deviation on time to verify 1.59 

Table 5 – Verification times of for bugs reported by FindBugs 

 

Time to Verify

0

10

20

30

40

50

60

1 2 3 4 5

Time taken to verify each bug (mins)

N
u

m
b

er
 o

f 
B

u
g

s

Time to Verify

 

Graph 1 – The majority of bugs reported by FindBugs take a short amount of time 
to verify. 

 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

12�  

Time to Verify False Positives

0

2

4

6

8

10

12

1 2 3 4 5

Time to validate each false positive (mins)

N
u

m
b

er
 o

f 
b

u
g

s

Time to verify

 

Graph 2 – Even the false positives take a short amount of time to verify. 

 

Fixing 
Find bugs reported bugs that were easy to fix. 
 
Fix  

Total time to fix 94.00 

Mean time to fix 2.00 

Max time to fix 15.00 

Min time to fix 1.00 

Median time to fix 1.00 

Standard deviation on time to fix 2.46 

Table 6 – Fix times of for bugs reported by FindBugs 

 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

13�  

Time to Fix Bugs

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time taken to fix each bug (mins)

N
u

m
b

er
 o

f 
B

u
g

s

Time to Fix

 

Graph 3 – Fixing the valid bugs found by FindBugs also takes a short amount of 
time. 

 

All 
Complete data is attached in .xls file 
 

Lessons Learned  
FindBugs is easy to set up and get running. Its customizability makes it easy to tailor it to 
the bugs you are looking for. It doesn’t take too long to run and the report window makes 
it very simple to find the bugs, classes, or packages of interest. The summary pane is very 
helpful if only for improving one’s own sense of self-satisfaction as the total bugs and 
percentages drop. 
 
FindBugs, however, is noticeably beta-ware. Setting the warning filters and detector 
choices was a bit frustrating on Windows where, if you set them and then saved the 
project, those options would reset to their prior state. This didn’t happen on the Mac. 
Also, the menus and menu items do not always make sense. For example, if you’re 
looking at the bugs, change some of the detector or effort options and want to run it again 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

14�  

you have to choose View->Project Details to get the initial window. This 
window is apparently different from the report window but you can’t view both at the 
same time.  Furthermore, priority filter settings would reset to the default settings every 
time you ran FindBugs, but any custom settings would appear to be saved, even when 
they were not.  This can be very confusing to anyone wanting to rerun FindBugs on 
different sets of code with different filters.  The source code viewer seemed to also be 
buggy in a small subset of cases, where the results pane would not bring up the 
appropriate block of code. 
 
In addition, there seemed to be a max limit on the number of bugs FindBugs would find 
at once.  For example, when the tool was run, a certain number of bugs were found.  
When these bugs were fixed, and the tool rerun to verify, one or two additional bugs in 
the same category would be detected.  This was odd, because the new bugs were in 
completely separate classes than the previous bugs and were local to their classes, so 
there was no way these new bugs could have been introduced by fixing the old ones. 
 
Furthermore, one very confusing thing about FindBugs is that the priorities that it gives 
to bugs seem to be random. There were many bugs that appeared multiple times in 
several different classes, but none would be rated the same priority.  This seemed rather 
arbitrary and no explanation could be found. 
 
Another interesting thing about FindBugs is that in some cases it gives fairly good 
recommendation for avoiding potential future bugs.  For instance, calling the start method 
of the thread in the constructor of a class could potentially be a bug if the class is sub 
classed. FindBugs detects and recommends to change these errors. However, not all the 
recommendation given by FindBugs are relevant and they all essentially fall under false 
positive category. 
 
Also, we came across a situation where FindBugs reported an error but it never really 
gave enough information about the bug for us to be able to fix it. It just reported the type 
of error and the class but it did not report any further information about what exactly was 
the error and where in the class that error was. 
 

Tool Limitations 
While we found that while the heuristics used in the bug detectors could be fairly 
accurate, it was obvious that some detectors were better than others.  Additionally, 
according to the documentation, FindBugs lists the following shortcomings in several of 
its detectors 
 

• Pruning infeasible exception paths: For some detectors, such as those looking 
for null pointer accesses, FindBugs is not able to eliminate branches of code that 
would make a null pointer impossible.  For example, the following block of code 
returned a false positive in FindBugs as a possible null pointer error: 



Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06 
 

Analysis Tool Project 
 

15�  

 
if (pg != null) 
{ 
 pg.dispose(); 
} 
 

• Accuracy in synchronization detector: Even though FindBugs offers a 
synchronization detector to determine whether reads and writes to synchronized 
fields in separate threads were being properly locked and unlocked, FindBugs is 
not able to statically detect all situations in which a lock is held.  Because of this, 
the probability of finding false positives in the synchronization detector can be 
somewhat high, extending the time a developer would need to validate such bugs. 

 

Bottom Line 
The bottom line is we would use FindBugs on future projects because FindBugs reports 
bugs that are 

• Mostly valid 
• Easy to verify 
• Easy to fix. 

 
This means that the team would spend little time using the tool while gaining 
considerable value.  Furthermore, the tool helps find bugs that are difficult to find using 
other testing methods like white and black box testing.  The only reasons we may not use 
the tool is if we couldn’t find a way to suppress verified false positives. 
 


