Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

Tool Overview

The tool we chose to analyze was the Java statigsi#ool FindBugs
(http://findbugs.sourceforge.ngt/

FindBugs is
* A framework for writing static analyses
* Developed at the University of Maryland
» Actively maintained
* Open source
» Written in Java

FindBugs does
» Static analysis of java code
» Class structure analysis
» Linear code scans
» Control sensitive analysis
* Dataflow analysis

FindBugs uses
* A java parser called BCEL
» Around 40 pre-written static analyses
* “Bug patterns” to find bugs

Purpose

The purpose of FindBugs is to show that a large amountgsf ban be found by writing
small and simple analyses. FindBugs believes thisigsliecause developers tend to
make frequent mistakes and many times these mistakesngie.sFor example, in a
Java serializable class it is very common to forgettérsion id, or to have a reference to
a non-serializable class. These types of bugs aretsoes hard to track down by
running the application or by code reviews; however, thegiarple to discover using
simple static analyses.

BCEL

Byte Code Engineering Library (BCEL) is a library writtey apache that parses java
byte code. Java byte code contains all of the symbdbcmation needed to do static
analyses, including methods, fields, inheritance, and logte mstructions.

BCEL has written a custom Java Virtual Machine (JVMsslloader that reads in java

byte code and dumps out a file in its own custom formntateh provides an OO
interface to that file which allows FindBugs to accesaghing that it needs to do its

1l

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

static analysis.

Bug Patterns

After noticing that developers make similar, simple aksts FindBugs developed the
concept of a bug pattern. A bug pattern is a code idiatrhis a high probability of
being an error. For example, not checking return vahees functions that are known to
return error values. Most of the time forgetting teahthese return values is an error.
Furthermore, since the problem would only been seenghran uncommon error path it
isn't likely to be caught in black box testing.

FindBugs ships with over detector for over 200 bug patterhgy ffange from
synchronization errors to bad exception handling to harddceeferences. Each bug
pattern has varying levels of soundness and accuracy bubftbem are simple. The
longest detector is around 1000 LOC but over ¥z are lesd.@@=hOC.

An interesting aspect of FindBugs is that all of the patgjerns are heuristic based. This
means the tool isn’t sound or correct, but it is still us@fs our data shows). Find bugs
isn't trying to find all the bugs in your application neriti trying to only report valid

bugs. Itis trying to report the low hanging fruit. Byngsbug patterns it is trying to
report the bugs that will be easy to verify and easito f

Find Bugs as a Framework

The pre-written bug pattern detectors in FindBugs are writting FindBugs powerful
framework. Even though FindBugs main use case is to uggdheritten detectors, it is
easy to write your own analysis.

The find bugs framework provides the ability to do:

» Class structure analysesAn analysis can look at the structure of the class to
find possible defects. Some examples of what an analgsitook at are
inheritance, methods, fields, as well as the acceslffiers on methods and
fields.

* Linear code scansAn analysis can do a linear code scan through byte code to
drive a state machine. These analyses can approximatgral flow graph but
they don’'t make use of a complete control flow graph.

» Context sensitive analysesAn analysis can make use of an accurate control
flow graph to do analysis of methods.

» Dataflow analyses:An analysis can make sure of both control and data flow
information. These analyses are more complex tinewther 3 but are more
powerful. An example is FindBugs pre-written null panglysis (which isn’t as
good as the one we wrote).

2

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

Tool Usage

FindBugs can be run as a standalone application utilizingirrgSnterface, a command-
line application, or an Eclipse plug-in. There is eveantask provided so that
FindBugs can be easily incorporated into an Ant-based projec

Standalone Application

The standalone, Swing version of FindBugs is very singptget started with. The GUI
presents the user with a blank window at first. To sefupjact to analyze you go to
Fi | e->New Proj ect .

You are then presented with a window with places to bedfer and add each of the
required sets of files and directories. To analyze grpro, FindBugs requires the

» Source files.

» Compiled class files.

» Libraries (jars or class files).
The main window is shown in Figure 1. After supplying the regufiles and directories,
you click the “Find Bugs!” button at the bottom of the windo

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

000 FindBugs - < <unnamed project>>
Archive or Directory: (Browse) (Add)
Archives/Directories: (Remove)
Source directory: (Browse) (Add)
Source directories: (Remove)
o
(Dewn)
Classpath entry: (Browse) (Add)
Classpath entries: (Remove)
|'/ Up .\.I
{ Dewn)
(Find Bugs!)
) = UNIVERSITY OF
FindBugs - http:/ /findbugs.sourceforge.net @
g5 - b g sourcelorge e/ % MARYLAND .

Figure 1 The main FindBugs window.

FindBugs provides a few customization features. It sepaoatgsinto 6 categories:
Correctness

Multithreaded correctness

Performance

Style

Internationalization

Malicious code vulnerability

oghrwNE

Each category can be turned off if you don’t care abdwséd kinds of bugs. Additionally,
you can tell FindBugs how much effort to put into detecbngs

e Low
e Medium
* High

The higher the effort, the longer the analysis takesi supposedly find more bugs by
making FindBugs put in more effort.

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

FindBugs - TeamBotsProject

! By Class By Package By Bug Type By Bug Category = Summary |

b 3 CN: Bad implementation of cloneable idiom (5)
» 3 Dm: Dubious method used (8)

P &k ES: Checking String equality using == or I= (3)
> %} 1S2: Inconsistent synchronization (5)

> & MF: Masked Field (10)

> & NP: Null pointer dereference (2)

b 3} 05: Stream not closed on all paths (3)

P 3 RV: Bad use of return value from method (4)
b 3 SC: Constructor invokes Thread.start() (4)

> %} SIC: Inner class could be made static (3)

P &k S5: Unread field should be static? (1)

Details Source Code Annotations |

5 UNIVERSITY OF
FindBugs - hutp:/ /findbugs.sourceforge.nety ’ﬁﬁ;

Figure 2 FindBugs bug report window.

FindBugs also comes with many detectors. A detector isculem designed to find a
specific type of bug. The application provides a nice tadtiad) all of the detectors in
Settings->Confi gure Detectors. The resulting window lists the detectors by
name, how fast they are, and whether they are enableat. You can toggle any
detector’s active state from this window.

The analysis time will vary depending on which of the &boptions you chose. We
never saw it take longer than about 5 minutes on a pragesisting of 237 classes with
all of the options maxed out.

After the program analyzes your code, you are presentadawierror window if it had
trouble finding any classes. If it did, it will still pregeyou with the results of the tests
that worked.

In the window that presents the bugs found, there aabsthat give you the information
in different ways:

1. By Class

2. By Package

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

3. By Bug Type
4. By Bug Category
5. Summary

You can also change what bugs you see by changing thengditters inVi ew

>Fi | ter Warni ngs. The program prioritizes warnings from Low to High and
Experimental which seems to lie below the Low prioritiie Experimental warnings are
those associated with experimental detectors or feabficetectors.

Clicking on a reported bug shows you a description of thedbtiwilower pane by
default. Here, the developers were smart and nice enougit bnly describe the bug,
but also suggestions on how to check if it is a bug (tdeyitanany times that not
everything reported is a genuine bug) and if it is, thegraffiggestions on how to fix it.

The lower pane has 2 other tabs in addition to the bugipiésorpane. The second one
shows where in the source code the bug occurs includirgutheunding lines. The third
tab shows any annotations.

Eclipse Plug-in
The FindBugs Eclipse Plug-in is very easy to install andAsea. plug-in FindBugs

works seamlessly with the code editor, which makesasie daf verifying and fixing bugs
very easy.

To install the plug-in, you can download it from
http://prdownloads.sourceforge.net/findbugs/de.tobject.findbugf®zip?download
and unzip it in your Eclipse plugin directory. Once ins@lIFindBugs will be accessible
through the right-click menu of the Java project. To rundBugs, simply right click on
the project and select “Find Bugs”.

In the testing environment where we used the plug-in,deigs plugin ran within a
minute. After completing its run, FindBugs displays the Hogsad in the Eclipse
Problems Tab, as shown in Figure 3

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

a4 public boolean equals(Object obj) {
125 return {obj instonceof GameData) && ({GameData)obj).getMame().equals(name);
26 }
27
~lB public String toString() {returm getName();}
29
36 public Player getCreator() {return creator;}
31 public String getName()} {return name;}
3z public List getCurPlayers() {return curPlayers;}
EE] public long getlreationDate() {return creationDate;} s
34 public int getNumPlaoyers() {return rnumPlayers;}
3ig
36 private static final long seriglVersionlID - 1; 1
37
IR nentactad int AumPl avaes - X
W/
: [3_(Problems &3 Javadoc Declaration|A5TView| Debug | Console| Database Explorer| Search| Bug Details L= =
0 errors, 7 warnings, 0 infos (Filter matched 7 of 76 items)
Description Resoun
L = &3 E -

5 (i) HE: ssd.mse.CameData defines equals and uses Object.hashCode() Gan
i) Se: ssd.mseSortGameDataByName implements Comparator but not Serializable Sorl
£y M5: ssd.mse.server.ejb.DataCollectionUtil BYTES_256 isn't final but should be Dat;

M5: ssd.mse.server.ejb DataCollectionUtil BYTES_512 isn't final but should be Dat;
M5: ssd.mseserver.ejb. DataCollectionUtil BYTES. 1024 isn't final but should be Dat;
DLS: Dead store to game in method ssd.mse.server ejb SuDuelKuServerBean fakeCreateCame(byte byte String String,int) Sul
DLS: Dead store to game in method ssd.mse server b SuDuelKuServerBean fakeCreateGame(byte byte,String String,int) Sul

2]

v

C JAle
jject.hashCodefl) A

Figure 3 - FindBugs reporting bugs in Eclipse Problems tab

The problems are associated with lines in the sourcewbitdé simplifies the navigation
between the different bugs: simply double click on the prokdnd Eclipse will show the
file and line where the problem is.

FindBugs provide its own custom window called “Bug Details}olu need more detail

on the type of bug that was found, you can right clickhenbug in the Problems tab, and
choose “Show bug details”.

70

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

PUDLLL UMY UETLIFEUT LUMLUTEL J (returt LreuTiunuuTe, |

34 public int getMumPlayers() {return mumPloyers;}

36 private static final long serialVersionlld - 1; Y

37

IR nratactad ink aumblavers -) |
Prohlems|]avadoc| Declnaratk:n| P.ST\."iew| Debug| Consuie| Database Explorer| Search rﬁ Bug Details £1 ™. 70

Class defines equals() and uses ObjecthashCode()
——|This class overrides equals{Object), but does not override hashCode(), and inherits the implementation of hashCode() from java.lang.
= 7 || Object (which returns the identity hash code, an arbitrary value assigned to the object by the VM). Therefore, the class is very likely to
— 1| violate the invariant that equal ohjects must have equal hashcodes.
If you don't think instances of this class will ever be inserted into a HashMap /HashTable, the recommended hashCode implementation to
use is:
public int hashCode() {
assert false : "hashCode not designed”;
return 42; /[any arbitrary constant will do

(3

Figure 4 - Bug details in Eclipse

The same configurations (bug detector, effort, etc)ataavailable in the standalone
version are available with the plugin.

Testing Environment

We tested FindBugs with two Java projects:
1. TeamBots
2. SuDuelKu

TeamBots

TeamBots is a open source API to control intelligaabile agents. More information
can be found heréttp://www.cs.cmu.edu/~trb/TeamBots/

The general size of TeamBots:
Team Bots Info

KLOC 20865
Number of
Classes 231

Table 1 — Size of TeamBots

SuDuelKu
SuDuelKu is an EJB multiplayer SuDoKu game. More infoiomatan be found here:

al

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

http://www.ece.cmu.edu/~ece749/teams-06/teaml/html/index.html

The general size of SuDuelKu:
SuDuelKu Info

KLOC 7715
Number of
Classes 183

Table 2 — Size of SuDuelKu

Setup

We ran FindBugs on both WindowsXP and MacOSX. We moatiyit as the standalone
application but we did play with the Eclipse plug-in.

We decided to filter out all of the warnings from the &tyhternationalization, and
Malicious Code Vulnerability categories. We did this beseawe wanted to focus on the
most significant bugs that FindBugs was capable of analyZimgmalicious code
vulnerability bugs were originally considered but it turnedtbey were all warnings
about disclosing a class’s implementation, or makingrale package protected. While
these would be important to look at eventually, we @@mb see if there were any bugs
that might cause a malfunction of the program.

We set the effort to maximum and ran the analysesallitif the detectors. We filtered
out all of the results whose priorities were not lowexperimental. We also ignored the
Unread Field and Unused Field errors because we felt whergenot serious, program-
breaking errors.

Results

Highlights

The bugs that FindBugs reported were
* Mostly “valid” (27% false positives)
» Easy to validate (Median 1 minute, Mean 1.57 minutes)
» Easyto fix (Median 1 minute, Mean 2 minutes)

However, the vast majority of our bugs were fault andenrors. They were problems
that the user would never see; however, if the classes wsed differently, or changed
they could easily become errors.

In our experimentation, we missed the opportunity to ifladse bugs found by their
severity. Severity categorization could take in considen either faults and errors, and

al

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

evaluate their potential impact on the final product. FugiBclassify the bugs according
to priorities (High or Medium) but we could not establsbonnection between priority
and severity. The severity categorization would halevald us to evaluate FindBugs
value, for a real environment situation when bugs aredsdde to be fixed according to a
severity categorization.

Totals
Generally, FindBugs reported few false positives

Total reported bugs 65
Total false positives 18
Total bugs 47
% of false positives 27.69%

Table 3 — Total bugs reported by Find Bugs

Runtime
FindBugs runs relatively fast, although we are worriecuabow well it scales.

Time
Project (secs)
TeamBots 26
SuDuelKu 15

Table 4 — Runtime of Find Bugs

Verification
Find bugs reported bugs that were easy to verify.

Verification

All Bugs
Total time to verify 102.00
Mean time to verify 1.57
Max time to verify 5.00
Min time to verify 1.00
Median time to verify 1.00
Standard deviation on time to verify 1.13
False Positives
Total time to verify 37.00
Mean time to verify 2.06
Max time to verify 5.00
Mix time to verify 1.00

10

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

Median time to verify 1.00
Standard deviation on time to verify 1.59

Table 5 — Verification times of for bugs reported by FindBgs

Time to Verify

60

N
o
Il

@ Time to Verify‘

Number of Bugs
w
o

N
o
I

10
N B - =
2 3 4 5

Time taken to verify each bug (mins)

Graph 1 — The majority of bugs reported by FindBugs take a shoramount of time
to verify.

110

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

Time to Verify False Positives

12

10 A

Number of bugs
(e}

) I I:
o = =
1 2 3 4 5

Time to validate each false positive (mins)

Graph 2 — Even the false positives take a short amount of time verify.

Fixing

Find bugs reported bugs that were easy to fix.
Fix
Total time to fix 94.00
Mean time to fix 2.00
Max time to fix 15.00
Min time to fix 1.00
Median time to fix 1.00
Standard deviation on time to fix 2.46

Table 6 — Fix times of for bugs reported by FindBugs

12

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

Time to Fix Bugs

40

35

30

25 1

15

Number of Bugs

0 T T T T T T T T T T T T T T O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time taken to fix each bug (mins)

Graph 3 - Fixing the valid bugs found by FindBugs also takes &art amount of
time.

All
Complete data is attached in .xls file

Lessons Learned

FindBugs is easy to set up and get running. Its customizafmiikes it easy to tailor it to
the bugs you are looking for. It doesn’t take too long toamohthe report window makes
it very simple to find the bugs, classes, or packagedarest. The summary pane is very
helpful if only for improving one’s own sense of selfistction as the total bugs and
percentages drop.

FindBugs, however, is noticeably beta-ware. Setting thaeing filters and detector
choices was a bit frustrating on Windows where, if ydutsem and then saved the
project, those options would reset to their prior stakgs didn’t happen on the Mac.
Also, the menus and menu items do not always make gemrsexample, if you're
looking at the bugs, change some of the detector att effitions and want to run it again

131

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

you have to choosé ew >Pr oj ect Det ai | s to get the initial window. This
window is apparently different from the report window Vol can’t view both at the
same time. Furthermore, priority filter settings wbréset to the default settings every
time you ran FindBugs, but any custom settings would appearsaved, even when
they were not. This can be very confusing to anyone ngidirerun FindBugs on
different sets of code with different filters. Téeurce code viewer seemed to also be
buggy in a small subset of cases, where the resulesvpanld not bring up the
appropriate block of code.

In addition, there seemed to be a max limit on thebmrmof bugs FindBugs would find
at once. For example, when the tool was run, ainertamber of bugs were found.
When these bugs were fixed, and the tool rerun to venifg,or two additional bugs in
the same category would be detected. This was odd, bebausew bugs were in
completely separate classes than the previous bugs aadowalto their classes, so
there was no way these new bugs could have been intidbtydeing the old ones.

Furthermore, one very confusing thing about FindBugs ighlegpriorities that it gives
to bugs seem to be random. There were many bugs that appadtiple times in
several different classes, but none would be rategatme priority. This seemed rather
arbitrary and no explanation could be found.

Another interesting thing about FindBugs is that in sorsesé gives fairly good
recommendation for avoiding potential future bugs. Foais, calling the start method
of the thread in the constructor of a class could piaignbe a bug if the class is sub
classed. FindBugs detects and recommends to change tiftese ldowever, not all the
recommendation given by FindBugs are relevant and thegsdintially fall under false
positive category.

Also, we came across a situation where FindBugs repartedror but it never really
gave enough information about the bug for us to be able ito It just reported the type
of error and the class but it did not report any furthermation about what exactly was
the error and where in the class that error was.

Tool Limitations

While we found that while the heuristics used in the bug tsecould be fairly
accurate, it was obvious that some detectors were llegieiothers. Additionally,
according to the documentation, FindBugs lists the fatigughortcomings in several of
its detectors

* Pruning infeasible exception pathsFor some detectors, such as those looking
for null pointer accesses, FindBugs is not able to ehtei branches of code that
would make a null pointer impossible. For examplefalewing block of code
returned a false positive in FindBugs as a possiblepoirker error:

141

Team Simulacrum (Choudhari, Jaspan, Mouri, Nagata, Urie) 6/16/06

Analysis Tool Project

if (pg !'=null)
{

pg. di spose();
}

» Accuracy in synchronization detector:Even though FindBugs offers a
synchronization detector to determine whether reads atebwo synchronized
fields in separate threads were being properly locked andkadpFindBugs is
not able to statically detect all situations in whiclock is held. Because of this,
the probability of finding false positives in the syncheaion detector can be
somewhat high, extending the time a developer would neealittate such bugs.

Bottom Line

The bottom line is we would use FindBugs on future projestalise FindBugs reports
bugs that are

* Mostly valid
» Easy to verify
» Easy to fix.

This means that the team would spend little time usingoiblenvhile gaining
considerable value. Furthermore, the tool helps find hagsare difficult to find using
other testing methods like white and black box testing. ofihereasons we may not use
the tool is if we couldn’t find a way to suppress verifial$e positives.

151

