

Lattix LDM
Analysis of Software Artifacts

CMU 17-654/17-754

 Kenichi Nakao

Rikuo Kittaka

Radhika Bansal

Karoon Phatangjaijing

Thomsun Sriburadej

Mar 25, 2008

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 2 of 24 4/8/2008

Table of Content

A. PROJECT SUMMARY ..4

B. PROJECT MEMBERS...4

C. PROJECT SUMMARY ..4

A. EVALUATION TOOL ... 4

B. ARTIFACTS AGAINST WHICH WE TESTED THE TOOL .. 4

D. QUALITATIVE/QUANTITATIVE DATA ANALYZED..4

A. FUNCTIONALITY .. 4

i. System decomposition..4

ii. Design Structure Matrix (DSM) ...5

iii. Analyzing architecture design ...5

iv. Analyzing 3rd party library...7

v. Metrics Data ...9

vi. Design Rules... 12

B. USABILITY..15

i. Benefits... 15

ii. Limitations ... 16

iii. What practices are good to learn the tool quickly .. 16

iv. Learn-ability of document and tutorial .. 17

v. How easily we can find the most critical changes in the system... 17

vi. How much amount of customization is required for a project .. 17

C. MODIFIABILITY (CUSTOMIZABILITY) ...18

i. What kinds of options are available? What kinds of option sets are recommended? 18

ii. What kinds of options are preferable for our studio project? .. 21

D. PERFORMANCE ..21

E. TOOL STRENGTHS AND WEAKNESSES... 22

A. STRENGTH ...22

B. WEAKNESS ..22

F. APPENDIX 1: FILTER DEPENDENCIES .. 22

G. REFERENCES ... 24

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 3 of 24 4/8/2008

Table of Figures

Figure 1: Pipe-n-Filter System ... 5

Figure 2 :Call-Return System.. 6

Figure 3: Lattix reports wrong class names 1 ... 6

Figure 4: Implicit-Invocation System.. 7

Figure 5: Lattix reports wrong class names 2 ... 7

Figure 6: The result before partitioning .. 8

Figure 7: The result after automatic partitioning .. 8

Figure 8: The result after manually grouping.. 8

Figure 9: Metrics comparison...12

Figure 10: The system that has design rules..13

Figure 11: The system that violates design rules...13

Figure 12: The tool reports that our libraries need those three packages..14

Figure 13: All rule violations have gone after setting design rules ..14

Figure 14: Basic User Interface..16

Figure 15: Screen for designing a rule..18

Figure 16: Filter Dependencies..22

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 4 of 24 4/8/2008

A. Project summary
Evaluation of Lattix LDM

B. Project members
Radhika Bansal, Rikuo Kittaka, Thomsun Sriburadej, Karoon Phatangjaijing, Kenichi Nakao

C. Project summary
Assess the strengths and weaknesses of the Lattix LDM in both quantitative and qualitative terms. We would

be especially, focusing on applicability and adoptability to the project including following points:

• The efficiency of the tool for helping inexperience users to take benefit from the tool

• The suitability of the tool for various kinds of architecture

• Any other benefit that the tool would give besides analyzing the architecture

a. Evaluation Tool

 Lattix LDM 4.05 for Java 1.4 and above

b. Artifacts against which we tested the tool

 The artifacts that we used belonged to one of the following categories:

• Source code

• Architecture Design

 Following are some of the artifacts that we tested the tool against:

1. JEdit : Programmer’s text editor written in Java

2. Ant : Java build utility

3. A1-A4 : Assignments from Architecture class

4. Sample code from Design pattern book

D. Qualitative/Quantitative data analyzed.

a. Functionality

i. System decomposition

Lattix uses “design structure matrix” (DSM) to present the system. This technique allows

users to understand the system easily by decomposing the system into subsystems. Users

can use this feature to adjust a proper level of abstraction that makes system

understandable. Moreover, the information associated with each subsystem is also visible

in every level of composition. Users can easily comprehend the overview of the system by

looking at single table [1].

This feature is useful in comparing with UML class diagram. For understanding the overall

system, UML class diagram would have several levels of presentation to match the size of

the project and the need of user. Comparing with Lattix, the tool provides a single matrix

that allows user navigate back and forth between abstract level and concrete level.

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 5 of 24 4/8/2008

ii. Design Structure Matrix (DSM)

DSM technique is the result of a research from MIT, Harvard, and University of Illinois that

uses matrix, rather than boxes and lines diagram, to show dependency among

subsystems. This technique allows users to realize architecture of the system, and identify

a place of the system that has high or low coupling.

The tool also provides the “DSM Partitioning” feature. This feature automatically

partitions subsystems into groups so that users can see pattern of the system quickly.

Users can partition the system manually as well. Logical subsystem can be created to

group subsystems together. Subsystems can be moved up and down in the matrix. In the

product’s website, Lattix shows a sample analysis with ANT, which has layered structure.

We try Lattix with other kinds of architectural patterns to see if the tool could help us to

realize and analyze the architecture design from the source code.

iii. Analyzing architecture design

o Pipe-n-Filter Pattern

For pipe-n-filter pattern, we use source code of A1, the first assignment from our

architecture class, as a test case. Since one of intent of this pattern is to decouple each

filter, each filter in this pattern will not depend on each other. Therefore, low coupling

was the expected result from the tool.

The result was in line with the expectation. From Lattix, we can see that the filters do

not have any dependencies within themselves; they are just dependent on the

“SystemMain” class, which is the start up class.

Figure 1: Pipe-n-Filter System

o Call-Return Pattern

The second pattern is call-return pattern. We tested a 3-tier system that uses RMI

connection for calling services, and expected a result of high coupling from Lattix. The

result that we got was quite surprising. After both automatically and manually

partitioning, we had found dependencies only at the interface area. On the other

hand, no dependency appears among the concrete tier classes, which are Data, Logic,

LogicWithLog, and Client.

The reason is that the system uses interface class for communication among tiers, and

thus decouple the classes of each tier. In this case, the tool gives us more insight

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 6 of 24 4/8/2008

about architecture.

Figure 2 :Call-Return System

However, we have found a bug in data in ‘Rules’. This system does not use any other

library so that the system should not break any rule by default. Lattix wrongly

determines the class name in the system. Therefore, it reported some violations from

this system.

Figure 3: Lattix reports wrong class names 1

o Implicit-Invocation Pattern

We expected to see lowest dependency from this pattern. We use architecture

assignment 3 to evaluate the result. After partitioning, the result was not bad. Lattix

can show that no concrete event handler classes depend on each other.

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 7 of 24 4/8/2008

Figure 4: Implicit-Invocation System

Similar to previous example, the tool still report wrong result in the design rule.

Figure 5: Lattix reports wrong class names 2

iv. Analyzing 3rd party library

Most of Java application today leverage some form of 3
rd

 party libraries. However, one

component may require a set of components, and these dependencies become messy and

hard to manage. Not only does the tool can show dependencies among the source code,

but it also helps user to understand dependencies among 3
rd

 party libraries. We examine

this feature by having the tool analyze “jelly” framework, which is an open source

framework that we use in “experimentation phase” of our studio project.

This framework use another set of 3
rd

party library. When Lattix loads all required libraries,

it shows DSM as following.

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 8 of 24 4/8/2008

Figure 6: The result before partitioning

First, we use “DSM Partitioning” feature to partition the system automatically

Figure 7: The result after automatic partitioning

After having the tool partitioning, the result is quite easy to interpret. The ‘jelly-

tags-swt’ is built on top of ‘jelly’ library. Additionally, the ‘jelly’ library is built on

top of other libraries. According to the type of library, the ‘commons-beanutils-

1.6’ and ‘commons-collections-2.1’ could be grouped together because they

both are dealing with JavaBean. Similarly, the ‘dom4j-1.5.2’ and ‘commons-jexl-

1.0’ that are dealing with XML could also be grouped together. We manually

group them as ‘BEAN_UTIL_GROUP’ and ‘XML_UTIL_GROUP’ respectively.

Figure 8: The result after manually grouping

Now we have a good picture. Logging feature is the base library that all libraries

require. The classes in ‘jelly’ use XML and Bean features, as well as logging

feature. The ‘jelly-swt,’ which is built as an tag extension of ‘jelly’, lets ‘jelly’

handle XML parsing, but it can handle object bean and logging itself.

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 9 of 24 4/8/2008

v. Metrics Data

Lattix LDM provides matrixes to measure architecture of a system:

• System Stability: A measure of how sensitive a system is when the system is

changed.

• Average Impact: A measure of how much it affects when the class is changed.

• Instability: How concrete a class is. The more concrete implementations are used

along with high dependency, the more Instable a system will become.

• Abstractness: A measure of how abstract is an implementation.

• Distance: A measure of abstractness sum with instability.

• Outgoing Dependencies: The number of classes outside a subsystem depended

upon by classes in side that subsystem.

• Incoming Dependencies: The number of classes outside a subsystem that depend on

classes inside that subsystem.

• Atom Count: The number of classes in a system.

• Abstract Atom Count: The number of abstract classes in a system.

Our group will compare metrics obtained from the tool with the metrics obtained by

manual calculations, to check correctness of the tool.

Average Impact

Class
Dependency

Count
Classes Depended Upon

CheesePizza 4 SimplePizzaFactory, PizzaHomeStore, PizzaMenu, PizzaStore

ClamPizza 4 SimplePizzaFactory, PizzaHomeStore, PizzaMenu, PizzaStore

PepperoniPizza 4 SimplePizzaFactory, PizzaHomeStore, PizzaMenu, PizzaStore

VeggiePizza 4 SimplePizzaFactory, PizzaHomeStore, PizzaMenu, PizzaStore

Pizza 8 All other classes

PizzaHomeStore 0

PizzaMenu 0

PizzaStore 0

SimplePizzaFactory 3 PizzaHomeStore, PizzaMenu, PizzaStore

Average Impact = Sum of Dependency Count / Atom Count

 = 27 / 9

 = 3

System Stability

System Stability = 100% - (Average Impact / Atom Count)*100

 = 100% - (3/9)*100

 = 66.67%

Outgoing Dependency

Outgoing Dependency is the number of classes outside a subsystem depended

upon by classes inside that subsystem.

Class

Outgoing

Dependency

Count

Outgoing Classes Depended Upon

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 10 of 24 4/8/2008

CheesePizza 1 Java.util.*

ClamPizza 1 Java.util.*

PepperoniPizza 1 Java.util.*

VeggiePizza 1 Java.util.*

Pizza 3 Java.util.*, Java.io.*, Java.lang.*

PizzaHomeStore 1 Java.lang.*

PizzaMenu 1 Java.lang.*

PizzaStore 1 Java.lang.*

SimplePizzaFactory 1 Java.lang.*

Total outgoing dependency = Sum of Outgoing Dependency Count

 = 11

Incoming Dependency

Incoming dependency is the number of classes outside a subsystem that depend

on classes inside that subsystem. Our subsystem don’t have a call from the

outside classes so

Total incoming dependency = Sum of Incoming Dependency Count

 = 0

Instability

Instability = Outgoing Dependencies / (Outgoing Dependencies + Incoming

Dependencies)

Class Outgoing

Dependency Count

Incoming

Dependency Count

Instability

CheesePizza 1 0 1

ClamPizza 1 0 1

PepperoniPizza 1 0 1

VeggiePizza 1 0 1

Pizza 3 0 1

PizzaHomeStore 1 0 1

PizzaMenu 1 0 1

PizzaStore 1 0 1

SimplePizzaFactory 1 0 1

Total instability = Sum of Instability / Atom Count

 = 9 / 9

 = 1

Abstractness

Class Pizza is the only abstract class in the subsystem.

Abstractness = Abstract Atom Count / Atom Count

 = 1 / 9

 = 0.111

Distance

Distance = | Abstractness + Instability – 1 |

 = | 0.111 + 1 – 1 |

 = 0.111

Compare with tool result

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 11 of 24 4/8/2008

Metrics Manually Count Tool Count Correctness

System Stability 66.67 % 66.67 % �

Average Impact 3 3 �

Instability 1 1 �

Abstractness 0.111 0.111 �

Distance 0.111 0.111 �

Outgoing Dependencies 11 11 �

Incoming Dependencies 0 0 �

Atom Count 9 9 �

Abstract Atom Count 1 1 �

Significant of the metrics

Our group experimented on the significant of the metrics provided by the tool by

running the tool on two test subject: High coupled code, Low coupled code. The High

coupled code is the code that has high dependency between classes. The original code is

borrowed from ‘Head First Design Pattern’ book (the factory method pattern). The low

coupled code is improved version of the high coupled code. We applied Factory Method

pattern to reduce dependency between classes.

Metrics Factory Pattern High Coupled Pattern Significant

System Stability 66.67 % 70.31% �

Average Impact 3 2.375 �

Instability 1 1 �

Abstractness 0.111 0.125 �

Distance 0.111 0.125 �

Outgoing Dependencies 11 10 �

Incoming Dependencies 0 0 �

Atom Count 9 8 �

Abstract Atom Count 1 1 �

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 12 of 24 4/8/2008

Figure 9: Metrics comparison

Results

The System Stability and Average Impact metrics from the tool show negative

result (difference from expectation). The high coupled code has higher System Stability

and has lower Average Impact. The reason of this is because the tool counts

dependency, in a transitive manner. For example, if class A depends on B, and B

depends on C, Both A and B depend on C. As a result, the tool can’t recognize the utility

of the Factory class.

vi. Design Rules

Design Rules are a way to specify the allowed nature of the relationships between

various subsystems [2]. During development time, changes to software might not

adhere to the desired architecture. Although those changes are important to the system

capability, those changes must be done carefully and intentionally. The purpose of this

feature is to enforce the change to the system even without clear understanding of the

current architecture or effect of change.

User can set ‘Can-use’ or ‘Cannot-use’ rules, and apply those rules to subsystems. They

could apply at as low level as method level. User can use this feature to restrict

subsystem from using a specific component.

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 13 of 24 4/8/2008

Design Rules with source code

We use the A1 code to set up design rules and try to break them. A1 is pipe-n-filter

system that all filters will communicate only over filter. Therefore, no filter is allowed to

use any service from other filters.

We set up these rules by selecting package or subsystem we want to set the rules to.

Open the ‘Rules’ tab at the right hand side, and specify ‘Cannot-Use’ to the package or

subsystem that we will not allow. The rules will be shown in the matrix as a small yellow

annotation at the corner.

Figure 10: The system that has design rules

Next, we break the rules by adding the following code into SplitFilter.

 // Break the rule!!!//

 new CourseFilter("Name", pInput, pOutput1, 0);

After updating source file, Lattix shows us a violation that takes place in the

system. We are also able to the summary of violation at the ‘Violations’ tab.

Figure 11: The system that violates design rules

Design Rules with 3rd party library

The design rules feature of Lattix LDM can also apply to 3
rd

 party for managing

and controlling. User can set ‘Can-use’ or ‘Cannot-use’ rules, and apply those

rules to the library. They could apply the rules at either as high as the package

1
2

3

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 14 of 24 4/8/2008

level or as low as method level. User can use this feature to restrict some

packages from using a specific library.

According to the whitepaper [3], the tool also provides a command line program

that can also validate design rule, called LDC. LDC could be plugged into tightly

build process so that the violation result could be passed to the library

administrator. LDC also provides other metrics, such as number of classes and

dependencies, and classes that have been added or removed. This feature

notifies user of any violation and status of the source code early in the

development phase. Unfortunately, we could not analyze this feature because

of license issue.

However, this feature could be misleading. The previous example of “jelly”

framework shows a set of 3
rd

 party library for a small program. The tool reports

violation for all other external libraries that our libraries are referencing; even

though they are not necessary for running the application. The following picture

highlights the package name that our libraries are referencing, but they are not

allowed to use yet.

Figure 12: The tool reports that our libraries need those three packages

 When we allow our library to use those packages name, the warning is gone.

Figure 13: All rule violations have gone after setting design rules

The tool counts all dependencies, including the one that we don’t really use. For

example, package ‘com.sun.msv.datatype’ is used by several libraries here, but

this package is not necessary for the application.

In the case that we don’t know what library file is missing, it is hard to identify

from the “Rules” tab that what package is the missing or the violation rules

shown by the tool is just unnecessary reference. Therefore, this feature is good

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 15 of 24 4/8/2008

for having a better understanding relationship among 3
rd

 party library, but it

could not help user to identify what library is missing.

b. Usability

i. Benefits

o The tool provides a simple and intuitive user interface so that we can generate the analysis

result (DSM: Dependency Structure Matrix) without complex operation. Figure14 shows a

basic user interface and representation. To see the initial analysis result, the user only needs

to open the jar, class, or zip files without any configuration. It did not take a long time

(about 1hour) to understand the representation of the tool and key features.

o The tool supports undo function for most of operations and its depth is sufficient; we tested

by 50 depth

o The tool provides a command-line application that allows us to automate the process of

checking and updating the dependency model. Specifically, it support:

� Create a new model or update a current model

� Generate reports in a variety of formats

� Publish reports using a web server

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 16 of 24 4/8/2008

Figure 14: Basic User Interface

ii. Limitations

One of our group members had a trouble to start up the application on his PC. The cause was

the environment variable PATH that includes a path for QuickTime application (“C:\Program

Files\QuickTime\QTSystem\”). Though this is trivial issue, it took a long time for users to figure

out the problem since there is no information about this problem on FAQ page of the tool site.

*We have already informed this issue to Lattix, Inc’s support representative.

iii. What practices are good to learn the tool quickly

The most effective way to understand the tool is to follow the process the Lattix Inc. provides on

the site and apply our own application to the tool. The company also provides a tour which will

walk you through the tutorial using a Macromedia Flash demo. 1 hour was enough to learn the

big picture of the tool.

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 17 of 24 4/8/2008

iv. Learn-ability of document and tutorial

The Lattix Inc. provides us enough document and tutorial to learn the tool and the way to apply

to our application. Specifically, they provide us:

o Basic instruction on the site

o Demo using a Macromedia Flash on the site

o Tutorial included in the tool under the Help menu

o Technical Paper on the site (to dig deeper into the background)

It took 4 hours to go through from 1 to 3 materials including the time to play around with the

tool. The documents were well structured so that it was not demanding work for users to learn

the tool using the same.

v. How easily we can find the most critical changes in the system

Since the Lattix provides a feature that allows users to follow the impact chain to see how

changes propagate, we can easily understand the impact of changes on specific module.

On the other hand, it is not easy to find the most critical changes in the system because

dependency strength in the DSM tells us only the number of direct dependency (level 1). If the

tool showed the sum of the dependency strength on the change impact chain in a DSM, it would

help us find the most critical changes based on the quantitative data.

vi. How much amount of customization is required for a project

We need to have three customization steps to make the use applicable to our project as follows:

o Organize the DSM to reflect the Intended Architecture

o Design Rules: Specify External Library Usage

o Design Rules: Specify Application Interdependencies

Each step can be done through the simple GUI and using small options (move subsystems

around, create/delete new abstractions, and select rules). Figure15 shows the screen for

designing a rule. If we have a clear understanding of the architecture of the application that we

are analyzing, the amount of customization is not so many. In addition, once we create the rules,

we can save the rule and make rule checking a part of the build using command-line

application.

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 18 of 24 4/8/2008

Figure 15: Screen for designing a rule

c. Modifiability (Customizability)

i. What kinds of options are available? What kinds of option sets are

recommended?

Lattix LDM provides a feature of filtering dependencies that enables users to analyze

different kinds of dependencies among modules. It is called “Filter Dependencies.” The

dependency kinds the Lattix LDM supports are shown in Appendix X. By the

combination of the dependency kinds, users can see a clearer picture of the system

structure.

Some of the recommended sets of options are as follows:

 Settings Purpose Evaluation

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 19 of 24 4/8/2008

Option Set 1:

All kinds of

dependencies

Check all

settings

To see the

most

exhaustive

dependencies

To see the trend of the dependencies of the

system, this setting provides a good start.

However, since this setting counts any kinds of

syntactic dependencies including inheritance

and class reference, we cannot identify what

kinds of dependencies exist between the

modules. Therefore, the other sets of options

discussed below would be required for further

dependency analysis.

Option Set 2:

Strong

dependencies

Check all

settings except

“Class

Reference” and

“Constructs -

Null”.

To find

stronger

dependencies

excluding weak

references

such as class

reference (no

method calls)

and construct

with no

arguments.

Lattix LDM could show only the strong

dependency correctly.

In the case of A2, the figure below shows the

case of Option Set 1 “All kinds of dependencies”.

The figure below is in the case of the Option Set

2 “Strong dependencies”.

We could see that the RIData has only weak

references to Student and Course class so that

the change of the member methods of the

Students and Courses class do not affect the

RIData.

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 20 of 24 4/8/2008

Option Set 3:

Generalization

Check

“Inherits” and

check off the

others

To find

subclasses and

implemented

classes that has

generalization

architecture/de

sign style.

In the case of A1, there is a “Extends” relation

between the Filter class and

Sprit/Merge/CourseFilters. By using the this

option setting 3 “Generalization”, Lattix LDM

could identify the dependency.

The figure below is in the case of Option Set 1

“All kinds of dependencies”.

The figure below is in the case of Option Set3

“Generalization.”

Option Set 4:

Member object

reference

Check only

“Data member

Reference”

To find

violations of

data

encapsulation

(direct access

to class

members

outside the

class.)

Lattix LDM could identify the data member

reference. In the case of A1, A2, and A3, Lattix

LDM found zero dependencies between the class

modules, correctly.

In the JEdit case, we found 8 occurrences. One of

the 8 is the access to a class member that is

declared as “public”. This might be corrected by

using Getter/Setter. The others are declared as

“public static.”

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 21 of 24 4/8/2008

Option Set 5:

Static Invocation

Check only

“Invokes –

Static

Invocation”

To identify

static method

invocation for

architecture

dependency

refinement.

Because of the

static nature,

they are built

to stand alone,

and operate

the same, even

when they are

moved from

their original

class to a new

class home.

In the case of A3, the static method invocation

was concentrated to the Event Bus class.

Therefore we could say the designer grouped

the static method well.

ii. What kinds of options are preferable for our studio project?

For the Studio project (Tool support for economic driven architecting (EDA Tool)), one of

the key quality attributes of the system is modifiability of the economic analysis methods,

calculation methods, and calculation formulae. The goal of the quality requirement is to

provide users a capability to add and modify the methods and formulae by configuration

file with a minimum code modification. To achieve the quality response measure goal,

fewer strong dependencies between the modules is required. Therefore, the

recommended set of options would be the checking the counts and distribution of the

“Strong dependencies”, as well as “All kinds of dependencies”. The “Generalization”

option might help us to analyze the architecture strategy to achieve the modifiability.

d. Performance

Machine Spec: Intel core 2 CPU T7200 @ 2GHz

Source file type interval 1st 2nd 3rd 4th 5th

A1 class file open -> show DSM 1"36 0"55 0"61 0"48 0"55

A2 class file open -> show DSM 0"77 0"57 0"55 0"59 0"49

A3 class file open -> show DSM 0"75 0"56 0"60 0"64 0"66

jEdit class

create project -> show

DSM 2"25 1"95 2"00 2"15 2"40

apache-ant-

1.7.0 jar

create project -> show

DSM

N/A element over (our licence is limited by

1000 elements)

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 22 of 24 4/8/2008

E. Tool Strengths and weaknesses

a. Strength

• Fast loading even when opening a huge set of source code

• Matrix is good to present a big system

• Support several file types, comparing with other reverse engineering tool

• It seems like this tool could be used for any architectural styles, since any style

should be related to static view one way or another.

b. Weakness

• Lack of semantic dependency (Explicitly know from the general information)

• Helps user realize only one perspective of system quality (modifiability), while other

perspective, such as performance, availability, or security, are left out.

• Some bugs with ‘Rules’

• Design rule could not help users to find missing 3
rd

 party lib, as expected.

• Cannot disable transitive dependency count.

F. Appendix 1: Filter Dependencies

Figure 16: Filter Dependencies

Dependencies Description

Class Reference A reference to a class or object, but not

to any of the objects members

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 23 of 24 4/8/2008

Virtual Invocation Calling a non-static method (not on an

interface)

Static Invocation Calling a static method

Invokes

Interface Invocation Calling a method on an interface

Extends Is a subclass Inherits

Implements Implements an interface

Data Member Reference A reference to a variable of a class /

object

Null (no arguments) Constructs an object, but requires little

or no design knowledge of that object

Constructs

With Arguments Constructs an object, and specifying

arguments implies some design

knowledge of that object is required

Manual (Forced) Manually assigned dependencies by the

user

CMU 17-654/17-754 Analysis of Software Artifacts

Tool Project Page 24 of 24 4/8/2008

G. References

[1] Lattix, Inc. DSM for Managing Software Architecture. Whitepaper. November, 2004

[2] Lattix, Inc. Design Rules to Manage Software Architecture. Whitepaper. December, 2004-7

[3] Lattix, Inc. Using Lattix LDM to enforce your 3
rd

 Party library adoption process. Whitepaper.

January, 2005

