
Analysis of Software Artifacts – Mini Project

Pathfinder 1/15

CMU (Carnegie Mellon University)
Analysis of Software Artifacts

Mini Project

17-654/17-754: Analysis of Software Artifacts

Analysis Application of Rational PurifyTM:
Utilization of Purify in the Navigation Data Converter Ap-

plication

April 27, 2006

Pathfinder Team

Wangbong Lee (wangbonl)
Jihye Eom (jihyee)

Youngseok Oh (youngseo)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 2/15

1 Tool Introduction

1.1 Brief introduction
A memory leak is unnecessary memory consumption by a program, where the program
fails to release memory that is no longer needed. The memory leak can diminish the per-
formance of the program by reducing the amount of available memory. Memory alloca-
tion is normally a component of the operating system, so the result of a memory leak
usually an ever growing amount of memory being used by the system as a whole, not
merely by the erroneous program. Eventually, too much of the available memory may
become allocated and all or part of the system stops working correctly or the application
fails. [5].

Memory leaks are a common error in programming when using languages that have no
automatic garbage collection, such as C and C++. Typically, a memory leak occurs be-
cause dynamically allocated memory has become unreachable. The prevalence of mem-
ory leak bugs has led to the development of a number of debugging tools to detect un-
reachable memory.[5] Therefore, many memory debuggers are used such as Purify[7],
Valgrind[8], Insure++[9], and memwatch[10].

In addition, even languages provide a automatic memory management, like Java, C# or
LISP, it does not mean that the languages are immune to memory leaks. Although the
memory manager can recover memory that has become unreachable and useless, it can-
not free memory that is still reachable and potentially still useful. Therefore, modern
memory manager semantically marks memory with varying levels of usefulness, which
correspond to reachability, and frees an object that is rarely reachable.[5] However, the
memory manager does not free an object that is still strongly reachable. Therefore, unless
the developer cleans up references after use, no matter how robust and convenient the
automatic memory manager is, all the programming errors that cause memory leaks are
not eliminated.

Rational Purify® is one of automatic error detection tools for finding runtime errors and
memory leaks in components of a program. Purify is a runtime analysis solution which is
designed to help developers write more reliable code. The crucial functions of Purify are
memory corruption detection and memory leak detection to ensure the reliability of pro-
grams and support runtime analysis[6].

1.2 Working Environment
Purify can automatically pinpoint runtime errors and memory leaks in Java™ and C/C++.
It is available on Windows, Linux and UNIX. Purify also supports Visual C++ and all
VS.NET managed languages (including C# and VB.NET). IBM provides Java™ and
C/C++ versions of Purify with 15-day evaluation key on their web site [7].

1.3 How purify works?
Purify use patented Object Code Insertion(OCI) technology to instrument a program, in-
serting instructions into the program’s object code. This enables to check the entire pro-
gram, including third-party code and shared libraries even without the source code.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 3/15

Purify keeps track of memory to determine whether it is allocated or not and initialized or
not. Purify maintains a table to track the status of each byte of memory used by a pro-
gram. The table contains two bits that describe 4 states of memory such as Red, Yellow,
Green, and Blue and checks each memory operation against the state of memory block to
determine whether the operation is valid. If the operation is not valid, an error will be re-
ported [6][7].

Red
Memory

Blue
Memory

Green
Memory

allocated but
initialized

Yellow
Memory

allocated but
uninitialized

Illegal to read, write, or free
red and blue memory

Legal to write
or free, but illegal to read

Legal to read and write
(or free if allocated by malloc)

malloc

free
free

write

Figure 1 The state of memory in Purify

Purify sets initial heap and stack memory as Red state. Red state memory is unallocated
and uninitialized. Either it has never been allocated, or it has been allocated and subse-
quently freed. It is illegal to read, write, or free red memory because it is not owned by
the program. Memory returned by malloc or new is Yellow state. This memory has been
allocated, so the program owns it, but it is uninitialized. It is illegal to read it because it is
uninitialized. Green state means that memory is allocated and initialized. It is legal to
read or write green memory, or free it if it was allocated by malloc or new. Blue state
means that the memory is initialized, but is no longer valid for access. It is illegal to read,
write, or free blue memory [6][7].

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 4/15

2 Studio project information
In the navigation system, POI data (POI DB) plays a role of input data, and is created by
gathering Point Of Interest data such as building name, building information, telephone
number, zip code, address, type of genre, location information (longitude and latitude),
etc. However, it is not a map data. Those POI informations are gathered and integrated
into one Microsoft Access database file (mdb) file in order to create the data file for car
navigation system. Usually, one POI DB consists of more than 6 millions of individual
POI data, so that the size of mdb file is more than 2 or 3 giga bytes.

Building POI DB file is conducted in 3rd party supplier, who is in charge of creating map
data as well. While POI DB is established, cleansing process is absolutely necessary be-
cause some POIs can be overlapped or inconsistent by mistakes usually caused by human
beings. When cleansing is completed, new version of POI is released and delivered to
HMC multimedia team.

Once HMC receives new POI data, the engineer starts to convert POI DB file to binary
file which can be applicable in the navigation system. This is because POI DB with mdb
format itself can not be applicable in the embedded system with DVD media which
shows bad performance in disk media. Thus, data format which is appropriate for the disk
system is applied during the conversion process. The binary file (output data), therefore,
has index data in tree shape (hierarchical form) and Meta data made up of POIs, and it
helps navigation system to find POI in minimal disk access.

In the legacy converter system, data format and converter application is provided by ex-
ternal vendor, and they did not allow satisfactory modifiability (insufficient configuration
input) in the converter, and the data format is not adequate for Korean alphabet system.

Therefore, HMC would like new application to equip with the configuration function and
to resolve Korean alphabet issue. For example, the converter shall be able to configure
the depth of index data, which may significantly vary the size of output data. The con-
verter shall also be able to choose the search function to be shipped in output data. In ad-
dition, the converter shall allow the engineer to select/deselect Genres in output data.
There are two type of Genre. One is top Genre; the other is sub Genre that belongs to top
Genre. For instance, TGIF can be sub Genre, and family restaurant is top Genre. The fol-
lowing picture describes the production process of navigation data. The output binary
data mentioned here is the final data produces in this process. (see disk picture in Figure
2) When it is complete, this data is burned in DVD, and distributed to end users with
navigation system in the car.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 5/15

Figure 2 Navigation data production process

2.1 Applying Purify
Our studio project has technical issues to satisfy client’s requirements. One of the most
considerable quality attributes is “The system shall manage the gigabytes’ input data, so
that the hardware resources such as CPU and memory should support this process.” As
stated in the requirement, the application has to manipulate huge amount of POI data, and
the size of POI data is about 1-gigabytes to 2- gigabytes. Therefore, careful memory
management and precise estimation of memory usage is needed, because unexpected
memory leak might occur due to incomplete garbage collection at runtime.

Moreover, the size of POI data will be growing, because more information will be added
to POI data continuously. This will make the tree structure and computation grow up in
the application. Therefore, the memory leak should be detected in advance and the logic
which causes the memory leak should be changed. In addition, the performance of deal-
ing with huge amount of data can be monitored by Purify. If there is a specific module
which consumes memory extremely high, then it can be detected by Purify. Therefore,
the module can be changed to other algorithms or other data structures. For example, a
recursive tree algorithm can be changed to non-recursive algorithm with a linear data
structure. Therefore, the application can guarantee not only the performance of system
but also the reliability and availability.

As mentioned in the chapter 1, Purify supports runtime analysis capabilities of memory
corruption detection and memory leak detection. At the beginning, we considered Purify
to detect memory leaks in two obtained source codes from website, modify them, and ap-
ply one of them to our studio project. In order to check the possibility of those strategies,
two B-tree source codes written in different way are chosen and verified with Purify.
However, it turned out that the memory leakage problem does not usually exist in the
code unless the source code has significant mistakes or it has intentional memory leaks
inside as the experiment is conducted in [11]. Thus, the strategy was changed to make use
of Purify to measure the memory performance, analyze the code structure, and verify the
performance. Once one of codes with better memory performance is chosen, the code
analysis is performed with various functions provided in Purify such as function detail
and call graph. After code analysis, code modification is carried out on the points where
the modification possibly works. Finally, the verification for the modification is con-
ducted.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 6/15

3 Case Study with B-Tree Source Code

3.1 Source Code Introduction
Two source codes are obtained from the open source sites.[1][2] In order to compare the
performance and memory consumption of codes, two candidate codes have following dif-
ferent aspects, assuming both provide same functionality in terms of balancing tree (B-
tree) such as sort, insert, delete, split, merge, etc.

l Source A (obtained from [1]): Elements to be put into B-tree are inserted one by
one. That is, the put function has to be called whenever new element is ready to
be put into tree. Therefore, B-tree gradually increases the memory allocation of
lattice as it more elements are put into tree.

l Source B (obtained from [2]): Elements to be put into B-tree are built into Vec-

tor form (Collection in Java), and referenced to B-tree module. That is, B-tree
begins with allocating the memory with the size of elements, and adds those
elements. Therefore, the entire memory allocation takes place for the first time.

In addition to insert method, there are differences in implementation such as how to insert,
sort, and manage the tree structure, even though the functions are same. According to
those differences, it is expected that both of source codes have different behaviors with
respect to memory and performance.

3.2 Assumptions and Preparations
Since the purpose of this work is not only to tweak the memory and performance, but
also to compare by means of Purify, both candidate source codes must have same func-
tionalities such as sort and build B-tree. However, implementation way can be different,
and the differences deviated from different implementation is one of applications of Pu-
rify. In addition, same amount of data (100,000 keys) are inserted in same way.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 7/15

3.3 Select Source C

3.3.1 Source A

Figure 3 Source A memory status with 100,000 key data

Figure 3 represents the memory status of source A obtained in run time with 100,000 key
data. As shown in the picture, the memory consumption gradually increases, and garbage
collection (GC) occurs approximately 11 times during run time (see Red dots). The
maximum memory required is about 12 mega bytes for this test.

Recalling the program structure described in the chapter 3.1, this picture illustrates that
the application allocates more memory as the application accepts more key data. Thus, it
is estimated that source A will expand the memory allocation in proportion to the number
of key data. This behavior is very much same as illustrated in chapter 3.1.

This picture also shows the behavior of Java GC mechanism. This shows how Java vir-
tual machine (JVM) uses system memory for its heap. The JVM may continue growing
the heap rather than wait for a garbage collection cycle to complete and reduce the mem-
ory consumption.[3][4] However, this application does not look like having such a large
unused memory, because there is no thread that consumes significantly large memory.

In addition, Purify shows the elapsed time, which must not be regarded as an execution
time. This application shows 1 minute and 23 seconds, which is respectively higher than
source B. However, the real execution time is nearly same.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 8/15

3.3.2 Source B

Figure 4 Source B memory status with 100,000 key data

Figure 4 shows memory consumption when source B is executed under same input condi-
tion as in chapter 3.3.1. Unlike source A, source B allocates all necessary memory at the
beginning. The memory curve rapidly ramps up to approximately 8.4 mega bytes, which
is remarkable smaller than source A. As mentioned in the previous chapter, the elapsed
time shown in the bottom does not make sense, since it includes Purify overhead.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 9/15

3.4 Select Source B and Further Application of Purify
One of the purposes of applying Purify in our studio project is to provide the guideline to
select a source code which requires less memory as well as exploit the opportunities to
tweak the performance of source code. Memory requirements are shown in the memory
profile. In addition, call graph illustrates how the application operates in terms of call re-
lationship among classes, and function detail shows how many calls take place and mem-
ory allocation in the class.

Thus, the following comparisons are done in order to choose a source code with better
memory performance.

l Memory requirement: Source B shows better feature in terms of memory re-
quirement. Comparing to source A, source B needs only two third amount of
memory of source A.

l Call structure and recursive functions: Figure 5 is Source A call graph, and
there are two recursive structures in insert function. Comparing to source B,
which has only one recursive structure, source A looks more inefficient. Fur-
thermore, there are more recursive structures (see red circles) in source A that
are not revealed in this call graph, because those paths are not executed in this
experiment.

Therefore, source B is chosen, and next is to tweak the performance further, because
source B still leaves opportunities to be improved. For instance, by removing the recur-
sive structure, it would be possible to improve the performance. However, it may cause
another memory overhead by the local variable introduced while recursive structure is
removed. Purify will help to compare the memory performance before and after changing
the code structure.

Figure 5 Source A Call Graph

Figure 6 Source B Call Graph

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 10/15

3.5 Recursive Structure in Source B
It is said that recursive call is more intuitive and easier to code than non-recursive struc-
ture. However, it is not recommendable in memory and performance critical system, be-
cause it gradually takes up the stack memory and might cause memory overrun. Espe-
cially, when the recursive call takes place many times, it is more critical. On the contrary,
by applying non-recursive call, it can be possible to reduce the amount of stack and num-
ber of function calls. Therefore, what we expect to see by introducing the non-recursive
structure is to improve the memory as well as speed performance in source B.

In source B, recursive call is applied in tree traversing in order to find the empty node to
put new elements. Even if the original source code preserves the top pointer where the
previous element is put, and it guarantees to reduce the traversing effort significantly in
next insert operation, it turns out that more than two times of recursive calls are necessary.
(see Figure 7: 100,000 keys vs. 250,000 calls) The table on the left hand side is before
starting recursive call. After recursive call begins (table on the right hand side), it is
shown that additional 1.5 mega bytes memory are allocated and approximately 260,000
calls take place (see red lines). One strange fact is the entire memory consumption shown
in the memory profile (8.4 mega bytes) does not include this additional 1.5 mega bytes
memory. It seems like Purify does not take this memory into consideration. [11] explains
similar experience that Purify does not detect uninitialized memory access in stack. Thus,
it is necessary to look into the code carefully and compare with function detail in Purify.

Figure 7 Number of Call and Memory Allocation in Recursive Call

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 11/15

3.6 Non-Recursive Structure in Source B
A local variable for TreeNode is employed instead of recursive structure. However, when
replacing the recursive structure with non-recursive structure, a local variable or data
structure is necessary, and it often causes another memory overhead. Therefore, the initial
expectation to reduce the actual memory consumption is not achieved as shown in the
Figure 8.

Figure 8 Source B memory status with 100,000 key data (Non-Recursive Structure)

The entire memory consumption is about 10 mega bytes, which is approximately 1.5~1.6
mega bytes more than the recursive structure is applied. This increment is caused by the
local variable introduced instead of recursive structure. As for the execution time (not
elapsed time), this modification requires only 281 ~ 313 milliseconds, which is faster
than 400 ~ 430 milliseconds with the recursive structure. Even though, there is no im-
provement in memory performance, the execution speed is much better than the recursive
structure.

In order to look into memory allocation and number of calls in detail, function details are
shown in the Figure 9. Table in the left hand side is before the function where the modifi-
cation is applied starts, and it shows a local variable named btree2.BtreeNodeCmp, which
takes approximately 1.6 mega bytes. Instead, the modification does not show the addi-
tional function calls and memory allocation in stack memory. (comparing with before
modification, see blue lines in the table in the right hand side)

As a result, it is possible to confirm the performance variation with Purify according to
the code structure modification. For example, Purify shows the amount of local variable
created in code restructuring and shows the recursive call is disadvantage to the speed
performance. As for the memory increment by local variable, it is nearly same amount as
the stack memory.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 12/15

Figure 9 Number of Call and Memory Allocation in Non-Recursive Call

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 13/15

4 Application to Studio project
Purify seems useful in our studio project when this tool is applied to verify the perform-
ance of memory. Our case study shows the following possibilities to apply Purify in the
studio project.

l Find the node or class where must memory is required: After run the application

in Purify, Purify shows the call graph and function detail in addition to the entire
memory profile. Call graph shows where most of memory is consumed by dis-
playing the different thickness in the graph. In addition to the memory, call graph
is helpful to identify the code structure. One of the interesting features is showing
the number of call. This will be useful in improving the performance.

l Verifying the performance of different design patterns and implementations:
Verifying and confirming the performance of software artifact is not easy, how-
ever, Purify shows the possibility for us to make use in verification of perform-
ance. For example, we are very interested in verifying the performance of sorting,
tree traversing of tree algorithm in this project, because those will decide most
performance of the application. However, it was not easy for us to find any effi-
cient and convenient solution. Purify provides fairly easy and simple solution for
this issue by measuring the memory and number of call.

l Coordinate the concurrent process: Since the conversion process might take sev-
eral hours, it is also important to improve the execution speed performance as
long as it does not jeopardize the memory performance. Thus, a concurrent con-
version process is considered as one of the solutions to improve the speed per-
formance, however, it would be critical with memory performance because of
concurrent process might overrun the system memory. Hereby, Purify will be
helpful to measure the maximum memory and peak memory usage of conversion
process, so that it would be possible to coordinate the concurrent process to avoid
the peak memory consumption.

l Determine the minimum resource to run the application: It is also important for
the customer to know the minimum resource (memory) to run the application.
Purify can easily measure the runtime memory requirement, and help to estimate
the minimum resource.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 14/15

5 Benefit and Drawback of Purify
There are benefits and drawbacks when using Purify. Benefits are illustrated in the chap-
ter 4. Thus, only drawback will be discussed in this chapter.

l As mentioned earlier in the chapter 3.5, Purify does not show the memory allo-

cated in stack while it is displaying the memory profile. It is not obvious why it
is now shown, however, reference [11] mentions similar problem in stack mem-
ory. Therefore, a user may have to go through the call graph very carefully.

l Call graph does not show the path that is not executed. Since Purify is a run time
analysis tool, it does not show the path that is not executed. Therefore, a user
must know the important and critical execution paths, and force them to be exe-
cuted by means of special condition or input configuration.

l Huge amount of system resource is required. When a large application needs to
be run, it would be necessary to split the application, and run them partially. Pu-
rify needs huge amount of system resource, and it often notifies that the system
memory is low.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Analysis of Software Artifacts – Mini Project

Pathfinder 15/15

6 References

[1] http://www.koders.com
[2] http://www.xs4all.nl/~jheyning/jeroen/Btree_java.html
[3] http://www-128.ibm.com/developerworks/java/library/j-leaks/ , Handling memory
leaks in Java programs
[4] http://java.sun.com/docs/hotspot/gc1.4.2/, Tuning garbage collection with the 1.4.2
Java[tm] Virtual Machine.
[5] http://en.wikipedia.org/wiki/Memory_leak
[6] Rational Purify Installing and Getting Started, version 2003.06.00. S126-5312-00,
publibfp.boulder.ibm.com/epubs/pdf/12653120.pdf
[7] http://www-306.ibm.com/software/awdtools/purifyplus/
[8] http://valgrind.org
[9] http://www.parasoft.com
[10] http://memwatch.sourceforge.net
[11] Zhao and Dong, Tool Evaluation of Rational Purify, 2002

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.koders.com
http://www.xs4all.nl/~jheyning/jeroen/Btree_java.html
http://www-128.ibm.com/developerworks/java/library/j-leaks/
http://java.sun.com/docs/hotspot/gc1.4.2/
http://en.wikipedia.org/wiki/Memory_leak
http://www-306.ibm.com/software/awdtools/purifyplus/
http://valgrind.org
http://www.parasoft.com
http://memwatch.sourceforge.net
http://www.pdffactory.com

