Thomas LaToza
5/5/2005

A Literature Review of Clone Detection Analysis

Introduction

Code clones, pieces of code similar enough to be cenesidiuplicates or clones of the
same functionality, are a problem. Despite belieddé code should never be copied and
pasted and agile dictums that all duplication be remawede are frequently good
reasons to copy and paste code. Developers wish toaldédeo do something
implemented elsewhere that they can’t call directlis ight be because the code
makes assumptions or design decisions that the develwgido change. Or the code
might be contained in a module that can’t be calldweefor architectural reasons or
even for organizational reasons. Clones may alseibglemented code where
developers repeatedly introduce the same code into thebesde Developers working
on large code bases might not know that someone teaglglsolved their problem,
especially in cases where the solution is treatedsasrat hidden behind interfaces rather
than exposed functionality to be reused. Developers eimpltement quicksort or a
graph traversal algorithm by copying code from google or lapkiap in their favorite
textbook.

More generally, creating abstractions to remove dujicaepresents a significant
investment that may not always be immediately juestifiKim and Notkin, 2004). In
situations in which modularity has failed and preventedldpees from doing what they
need to do without introducing duplication, refactoring neguire large amounts of
knowledge about the architecture and design. Moreoveonie situations, developers
do not know how fast or how far the code they have copiddiivérge as their design is
uncertain or future requirements to implement are uncer@reating an abstraction is
thus also a risk. If the abstraction is not creatt®el clones might soon diverge so far that
they are no longer clones. Introducing the abstrathien makes the code potentially
more complicated in having to support widely divergent useselbDeers forced to
choose an abstraction to introduce right when copying astthganay not have enough
information to choose the correct abstraction. Wthermabstraction must subsequently
be changed, this introduces large amounts of rework. t@e #ébstraction is not changed,
the code may be more difficult to read and more tedamaistime consuming to
implement.

Code duplication may also happen for performance reasorisnited memory
environments, it may be necessary to have specializetne of the code that do not
contain extraneous instructions or variables that akeatle memory. This may lead to
multiple implementations that are mostly identical.

For all of these reasons, code clones are a sigrifizablem. Empirical assessments of
the number of clones in real systems have typigedligled numbers ranging from 15-
20% of LOC. For instance, CCFinder, a mature code cloalysis, reports that 21.35%

of JDK is cloned code (Kamiya et al, 2002), although thieas note that some of this is
attributable to generated code.

Clone detection tools

One important way to fight code clones is to identkiseng code clones in the source.
Developers can then evaluate whether removing theloyneefactoring to introduce an
abstraction is justified. Developers also have lessoreto prematurely introduce an
abstraction as the difficulty of introducing an absicactater is reduced. Clone
detection tools provide an automated means for developersltarfd inspect code
clones.

Clone detection tool authors argue that they will nevevide a completely automated
tool as whether or not code should be considered a chojdres developer judgment.
The amount of code in common between clones, the muofiledones of the same code,
and the difficulty of refactoring all determine how tteveloper should act when
confronted with a potential clone. Thus, current toadshauilt with the idea of trying to
help developers explore the clones rather than siprpliding a list of clones to remove
or trying to automatically suggest refactorings that theld@ers should take. The tool
authors do not believe that tools ever should be makigmeering decisions about how
aggressively developers should remove clones.

A typical clone inspection GUI consists of a matr@n each axis of the matrix, a list of
tokens (to be defined later) is shown. Each grid ceflasked if the two tokens in
common are considered by the tool to be a clone. gfilallows developers to inspect a
sequence of common tokens which together constitutena.clFor instance, a line of
code tool might report that 10 lines of code are cloveslby showing that 10 contiguous
cells in the grid are clones. This lets the developetise size of the clone and see if any
other clones are next to it and might also be logiqadit of the same code fragment,
even if they are separated by several nonclone tokEmstool may also link to the
source code and allow clicking on clone entities to nagitja source code editor.

Most current clone tools presume some sort of batch mvbdee the tool is run for a
number of minutes on the codebase, results are producetiheathelveloper investigates
the results. Current tools do not support persisting thesrmetion and incrementally
updating it to allow the user to have this information add for actual minute to
minute programming tasks. A clone detection tool is somethaigneeds to be started
and used separately.

Some more sophisticated tools provide metrics about ctoneake it easier for
developer to choose which clones they wish to investity@teource of and which clones
are most worth refactoring. CCFinder provides infornméibout clone classes, or sets
of clones. It provides a maximum length of any clonhéclass in either LOC or
programming language tokens. It provides the number of clories clone class. It
provides a deflation index which estimates the net LT would be removed by
replacing all of the instances of the clone with a @am function and adding call
statements to the new function to all of the clors¢ances. Radius estimates the

difficulty of maintaining the code clones consistentlynhgasuring the maximum path
over all clones up the directory tree and back down iteetdry tree to the furthest away
clone. This is used as an approximation of organizataistdnce of the two clones;
clones that are further away thus have a higher chaireeing owned by different
developers or organizations, making it more difficulthargye both clones.

Code clone tools are similar to other string matchingstaeéd for other software
engineering tasks. Code clone tools are similar taatfis used by version control
systems to find the maximum similarity between an oldige of a file and a new
version of a file. Both rely on string matching algloms. Yet, clone tools are different
in that they look for multiple copies of the samega of code instead of just finding the
minimal transformation from one version to the neizen a single file might contain
multiple copies of the same code clone.

Besides being used to detect code duplication, clone detelgamittans and tools have
also found other uses. CCFinder was used to attempt tondeeavhether a company
stole source code. One company filed suit against anfothstealing its code and
submitted evidence based on CCFinder. CCFinder determinenvéiai0% of the files
contained clones that were also in the other compaoyisce code.

Clone detection tools are also similar to plagiaristecters used to detect student
cheating. MOSS (Schleimer et al, 2003) is a generic daaucoenparison tool used to
ascertain whether too documents have been copiedeaomother. Its web based front
end for source code has been widely used by computer samstieestors to process
student submissions to detect plagiarism. It also facesusissues of having to filter
out uninteresting copying in that some copying is sandfidoyethe instructor. The
instructor may hand out given code or have a templatestader or documentation
information. MOSS thus lets the user declare thaaiteinformation is ineligible to be
considered a duplicate.

Desiderata for clone detection algorithms

A clone detection algorithm is what allows a clone d@te tool to determine which
pieces of code are clones. Some tools, like CCFisdpport detecting not only

pairwise clones between code pieces, but also compriesspa clone equivalence
classes by defining a clone equivalence relation. A cdojeévalence relation is a
reflexive, symmetric, transitive relation over two clernbat describes a class of clones in
which every pair of clones in the class satisfiesréfegion.

A clone detection algorithm must possess the abilitktdude uninteresting clones.
Statements such as printf(*\n”) are likely to be fragudones in many codebases. Most
code has statements that occur frequently. Yet, 300cop@intf(*\n”) in different
places likely does not represent duplication the develgyes@bout. In most cases,
these statements wouldn’t be worthwhile extracting theasr own shared method. Yet, if
this represents a secret that should be hid, this mightlié considered an interesting
clone that should be flagged. Thus, algorithms need tohiggurable so that developers
can select what constitutes an interesting code ctortéé system, coding conventions,

and task at hand. The tool will not be useful if a dgwed must sift through many false
positives that are not useful.

A clone detection algorithm must also be able to undetstione subsumption to find
larger clones rather than smaller clones. Smatiggrmay match between two pieces of
code. Yet, if these strings are part of larger strthgs are also clones, the strings that
are contained by the larger strings should no longeohsidered clones in their own
right. Clone detection algorithms are thus also isteckin finding the minimal number
of clones that still captures all of the individual dogied tokens in a codebase.

Clone detection algorithms also need to be resiliemtdidental change. Once a piece of
code has been copied and pasted in its new locatiaill likely be at least superficially
modified in having some variables renamed, statementdeneal, statements added, or
calls changed. Rather than simply finding only peréémtes that are exact matches, a
clone detection algorithm needs to be resilient to timesgental changes up to a point
and still classify code as being a clone.

Finally, like any program analysis, clone detection aigors need to be fast enough that
they can be run on real programs. Some clone detdotidstry to skirt this issue by
having the user select only some subset of the code itnwdlook for clones. But,
ideally, a clone detection algorithm should be able tomuanreasonable amount of time
on a multimillion line codebase.

Clone detection algorithm
Clone detection algorithms can be simply described agyartdesign decisions
parameterizing a single common algorithm:

DetectClones (source)
Tokenize the source
Transform tokens into canonical form
Match tokens to generate candidate clones
If candidate clone passes filter, mark as clone

DetectClones first parses the source code into sokea t@presentation. The tokens are
then transformed by throwing away some informatiorréate a canonical abstract
representation. The canonical abstract representagorallows the matching process to
compare tokens to determine whether they are the saroaical token. If the

candidates pass both the matching process and an offiltenalg process used to
remove candidates that are clones but aren’t actuédsesting, the match is marked as a
clone.

The matching step is the slowest and generally dominaesittime. Most matching
algorithms do some sort of string matching to be able &ctigte clones as longest
common subsequences in the token stream.

Clone detection algorithms are best distinguished by thémititen of a token. The
oldest and simplest is to simply consider every lineaafe as a token. This is fast but
misses clones that differ in many types of incidertahges. The next most powerful is
to use programming language level tokens. CCFinder, a toed loasthis technique, is
the most mature copy and paste detector. Even moremesd incidental changes, AST
nodes allow reordered clones to still be detected byngakeasier to build a hash that
throws away this ordering information. However, they @so slower. The slowest
copy and paste detector is based on slicing. Computirgs siexpensive, but this
algorithm is forced to do it repeatedly to detect and grotemmizg tokens into the
maximal clone. Thus, the implementation is really sl@vigin analysis (Godfry and
Zou, 2005) attempts to determine where a piece of code atagirirom by tracking its
movement from checkin to checkin. It uses callgraptesas tokens and compares
between versions of source code rather than withintecyiar version of the source
code.

Line of code clone analysis

The oldest and simplest level of granularity to coasfdr clone analysis is a line of
code. This approach is implemented in the tool Dup (Bal85). Parsing into tokens
is trivial. The tool implements a number of transfations once the program is in token
form. Whitespace and comments are removed, preventirg spaces or comments
inserted in the middle of code copied and pasted from disguptmatch. More
importantly, identifiers are stripped and replaced wittaweriables. This allows Dup to
detect cases where the developer has changed a variat@d@éamaome locally
appropriate value. Yet, the use of line of code granulexéans that Dup will miss any
sort of line breaks. Each piece of the line will enchaa separate token, and the inserted
token will cause string matching to fail.

Dup only implements a single type of filter — numbelireés of the clone. This allows it
to exclude simple things like braces or print(*\n”); staénts as the tool produces way
too many matches to be useful at levels of only a fe@sli Dup also presents statistics
of the percentage of clones in different modulesntiraber of clones, and the reduction
in number of statements from removing clones. Thegetheldeveloper make better
decisions on which clones are worth refactoring.

Dup uses a suffix tree string matching algorithm to matetstoamed line tokens against
each other. Thus, Dup’s overall running time is O(|LOQ|)s adble to process 1 MLOC
in 7 minutes on a 40 MHz processor.

Language token clone analysis

The current most effective balance between speed, safetysoundness is to use a
programming language token based approach. CCFinder (Kanaly&2602) uses this
form of the clone detection algorithm. Parsing into takisirelatively easy in that a
standard programming language lexer can be used. CCFinddrs®phistication comes
in the form of a number of sophisticated rules for tiamsing and filtering tokens.

A number of tokens are added, removed, and modified duringath&formation process.
CCFinder attempts to easily support analysis of multgplguages, so there are separate
sets of transformation rules for C, Cobol, and JaMaese rules describe a number of
types of incidental changes common to the programming lapguragjgive rules by
which the tokens can be translated to remove the ine@itlelmanges. For instance, the
Java rules strip package names and readd class namea wimetion is only implicitly
using this in a member variable reference or membetiumcall. Initialization lists are
stripped, accessibility keywords are stripped, and choicgtieats are all forced to have
a compound block inside of them. These transformationsthiéherease the tool's
effectiveness by minimizing the number of incidental chartgat will cause a clone to
be missed.

A number of filtering rules are applied later befordome candidate can be presented as
a clone. Clones must begin at the start of a lidsak. Several types of repeat clones
(such as case statements and variable declaratiordisigarded.

CCFinder uses a standard suffix tree string matching algariit’s runtime is
O(LENGTH(longest clone) * |Tokens|). Since the lengttheflongest clone can
generally be considered as a constant, this reducegritime to simply O(|Tokens|).
The use of a simple analysis for obtaining and matchingp#tens makes CCFinder run
fast. It completes 10 MLOC in only 68 minutes on a 650MHze¢ssor.

The developers claim a number of unique benefits for CCEintleey point out that by
using transformation rules rather than a more sopéisticprogram analysis, they are
able to minimize the dependence on their tool to thegels, declarative transformation
rules that are easy to build for a new language. Theg hlready made these
transformation rule libraries for Java, C, and Cobiihey also note that they implement
finding clone classes rather than simply code clofiéss allows developers to quickly
see that there are many copies of the same clomer thian having to do the transitive
closure by hand by looking at all of the pairwise relatigs

Abstract syntax tree clone analysis

Abstract syntax tree clone analysis (Baxter et al, 1888npts to be more accurate than
a line or programming language token based approach by buil@irsdpsiract syntax
tree. Before taking advantage of its AST represemiatie tool first expands macros to
ensure that all of the information will be in the ASAfter building the AST, a hash of
each of the AST subtrees is performed. This removesifiées. Comments and white
space have already been removed by building the AST to&das.

Matching relies on hashes for each of the AST subtretb® IAST. The step first places
all subsequences of the same length in similar buclasedion the similarity of the hash.
All of the subsequences in this bucket are then compara@ssagse similarity threshold.
The subsequences that pass are then passed on to aizgmangirocess that visits the
parents of the clone AST nodes until a set of parerosirgd that is not a code clone.
Thus, the algorithm requires that clones match by exegebe similarity threshold at
each particular AST node in the hierarchy.

The algorithm’s reliance on building all of the AST selts and doing relatively pricey
AST operations makes it significantly slower than naiker tools. The algorithm itself
is O(|Subtrees of AST]|). It runs in 120 minutes for 100 KLOGe more powerful AST
manipulations and AST approach allows the tool to correetlgct statement reorders

and statement insertions.

Slice based clone analysis

Even more powerful than merely an AST approach, a(tminondoor and Horwitz,
2001) has also used every node in a program dependence graph shides to
compare. A program dependence graph adds edges betwesmestat@henever a data
value depends on another statement for its value.eTddges are either control or data
dependencies. The token creation step consists ofysamgating the program
dependence graph from the source.

Next, all of the program dependence graph nodes are patitiato equivalence classes
based on syntactic similarity of the statementdfelnces in identifier or literal values
are ignored. For each initial pair of program dependendesin the equivalence class,
generalization proceeds to find the largest isomorphic apbgrof the program
dependence graph including the two initial nodes. Backwardoawnaufd slices are
added to increase the size of the isomorphic subgraphtustilot possible to add any
more slices.

Unfortunately, the use of slicing makes the algorithm vieny.s The tool takes 13
minutes to run on just 3419 LOC! The use of slicing does nmiake most accurate
algorithm, however. Unlike the AST approach, similane®do not have to include all
children of some AST node parent. The approach can ntegtdelly entangled clones
where the actual cloned lines of code are spread far améunly linked by program
dependence graph dependencies. It could thus be used to ¢ildedler much more
heavily modified clones where the original copy andeastle has been spread apart by
the insertion and refactoring of functionality. Is@leasily handles statement reorders.

Call graph node origin analysis

An approach very similar to clone detection analysisbeas used to track the
movement of code over time in a process called oagalysis (Godfry and Zou, 2005).
Origin analysis attempts to ascertain, for every tiong the function that it came from in
the previous version. This is interesting when funstiare split, merged, and renamed,
as a simple name search through the previous versibnowistablish a linkage with the
current version. Origin analysis operates on thegrapph, where every call graph node
is a token. It attempts to match a function in oneieenith the most similar function

in a previous version.

Rather than having a single transformation for eachntodeegin analysis provides a
variety of “matchers” that both transform the calhjgh node and rate similarity between
clone candidates. Overall similarity can be any doation of the individual matchers.
The name matcher finds the longest common substritgoofunctions. The metrics

matcher calculates the weighted sum of LOC, faruin variables, and cyclomatic
complexity. The declaration matcher finds the longestmon substring of the lexically
sorted parameter identifiers. Finally the call relatmatcher finds the size of the
intersection between candidates’ caller and calleetitums. It is most useful for looking
at splitting, merging, and renaming.

Rather than run all of the matchers over all ofdbéde in batch mode, the origin analysis
tool provides an incremental, as needed analysis. Therustrselect a set of candidate
functions in each version, and the tool will therpt to identify the origins of
particular functions. This analysis is then “almiostantaneous” rather than taking a
long time. Moreover, the user may wish to switch tmats, matcher parameters, or
matcher weights. Being interactive allows the develtpeuickly try all of these

options without having to wait for a long batch computat@oomplete.

Comparison of Algorithms

The algorithms all strike compromises between providingeragcurate results and
running in a usable amount of time. To get better reshitse tare two main approaches
— use a more powerful analysis (AST or slicing) or buddrfstics that filter specific
cases of unwanted clones (CCFinder, Dup).

Towards building better heuristics, CCFinder’'s creataxelspent time evaluating
transformation rules on real systems including looking¥, Linux, NetBSD, and
FreeBSD. This allows them to evaluate their tramsétion rules and understand what
rules are necessary to work well on real system® improvements in their accuracy
and performance will likely come through this empiridady of exactly how clones
change rather than solving hard algorithms problem.

In contrast, AST and Slicing approaches are much moreithigocentric in relying on
better program analysis to do their work for them. Rent, the challenges that lie ahead
will be coming up with faster algorithms.

Research Directions

Despite a number of tools over the course of a decatlseeral recent empirical
studies of code clones, there is still no solid definibd what constitutes a clone. This is
because clones inherently carry with them some vahmst &ngineering tradeoffs — are
these duplicated pieces of code potentially worthwhila¢tor out and remove. A better
definition would allow the creation of benchmarks withich to make more meaningful
comparisons of an approach’s ability to find not just elasd clones but individual
clones. Yet today, even people can’t decide on whata@o@ses not constitute a clone
(Walenstein et al, 2003). A definition of code clones pridibably need to entail some
description and understanding of when code clones areisanienough to potentially
be worth refactoring. This definition needs to beisigihtly formal that the clone
detection tools can use it to filter clone candidates.

While related, there is also a need for a better uratetstgy of what developers are likely
to change right after performing a copy and paste. Attetopbuild heuristics will need

to consider not just what is easy to detect but whastgpehanges developers actually
make. This type of information could be relatively eagdyhered by simply logging
everything a developer is doing and examining the data aroutidighef copies and
pastes. Having this data would lead to better benchmarkbatfrveeds to be prioritized.

One area that none of the tools other than perhajasgshas gotten close to is being able
to detect reimplementation clones. Syntactic oryikelen AST based techniques rely on
information that is probably too low level to catchres that have as a common source
only being copied from some abstract algorithm in a teéb On the other hand,
because the tools being used to count duplication do not desedt inot even clear

that this is a significant problem worth solving. Some ieiog study trying to examine
what types of reimplementation clones exist in assysthow frequent they are, and how
they could be best detected would probably be the mosilusy to proceed.

Clones also have the potential for a tie in withrileevement towards making recipes and
protocols more explicit in the design. A code clone @de considered as a type of
recipe for solving some problem. Attempts to document com@cipes for solving
important tasks might be extended to encompass anyhaisi tepetitive enough to
require a developer to use copy and paste to implemelniting together the clones to
the recipe would also remove much of their harm to taegeability of code.

Existing tools seem to presume a reengineering or a pggentintenance scenario in
generally being batch oriented. Developers are forcedttewhrough a separate matrix
of potential clones and have to launch and wait fotdbgjust to see any results. Seeing
clone links on the left eclipse editor bar would probdddya much nicer interaction in
allowing developers to be reminded of clones when thewarking with the code in
guestion. This allows them to immediately take theeloformation into account when
beginning to consider any change to one or the posgibflibuilding a new abstraction.

Finally, one simple way of much more reliably detectingy and paste code clones
would simply be to log copy and paste. Each clone couldveeseme XML comment
or annotation that contains a unique identifier foralo@e class or a listing of links to
other instances of the clone. Such a solution would @aislvaluable for a really messy
legacy system but would help contain the problem of slone

Conclusions

Code clones are an important problem. None of theimxitiols have yet to have any
impact on the problem in the real world — none of théstbave yet reached widespread
penetration. This is partially because CCFinder isadiibe few tools that does a good
job providing only interesting clones while still running ine@sonable amount of time.
CCFinder has already been used for an empirical sadtersgineering study looking at
the frequency with which code clones diverge after ttreiation (Kim and Notkin,
2004). But it is not open to download without the permiseioits developers. As other
tools mature towards being even more usable, the inesrfov not sharing openly will
diminish and the race to gain users may begin. Inrakyears, code clone plugins may
become a standard part of Eclipse.

References

Baker, B. On Finding Duplication and Near-DuplicatioLarge Software Systems. In
Working Conference on Reverse Engineering, 1995, 86-95.

Baxter, I., Yahin, A, Moura, L, Sant’ Anna, M., and Bie. Clone Detection Using
Abstract Syntax Trees. Proceedings of the International Conference on
Software Maintenance, 1998.

Godfry, M., and Zou, L. Using Origin Analysis to Det&tgrging and Splitting of
Source Code Entities. IEEE Transactions on Software Engineering, 31, 2
(Feb. 2005), 166-181.

Kamiya, T., Kusomoto, S., and Inoue, K. CCFinder: AtMuguistic Token-Based
Code Clone Detection System for Large Scale Sourcke A&EE Transactions
on Software Engineering, 28, 7 (July 2002), 654-670.

Kim, M., and Notkin, D. Using a Clone Genealogy Extoador Understanding and
Supporting Evolution of Code Clones. Workshop on Mining Software
Repositories, 2005.

Komondoor, R., and Horwitz, S. Using Slicing to IdenDfyplication in Source Code.
In Satic Analysis Symposium, 2001.

Schleimer, S., Wilkerson, D., and Aiken, A. Winnowingchl Algorithms for
Document Fingerprinting. IRroceedings of SgMod, 2003.

Walenstein, A., Jyoti, N., Li, J., Yang, Y., and LakbpA. Problems Creating Task-
relevant Clone Detection Reference DataProceedings of the 10" IEEE
Working Conference on Reverse Engineering, 2003.

