CMU 17-654 & 17-754 Analysis of software Artifact Jonathan Aldrich, Spring 2008
Tool Evaluation Report on Purify

Average Time Spent: aprx. 20 hours
Team AoB: jinheec, sjang, taekgook, gdo Due: Tue Mar. 25, 2008

1 Introduction
Typically run-time memory errors and leaks are very difficult to locate. The symptoms of
incorrect memory usage are unpredictable and usually appear far from the cause of the error.
IBM Rational Purify is a runtime analysis tool designed to help developers write reliable code.
It is one of three related tools packaged in IBM Rational® PurifyPlus. The package includes
Rational Purify, Rational Quantify and Rational PureCoverage [3]:
® Rational Purify® is an automatic error detection tool for finding runtime errors and
memory leaks in every component of program.
® Rational Quantify® is a performance analysis tool for resolving performance bottlenecks
SO your program can run faster.
® Rational PureCoverage® is a code coverage tool for making sure your code is thoroughly
tested before you release it.
Rational Purify tests a program written in C/C++, Java, C# or VB .Net and it supports
Linux , Unix, and Windows platforms(except for Windows Vista). In this report, we focus on
analyzing Rational Purify for Windows in terms of usability and test soundness of it.

2 How Purify Works

Basically, in order to detect various kinds of run-time memory errors, Purify monitors
every byte of memory for all memory operations by adding monitoring bits; monitor memory
that is not allocated, allocated but uninitialized, and freed after use but still initialized. More
precisely, Purify automatically inserts verification code to the object code by parsing. Also, it
maintains a table to track the status of each byte of memory. In the table, two additional bits
are used to represent status of each byte of memory. The first bit keeps track whether the
corresponding byte has been allocated and the second bit records whether the byte has been
initialized. With the combination of two bits, purify describes four states of memory: red,
yellow, green, and blue.

Figure 1 show the four states which each byte of memory can have.

Red: Purify labels heap memory and stack memory red initially. This memory is
unallocated and uninitialized. Either it has never been allocated, or it has been allocated
and subsequently freed. In addition, Purify inserts guard zones around each allocated
block and each statically allocated data item, in order to detect array bounds errors. Purify
colors these guard zones red and refers to them as red zones. It is illegal to read, write, or
free red memory because it is not owned by the program.

1

lllegal to read, write, or free ﬁ/_’ o
Red Blue\\

red and blue memory { |
)\Memory Memory /

/ 'M..__;____ _________, +

mallocf,f' / Legal to read and write

z_’ / free (or free if allocated by malloc)
/ free

/7 Yenow% G@\<

Legal to write Memory | wiite [Memory \

|

. | \
or free, butillegal toread '\ liocated but / »\ allocated but |
Wﬂtializy \ﬂtianzed /

Figure 1 The status of memory in Purify

Yellow: Memory returned by malloc or new is yellow. This memory has been
allocated, so the program owns it, but it is uninitialized. You can write yellow memory, or
free it if it is allocated by malloc, but it is illegal to read it because it is uninitialized.
Purify sets stack frames to yellow on function entry.

Green: When you write to yellow memory, Purify labels it green. This means that
the memory is allocated and initialized. It is legal to read or write green memory, or free
it if it was allocated by maltoc or new. Purify initializes the data and bss sections of
memory to green.

Blue: when you free memory after it is initialized and used, Purify labels it blue.
This means that the memory is initialized, but is no longer valid for access. It is illegal to
read, write, or free blue memory

3 Evaluation
3.1 Overall Evaluation

3.1.1 Qualitative Aspects

As mentioned in previous sections, Purify can be used to find memory-related defects.
However, as much as its functionality, it is also important that Purify must fulfill to users’
needs in terms of easy-to-use. We can research usability of Purify whether it meets the users’
needs to use it easily. However, usability can hardly be quantified because every user might
have different perspective on this matter. Thus, to normalize the qualitative issue, we would
like to use a survey by the Likert scale. Because of limited time and human resource, the
participants can be only four members who conduct this project, and we limit the category of
usability of Purify; installation easiness, and comprehensiveness of results, error summary, and
execution trace.

3.1.2 Quantitative aspects
® Performance

In performance, we quantified CPU and memory usage which can potentially affect on
detection speed. We measured CPU and memory usage of Purify with Notepad++ and our own
source code. Also, we contrasted the minutes of error detection by Purify and inspection to
measure how faster Purify is than human inspection. The result of contrast was easily expected,
of course; the more lines of target codes are, the faster Purify is presumably.

® Soundness

However, by contrasting two factors, we can identify the possibility of False-negative
and False-positive with small chunks of codes which contains intentional defects to determine
soundness of Purify. Here, the soundness of Purify is the most critical factors that we evaluate
the program analysis tool. Though a particular tool provides extreme easiness of use and high
performance, for example, if it detects amount of False-negative or False-positive, we might
not have a trustworthy to the analysis tool. That is, it is meaningless. To measure the
soundness of Purify, we conducted an experiment how well Purify detects a set of defects
seeded program.

3.2 The Notepad++
To evaluate Purify, we used the Notepad++. At first time, we downloaded the latest
version of Notepad++ from the Internet [2], and launched the Notepad++ using Purify. Figure
2 shows the execution dialog of Purify. As you can see, we can set which program will run and
other options. If you click the “Run” button, Purify will execute the selected program to find
defects.

Hun Program E]@
Program name:
|0 Program Files¥latepad++#natepad++ exe [=] | coc
Command-line arguments:
ance
‘Working directory: Settings...
|De#Program Files¥MNatepad++] | oo Help
Caollect:
t Errar and leak data " Caverage. errar, and leak data " Memory profiling data
Detect memory arrors and leaks in natively compiled C/C++ applications,
Use settings from IMI file:
¥
[~ Run under the debugger [~ Pause console after exit

Figure 2 Run Program dialog of Purify

Figure 3 shows the main window of Purify. The left tree view shows a list of what we tested,
and the right tree view shows a list of problems which are founded by Purify. According to
Purify, the Notepad++ contains some defects. Yellow exclamation marks indicate warnings,
and red exclamation marks indicate errors according to the Purify manual [3]. When we click
each item in the right tree view, Purify shows the related information. At this point, we faced a
serious problem. It was hard to find which source code makes defects because normally an
execution file does not contain debug information. As Figure 3 shows, Purify can notify only

3

types of errors and filenames, not exact information.

@ Rational Purify - [Data Browser — Error View: Purify’d notepad++.exel
E File Edit Mew Settings Window Help

=[] Sl | | BE B Bls| slo| alr] e eKa] 2w Blen] S E ¢ EoeE]

= & DWProaram FlesWhotepad+wnotepad | [i] Starting Purify'd D:WProgram FilesWNotepad++Wnotepad++.exe at 2088-83-25 AB:29:4A
- @ Fun @ 2008-03-25 00:30:22 <no argur i} Starting main
&l @S PAR: Insufficient parameters match format string at (6x185a48) {1 occurrence}
= @S Summary of all memory leaks... {15425 bytes, 58 blocks}
=@ WPK: Potential memory leak of 6224 bytes from 4 blocks allocated in CreateWindowExW [USER3Z.d11]
- % MLK: Memory leak of 5216 bytes from 37 blocks allocated in LdrLoadD1l [NTDLL.d11]
= Distribution of leaked blocks
= Allocation location
HeapAlloc [D :HUTNDOWSHsystem32WKERNEL32 .d11]
LdrLoadD11 [D -HUTNDOUSHsystem32WNTDLL .d11]
UVirtualProtect [D:WWINDOWSHsystem32Wkernel3Z.d11]
GetProcessWindowStation [D:WWINDOWSHWsystem3ZWUSER3Z.d11]
- % MLK: Memory leak of 1768 bytes from 3 blocks allocated in CreateWindowExW [USER3Z.d11]
= Distribution of leaked blocks
= Allocation location
LocalAlloc [D :HUTNDOWSHsystem32WKERNEL32 .d11]
CreateWindowExW [D:HUINDOWSHsystem32WUSER3Z.d11]
% MLK: Memory leak of 1819 bytes from 4 blocks allocated in LdrLoadDll [NTDLL.d11]
% MLK: Memory leak of 297 bytes from 1 block allocated in GetProcessHeap [kernel3Z.d11]
- MLK: Memory leak of 297 bytes from 1 block allocated in IsUalidIid [DLE32.d11]
=@ WPK: Potential memory leak of 264 bytes from 1 block allocated in RegEnumKeyd [ADUAPI32.d11]
% MLK: Memory leak of 84 bytes from 1 block allocated in LdrLoadD11 [NTDLL.d11]
% MLK: Memory leak of 68 bytes from 2 blocks allocated in ScrollDC [USER32.d11]
% MLK: Memory leak of 64 bytes from 1 block allocated in CreateWindowExW [USER3Z.d11]
- MLK: Memory leak of 52 bytes from 1 block allocated in DrawTextExA [USER32.d11]
=@ WPK: Potential memory leak of 5@ bytes from 1 block allocated in LdrLoadD11 [NTDLL.d11]
=@ WPK: Potential memory leak of 22 bytes from 1 block allocated in LdrLoadD11 [NTDLL.d11]
=@ FImu: Freeing invalid memory in LocalFree {36 occurrences}
=@ Exiting with code 6 (B6x00PAAEA0E)
i} Program terminated at 26088-83-25 68:30:22

< % |Displayed Errors: 36 of 36 Displayed Warninas: 62 of 227 Bytes leaked: BAG5+6560
Ready

Figure 3 A Purify main window (without debug information)

To find defects of Notepad++, we downloaded the source code of Purify from the
Internet. According to the developers of Notepad++, we can compile the source code with MS
Visual C++ 7.0 or MinGW. Therefore, we chose MS Visual C++ 7.0 as a compiler.

If we use a test program which contains debug information, we can track the exact point
of source code in the test program easily. Figure 4 shows an example of error list. Purify
provides not only which code includes defects, but also the sequence of function call. When
we clicked a source code in the right tree view, Purify showed the actual source code with MS
Visual C++. And we could track and review the source code easily. In this mini project, we
evaluated Purify with debug information.

}’ Rational Purify - [Data Browser - Error View: Purify’'d notepad++Debug.exe]
|S'_.,r" File Edit Mew Zettings Window Help

=] Sl =) | En| B Ble| s|o| Al e 2lS8] 2w e|0E] B E el4f E]

=& DWDocuments and Setingsweijangwdr | [i] Starting Purify'd D:WnppsrcWPouverEditorttbinnotepad++Debug.exe at 2088-83-25 81:21:18
e M, Fun @ 2008-03-25 01:20:56 <no argur @ Starting main
= 2% DnppsrciPowerEditorwbin'tnotepad- | & umR: Uninitialized memory read in strcpy {1 occurrence}
& Fiun @ 2008-03-28 D1:21:28 <no arqur | & UHR: Uninitialized memory read in strcpy {3 occurrences}
=& UMR: Uninitialized memory read in strepy {1 occurrence}
=& UMR: Uninitialized memory read in strepy {1 occurrence}
=& UMR: Uninitialized memory read in DockingManager::reSizeTo(tagRECT&) {1 occurrence}
=N Summary of all memory leaks... {5662 bytes, 41 blocks}
- & MLK: Memory leak of 5216 bytes from 37 blocks allocated in LdrLoadD1l [NTDLL.d11]
Distribution of leaked blocks
Allocation location
HeapAlloc [D -HUTNDOWSHsys tem32WHERNEL32 .d11]
LdrLoadD11 [D -HUTNDDWSHsystem32WNTDLL .d11]
UVirtualProtect [D:WWINDOWSHsystem32Wkernel32.d11]
GetProcessWindowStation [D:WWINDOWSHWsystem32WUSER32.d11]
WinMain [d:4nppsrcWpowereditorisrcuwinmain.cpp:272]
bool going = true;
while (going)

{
going = (unicodeSupported?(::GetHessageW(&nsqg, NULL, B, 8)):(::GetHessageA{&msq
if (going)
{

\
\
\
[m
\
\
\

// if the message doesn't belong to the notepad_plus plus's dialeg
WinMainCRTStartup [f:#Wus78buildsW3B877WuckcrtbldWertsrclicrtf.c:251]
<€) WPK: Potential memory leak of 264 bytes from 1 block allocated in RegEnumHeyd [ADUAPI32.d11]
<€) WPK: Potential memory leak of 88 bytes from 1 block allocated in CreateFontIndirectExW [GDI32.d11]
& MLK: Memory leak of 52 bytes from 1 block allocated in DrawTextExA [USER32.d11]
<€) WPK: Potential memory leak of 58 bytes from 1 block allocated in HppParameters::load{void) [notepg
i] Exiting with code 8 (8x080AB008)
] Program terminated at 2888-83-25 61:21:29

< »
Displayed Errors: Dof 0 Displayed Warnings: 45 of 177 Bytes leaked: b268+334

Ready

Figure 4 A Purify main window (with debug information)

To evaluate the soundness of Purify, we categorized defects into four classes: true-positive,
false-positive, false-negative, and others.

- True-positive: represents that Purify notifies real defects.

- False-positive: represents that Purify notifies non-defects.

- False-negative: represents that Purify does not notifies real defects.

- Others: represent notifications which do not belong to above three classes.

3.3 The defect-seeded program

The purpose of creating a defect-seeded program is to compare the tool with human
inspection and to find false-negatives.

We decided to compare human inspection with the usage of the tool in order to evaluate
the efficiency of using the tool. Finding defects using a computer — Purify in this case — would
be faster than without it. Our concerns are how much faster.

One of the team members developed a simple sorted linked list code, and then he seeded
several defects. The number of seeded defects was not told to the other three members. The
three members are supposed to find the seeded defects within 10 minutes.

One of the team members used Purify to debug the buggy code. Elapsed time to fix all
reported defects (not all seeded defects) was recorded.

The percentage of false-negatives and false-positives was also recorded.

The simple buggy code that is used for group inspection and debugging is as follows:

5

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX _ELEMENT LENGTH 10
typedef struct NODE

NODE * next;
char element[MAX_ELEMENT_LENGTH];
} tNode;

NODE * newList();

void insert(NODE * header, char * element);
int find(NODE * header, char * element);
char * getlnput(char * string);

void copy(char *target, char *source, Int n);
void printAll(NODE * header);

int main(int argc, char *argv[])

{

char *test=(char*)malloc(10); // alloc #1
char ¢ = "\7";

int len;

NODE * header;

header = newList();

test = getlnput(element'); // error #1

len = strlen(test); // error #2
while (len>1)

test[len-1] = 0;
insert(header, test);

test = getlnput(&c); // error #3

len = strlen(test);
}

printf("Final list is as follows..._.\n");
printAll(header);

if (find(header, "aob™))
printf(*'aob Found!!\n™);
else
printf("'no aob.._\n");

// error #4: no free functions
s

NODE * newList()

{
NODE * newNode;

newNode->next = NULL; // error #5

return newNode;
s

void insert(NODE * header, char * element)

{

NODE * current = header;
while (current->next)

{

if (strcmp(element, current->next->element)<0)

NODE * node;

current->next = node;

int len = strlen(element);

copy(node->element, element, len);
return;

}

current=current->next;

T
NODE * node;
current->next = node; // error #7

node->next = NULL; // error #8
int len = strlen(element);
copy(node->element, element, len);

return;
}
int find(NODE * header, char * element)
{

NODE * current = header;
while (current->next)

{

if (strcmp(current->element, element)==0) // error
return 1;
current = current->next;

}
return O;
}
char * getlnput(char * string)

{

char * input = (char *)malloc(80); // alloc #2
printf("Input %s(exit:just press enter key): ", string);

fgets(input,80,stdin); // error #10

return Input;
s

void copy(char *target, char *source, int n)

strncpy(target, source, n); // error #11
target[n] = O;

return;
}
void printAll(NODE * header)
{
NODE * current = header;
printf(*'=== START ===\n"");
whille (current->next)
{
current = current->next;
printf(C'%s\n*, current->element);
printf('=== END ===\n"");
}

Figure 5 The buggy source code

The program simply inserts elements into sorted linked list, and then finds whether the
list contains element ‘aob’ or not. There are nine errors injected intentionally.

Note that the code is written with Visual C++ 2008 Express Edition and compiled in
Debug mode in order to give call stack information to Purify as explained earlier.

4 Evaluation Results

4.1 Overall Evaluation

Questionnaire Average score

Installation easiness 2.50
(1: Poor ~ 5: Excellent)

Overall Interface Intuitiveness 3.25
(1: Poor ~ 5: Excellent)

Easy to learn how to use 3.75
(1: Poor ~ 5: Excellent)

Easy to understand the error summary 3.50
(1: Poor ~ 5: Excellent)

Easy to find the location of errors 4.00
(1: Poor ~ 5: Excellent)

Easy to follow the execution trace of Source Code 3.75
(1: Poor ~ 5: Excellent)

Figure 6 Tool usability survey result

According to the Figure 6, our members experienced difficulty to install Purify. Overall
interface was properly intuitive to the members, and understandability to error report
(summary) was also close to standard (i.e. 3). Learnability and execution trace of source code
are relatively better. Finally, our members thought it is very effective to find the location of
defects in source code. To sum up, our members satisfied about overall usability but thought it
is difficult to install.

We firstly contrasted between the size of original program and program that is executed
by Purify in order to measure performance (memory usage and latency), and then we checked
the time to close 100 documents after the Notepad++ had already opened 100 documents. As a
result, our defect-seeded program consumed 10 times of memory (LMB by original and 10MB
by Purify execution) and Notepad++ also consumed about 5 times of memory (9MB vs.
50MB). For latency, we could measure 1.2 seconds with original program to close 100
documents but it took 9.4 seconds to close 100 documents with the program executed by
Purify. It is hard to generalize the performance of Purify, but it is sure that Purify affects
significantly for memory usage and latency.

4.2 The Notepad++
As we mentioned in the previous chapter, we categorized defects into four classes.

4.2.1 True-positive
True-positive represents that Purify notifies errors which are real defects. With Purify, we
found several true-positive errors from the Notepad++ source code.
Figure 7 shows an example of printDIg() usage. According to the MSDN specification, users
have to free or store the values of hbevMode and hbevNames which are parts of PRINTDLG. The
developers of the Notepad++ did not insert a memory free instruction, and Purify found this
defects. After inserting the memory free code, Purify did not notify that anymore.

FRINIDLG pd:
HWND hwnd;

S/ Initialize PRINTILDLG

ZeroMemory (spd, sizeof{pd)):

pd.lStructSize = sizeof(pd):

pd. hwndCwner hwnd;

pd.hDevMode WULL; /f Don't forget to free or store hDevMode
pd. hDeviames NOLL; f/f Don't forget to free or store hDevNames
pd.Flags PD_USEDEVMODECOPIESANDCOLLATE | PD_RETUENDC:
pd.nCopies 17

pd.nFromPage OxFFFF;

pd.nToPage 0xFFFF;

pd.nMinPage 1:

pd.nMaxPage 0xFFFF;

if (PrintDlg(spd)==TRUE)
{

/f GDI calls to render output.

/{ Delete DC when done.
DeleteDC (pd.hDC) ;

Figure 7 An example of PrintDlg() usage

In another class, the developers used sHGetSpecialFolderLocation() function. According
to the MSDN specification, users have a responsibility for freeing a memory block with the
coTaskMemFree() function. However, the developers did not free the memory, and Purify notify

9

this defect. This defect also removed by inserting a memory free code.
And Purify found many minor defects related with memory initialization. In many cases,
for example, the developers did not initialize some variables, Purify found these defects.

4.2.2 False-positive

In most cases, Purify found defects correctly, but sometimes it notified false-positive
errors. Figure 8 shows an example of false-positive. As you can see, Purify reported an error
which uses shellexecute() function which is provided by the operating system. Because the
parameters of the functions are just constants, there cannot be memory leak obviously. There
are two possible scenarios. One is that Microsoft provides buggy DLL files, and the other one
is that Purify has some defects.

@ Rational Purify - [Data Browser - Error View: Purify’d notepad++Debug. exel

EEHE Edit Miew Settings MWindow Help - | F| X
=|d| gia) o) 2| B B Blo| =|o| AlZ]|[E s8] 2] #]e[El8s] B E o] ==
B -1 % HLK: Hemory leak of 288 bytes from 2 blocks allocated in LdrLoadDll [NTDLL.d11] j
H-ég Au 4] Distribution of leaked blocks
= 2% Diftne = fAllocation location
%EE RtlAllocateHeap [D:WWINDOWSHWsystem32WHTDLL .d11]
LdrLoadD1l [D=WUINDOWSWsystem32WNHTDLL .d11]

UVirtualProtect [D:WUINDOWSWsystem32Wkernel32.dll]
Notepad_plus::command{int) [d:¥nppsrcWpouvereditorisrcinotepad_plus.cpp:3567]

case IDH _HOMESWEETHOHME :
| {

|’ z:ShellExecute(HULL, “open", "http://notepad-plus.sourceforge.net/”, HULL, HULL, SW SHOWHORHAL);
| break;

| y

| case IDHM PROJECTPAGE :

Notepad_plus::runProc{HWND__ *,UINT,UINT,long) [d:¥#nppsrcHpovereditorisrcinotepad_plus.cpp:6611]
Notepad_plus::Notepad_plus_Proc{HWND__ »,UINT,UINT,long) [d:¥nppsrcipowereditort#srcinotepad_plus.cpp:7658]
GetWindowLongW [D:HWUINDOWSHsystem32WUSER32.d11]

] WHnMain [d:=#nppsrckpouereditortisrcwinmain.cpp:283]

[+ HinHainCRTStartup [f:Wes7B8buildsW3077Wvccrtbldtertisrelertf.c:251]

Displayed Errars: O of 0 Displayed Warnings: 14 of 272 Bytes leaked: 328+3106

¥

+

Feady

Figure 8 An example of false-positive

Purify notified a defect with printbig() function which is provided by Microsoft, but we
could not find any wrong codes in the source code. We thought that it also a false-positive
error. To clarify this, we experimented with MS Notepad which is very simple editor. When
we open a print dialog, Purify notified an error which is same with Notepad++. Figure 9
shows the result of this test. However, we cannot sure it is a defect of Microsoft Notepad or a
defect of Purify because we cannot access the source codes of them.

10

@ Rational Purify - [Data Browser - Error View: Purify'd NOTEPAD.EXE]

QEiIe Edit Yiew 3Seftings Window Help

=|Q| S| o w2 =0

[0 =lo| Alz]|E 2lsla] 2| #lelBla| & B 3] ===

- _nf‘;-'D:Wn|3|3srcWPnwerEditDrWhianmepad-
© Fun @ 2003-03-24 18:01:38 <no argur
© Fun @ 2003-03-24 18:15:17 <no argur
© Fun @ 2003-03-24 18:17:09 <no argur
€@ Run @ 2008-03-24 18:29:51 <no argur
© Fun @ 2003-03-24 18:32:31 <no argur
€ Run @ 2008-03-24 18:32:15 <no argur
M, Run @ 2008-03-24 18:3752 <na argur
A, Run @ 2008-03-24 18:51:05 <no argur

=i DAWINDOWSHNOTEPAD, EXE
© Run @ 2008-03-24 18:43:14 <no argur

= ;-’fD:WnppsrcWPowerEditorWhianotepad'
€ Run @ 2008-03-24 18:58:49 <no argur
M Run @ 2008-03-24 18:59:39 <no argur
&, Run @ 2008-03-24 19:08:20 <no argur

Ready

] ‘, Starting Purify’d D:WWINDOWSHWMOTEPAD.EXE at 28688-83-24 18:42:47
i} Starting main
- @ apR: Array bounds read in CompareString¥ {1 occurrence}
Reading 36 bytes from Bx0088fa%@8 (22 bytes at Bx0808fa98e illegal)
Address B8x000fa?e8@ is argument #3 of CompareStringV
Address Bx@80fa?8@8 is 64 bytes into a 78 byte block at Bx@@8fa8ca
Address Bx@B8Fa?e8@ points to a Global/LocalAlloc'd block
Thread ID: 8x5088
] Error location
CompareStringy [D:WWINDOWSHWsystem32WKERNEL32.d11]
CopyIcon [:WWINDOWSHsystem32WUSER32 .d11]
GetWindowLong¥ [D:WWIHDOWSWsystem32WUSER32.d11]
fAllocation location

GlobalAlloc [D:WWINDOWSHsystem32WKERNEL32 .d11]
winHelpa [D:WWINDOWSHsyYstem32HUSER32 .d11]
winHelpa [D:WWINDOWSHsYstem32HUSER32 .d11]

GetWindowLong¥ [D:¥WWINDOWSWsystem32WUSER32.d11]
i) Starting thread B0x7eh
« @ Starting thread 8xzb58
4 0 Summary of all memory leaks... {8828 bytes, 17 blocks}
N i] Exiting with code 8 (0x00080008)
(i] Program terminated at 2068-83-24 18:43:14

Displayed Errars: 1 of | Displayed Warnings: 0 of 74 Buytes leaked: 0+8028

4.2.3 False-negative

Figure 9 A test with Microsoft Notepad

We found a critical error which can be a cause of buffer overrun. This error was
discovered by inspection of team members, but Purify did not notify this error. Figure 10
shows an example of false-negative. As you can see, the developers used _itoa() function
which converts an integer to a string, but the developers assigned only four-byte long array.
According to the MSDN specification, users have to assign long enough array when using

_itoa() function. This code might make some problems because of buffer overruns in stack.

char * ScintillaEditView: :attatchDefaultDoc(int nb)

{
char title[10];

char nb_str[4];

strcat(strcpy(title, UNTITLED_STR), _itoa(nb, nb_str, 10));

// get the doc pointer attached (by default) on the view Scintilla
Document doc = execute(SCl_GETDOCPOINTER, 0, 0);

// create the entry for our list

11

_buffers.push_back(Buffer(doc, title));

// set current index to O
_currentlndex = 0;

return _buffers[_currentindex]._fullPathName;

}

Figure 10 An example of false-negative

To test Purify, we reduced the size of nb_str by 2, and executed the Notepad++. Because
the code is related with generating new documents, we generated more than 1,000 documents.
Figure 11 shows a result of this test. Purify gives sequential number to new documents, but
after generating 999 documents, Purify gives wrong numbers, as you can see in Figure 11.

Even though buffer overrun is a kind of critical problem, Purify did not notify this error.

un Window 7 EjEﬂE?
P LEAIANZT EJ 2] (3]

763 B new 93663 B new 9393 | I 10001E3 | IS8 10011 | I 10021l = 10031 @]« »

Figure 11 An example of false-negative test

4.2.4 Others

By using Purify, we found that the developers used some strange codes. Purify notified
this defect as an uninitialized memory usage. Figure 12 shows an example of strange usages.
The type of the first parameter of append() function is pointer of character array, and the type
of second parameter is integer. Instead of using an array, the developers used just a pointer of
character. Even though this code does not make a problem, we think that this kind of usage is
an abnormal usage. To soundness of the program, this kind of usage should be removed.

éhar realc = (char) c;
outString->append(&realc, 1);
++1]

Figure 12 An example of strange usage

4.3 The defect-seeded program
4.3.1 Inspection
During inspection, three members could find 7 defects out of 11 defects. Error #1, #4, #9
and #11 were not identified by group inspection.

12

Team members tend to miss memory error that violation does not occur close to
allocation; error #1 allocates memory in separate function.

Regarding error #4, no member could find any memory leak despite that the code does
not contain any free function calls. The result was surprising because all members were well
aware that the purpose of the inspection was to find memory defects.

Error #9 is hard to identify without simulation.

Error #11 is also hard to find for humans because the size of target is defined within NODE
structure which is 10, and the length of source is defined in run-time which can be up to 80
bytes including null terminator.

4.3.2 Debugging with Purify
Error #5, #6, #7, and #8

After executing the initial buggy code, we got a critical error message from Windows XP
operating system in Figure 13.

=% paR: GetUersionExA({0x77edd298) OSUERSIONINFOA structure size fie

Microsoft ¥isual C++ Debug Library

Debug Error!
Program: D:WBugg{List‘v\J‘Debu WBuggulist exe

r;]ln ule: DuwBuggyListwDebugWBuggylist exe

ile

Fun-Time Check Failure #3 - The variable ‘newMode’ is being used without being initialized,

(Press Retry to debug the application)

CHALAEE | 2a |

Figure 13 Uninitialized variable error

We fixed error #5, #6, #7, and #8 in the previous code. Three of them (#5, #6, and #8) are
Uninitialized Memory Read (UMR) error [1], whereas the error #7 is Uninitialized Memory
Copy (UMC) error [1]. These errors normally cause abnormal program halt, so it will be found
while simply running the program if the binary is compiled in Debug mode. We fixed all four
defects by simply adding memory allocation calls as follows:

NODE * newNode;
newNode = (NODE*)malloc(sizeof(NODE));

Error #3 (Not detected)

We input three elements including “team,” *aob,” and “boa.” The following screenshot
shows something wrong with the program because sentences from second occurrence are not
clearly written in screen.

This is because of the error #3. However, Purify cannot find nor warn the error. The
variable c is defined as a single character. And getinput uses address of c as a pointer to

13

characters despite there is no guarantee of following null terminator. This is buffer overruns in
local stack.

WBuggyListWDebugWBuggyList.exe

Input element(exit:just press enter keyd: team
ﬁ_ hﬁ?ﬁ?(exit:just press enter keyd: aoh

: [%L n?{exit:just press enter keyd:
Final list iz as follows...

laoh Found??
Press any key to continue...

Figure 14 Simple execution
Error #9 (Detected)

Following screenshot is the result of Purify with the buggy program. The UMR warning
is stremp in 88" line and matches to the error #9.

N i] Starting Purify'd D:WBuggylistWDebugWBuggylist.exe at 2008-83-25 68:58:00
i] Starting main
- UMR: Uninitialized memory vead in strcmp {1 occurrence}
Reading 1 byte from 8x0883f5c1c (1 byte at 8x803f5cic uninitialized)
fAddress 8x0803f5cic is argument #1 of strcmp
Address Bx003f5cic is 4 bytes into a 16 byte block at Bx@83f5c18
fAddress 8x883f5c1c points to a malloc'd block in heap 0x003f0808
Thread ID: 8x6d@
= Error location

strcmp [D:#BuggylListWDebugttBuggylList.exe]

find(HODE =,char =) [D:#WBuggylistWDebugWBuggylList.exe:98]

main [d:#BuggylListW#BuggylList¥DebugBuggylList.obj:42]
_tmainCRTStartup [D:WBuggylListWDebugWBuggylist.exe:582]
mainCRTStartup [D:WBuggulListWDebugWBuggylList.exe:398]

= fillocation location

malloc [D:HUWINDOWSHUWIinSxSH=B6_HMicrosoft.UC208.DebugCRT_1fc8b3b%ale18e3b_92.8.21822.8 x-wv
newList({void) [D:WBuggylListWDebugWBuggylist.exe:53]
main [d:#BuggylListW¥BuggylList¥DebugBuggylList.obj:26]

_tmainCRTStartup [D:WBuggylListWDebugWBuggylist.exe:582]
mainCRTStartup [D:WBuggulListWDebugWBuggylList.exe:398]
= @)Summary of all memory leaks... {926 bytes, 18 blocks}
+ éS HLK: Hemory leak of 532 bytes from 1 block allocated in _getmainargs [MSUCR28D.d11]
<% HLK: Hemory leak of 8@ bytes from 1 block allocated in getInput{char =) [BuggylList.exe]
+ éS HLK: Hemory leak of 8@ bytes from 1 block allocated in getInput({char =) [BuggyList.exe]
+ & HPK: Potential nemory leak of 8@ bytes from 1 block allocated in getInput{char =) [BuggylList.exe]
+ éS HLK: Hemory leak of 8@ bytes from 1 block allocated in getInput({char =) [BuggyList.exe]
<% HLK: Hemory leak of 16 bytes from 1 block allocated in insert(NODE =,char =) [BuggylList.exe]
+ éS HLK: Hemory leak of 16 bytes from 1 bleck allocated in insert(NODE =,char =) [BuggylList.exe]
<% HLK: Hemory leak of 16 bytes from 1 block allocated in insert(NODE =,char =) [BuggylList.exe]
1
1

+ % HLK: Hemory leak of 16 bytes from 1 block allocated in newList(void) [BuggyList.exe]
% HLK: Hemory leak of 1@ bytes from 1 block allocated in main [BuggylList.exe]

&N i] Exiting with code 8 (0x00000008)
i] Program terminated at 2008-83-25 08:58:06

Figure 15 Result screen of Purify

The first current in loop is header at first time, so current->element Will be definitely

14

uninitialized in this function. This is UMR, too. No member could find this error because it
was very hard to find without simulation. We modified the code so that the first current points
out the next node to the header.

Error #1 and #4 (Detected)

There are 10 Memory Leaks (MLKSs) in figure 3. These memory leaks were not
identified by inspection, but Purify successfully identified them plus one strange reporting.
Information about the strange 532 bytes of memory leak report can be referred to Appendix.
(This is the second false negative error.)

We entered four inputs including the last blank input, and Purify showed three MLKs and
one MPK. Four 16 bytes leaks represent three elements and one header node. The final 10
bytes leak corresponds to alloc #1 in source code.

We added free function calls. No more memory leaks related to our code were found as
Figure 16 shows.

- Starting Purify'd D:WBuggyListWDebugWBuggylList.exe at 2088-83-25 11:81:87
i] Starting main
= @ Summary of all memory leaks... {532 bytes, 1 block}
=% HLK: Memory leak of 532 bytes from 1 block allocated in _getmainargs [MSUCR98D.d11]
] Distribution of leaked blocks
= Allocation location
calloc_dbg [D:WWIHDOWSHWInSxSW=B6_Microsoft . UC9A.DebugCRT_1fcBb3b%ale18e3b_
_getmainargs [D :HWINDOWSWWINSXSWRB6_Microsoft.UC9@.DebugCRT_1fc8b3b%ale18edb_
_getmainargs [D :HWINDOWSWWInSxSW=86_Microsoft.UC9@.DebugCRT_1fc8b3b9ale18edb_
CsrHewThread [D-WHIHDOWSHsystem32W¥ntdll . d11]
RtlUnicodeStringToInteger [D:WWINDOWSWsystem32Wntdll.d11]
KiUserApcDispatcher [D:WWINDOWSHsystem324ntdll.d11]
+- Exiting with code 8 (9x@0800880)
i] Program terminated at 2888-83-25 11:81:13

Figure 16 Final result of Purify with the buggy code
Error #2 and #10 (Not detected)

When malloc returns nuLL due to some external reasons, null dereference occurs at error
#2 and #10.

These two errors are impossible to identify unless there is malloc stubs implemented that
returns NULL or malloc returns NuLL due to some reasons like not enough memory situation.
This is limitation of dynamic analysis methods.

Error #11 (Not detected, but possible to detect with different inputs)

The size of element is 10 bytes. However, more than 10 bytes can be written to element
according to the line of error #11 because the length of source string can be up to 80 bytes
including null terminator.

So, we tested with longer input to check whether Purify identifies it or not. It
successfully identified Array out of bounds error as Figure 17 shows.

15

5

+&¥ starting Purify'd D:WBugguListWDebugWBuggyList.exe at 2008-83-25 17:18:55
L] Starting main

+@ apy: Array bounds write in strncpy {1 occurrence}

<@ aBw: Array bounds write in copy{char =,char =,int}) {1 occurrence}

+€) aBR: Array bounds read in printf {1 occurrence}

Input element(exit:just press enter keyd: team aobh finally finished
Input element(exit:just press enter keyd:

Final list is as follows...

=== START ===

team aobh finally finished
=== END ===

no aoh..

Press any key to continue...

Figure 17 Successful error detection with longer input

Conclusion

5.1 Benefits

The most important benefit of using Rational Purify is on the types of errors Purify
detects because typically run-time memory errors and warnings are very difficult errors to
locate. The symptoms of incorrect memory usage are unpredictable and usually appear far
from the cause of the error. An inspection on code might be hard to detect these types of errors
but Rational Purify can effectively detect them. With a program compiled in debug mode,
Purify can directly point out the error coded line, which is very helpful for developers to
correct the code.

5.2 Drawbacks

Although Purify has strong benefits, it has some drawbacks. Because Purify focuses on
run-time error detection, it is natural that it has unsoundness in testing; it is almost impossible
to have 100% coverage of code and even its analysis has some false negative reports of errors,
which is illustrated in evaluation results section.

In addition, if a tested program stops by a fatal error during the testing, then Purify
cannot continue the testing because Purify can only test a running program; this makes testing
jobs more tedious. In case of using a static analysis tool, we might test the whole code at one
time, which might be not practical in real, but with Purify we have to correct the error in
advance to continue on the testing whenever we meet that kind of fatal errors.

5.3 Scope of Applicability
Purify might be most applicable to the systems to which memory management is critical,
for example, embedded system domain: because typical embedded systems have very limited
memory resource, the misuse of memory might be critical to the systems. In addition, unlikely
with static analysis tools, since Purify cannot continue to test when the tested program stop, it
might be useful to apply Purify to comparatively stable code during the development phase or
testing phase.

16

Purify has also other capability for java language: it can evaluate the CPU and memory
usage of program. Since the system we develop in our studio project will be develop with java,
Purify can be very useful for us to develop quality system.

A. Appendix
Purify identified 532 bytes of Memory Leak in following simple code compiled in Visual
C++ 2008 Express Edition as Figure 18 denotes. The reason could be one of the followings:
tool reported false positive or definite memory leak is being created by Visual C++ 2008
Express Edition.

int mainQ)

return O;

- Starting Purify'd D:WEmpty20884WDebugWEmpty28B88.exe at 2008-83-25 B88:47:M1
© Starting main
SR Summary of all memory leaks... {532 bytes, 1 block}
- & WLK: Memory leak of 532 bytes from 1 block allocated in _getmainargs [MSUGR9ED.d11]
= Distribution of leaked blocks
532 bytes from 1 block of 532 bytes (@xA03F58b8)
= Allocation location
calloc_dbg [D:-HWINDOWSHWinSxSHx86_Microsoft.UC908.DebugCRT_1fc8b3b%ale18e3b_9.0.21022.8_x
_getmainargs [D:WWINDOWSHWinSxSWx86 Wicrosoft.UC?08.DebugCRT_1fc8b3b?ale18edb_9.0.21022.8 x
getmainargs [D-HWINDOWSHWinSxSHx86 Wicrosoft.UC90.DebugCRT_1fc8b3b%ale18edb_9.0.21022.8_x
CsrHewThread [D:¥WINDOWSYsystend2i¥ntdll .d11]
RtlUnicodeStringTolInteger [D:WWINDOWSWsystem32bntdll.dl1]
KilUserApcDispatcher [D:WWINDOWSWsystem32¥ntdll.dl1l]
+- €y Exiting with code 8 (0800000808}
i] Program terminated at 2@88-83-25 B88:47:46

Figure 18 Result screen of Empty project in Purify

The code is compiled in debug mode, so Uninitialized Memory Read (UMR) is notified
in Microsoft Visual C++ Debug Library alert window whenever there is a serious memory
access violation.

B. References
[1] http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/

[2] http://notepad-plus.sourceforge.net
[3] http://publibfp.boulder.ibm.com/epubs/pdf/12653120.pdf

17

http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://notepad-plus.sourceforge.net/
http://publibfp.boulder.ibm.com/epubs/pdf/12653120.pdf

