

Page 1 of 8

Evaluation of Rational Purify
Mike Hagen, Zhen Zhang

Master of Software Engineering Program
School of Computer Science
Carnegie Mellon University

{ mhagen, zhenz }@andrew.cmu.edu

1 Abstract

Our team evaluated IBM’s Rational Purify, a
testing application that checks for memory leaks
and memory violation errors at runtime. This
easy to use product automatically instruments an
executable and reports any memory errors in
real-time, thus simplifying the process of
debugging hard-to-find memory leaks. In order
to evaluate this product, we selected several
evaluation criteria, such as ease of installation,
usability, and accuracy of results. We then used
Purify to test two programs: a “Hello World”
program injected with memory violations, and an
open source program, Putty, a secure shell client
based on OpenSSH.

2 Problem Description

Checking a system for memory leaks and
memory violations is a difficult task. Problems
are often intermittent, difficult to test, and hard
to pinpoint. In the instance of array access errors,
the system may work correctly on the
development system because the uninitialized
memory has been set to zero, whereas on the
deployment system, it may be set to another
value, leading to aberrant behavior. For memory
leaks, it is difficult to locate the source of the
problem.

One solution is to avoid the problem altogether
by using a garbage collected language such as
Java, Visual Basic, or C#. Such languages track
all memory references and detect when a block
of memory no longer has any references and can
be garbage collected. This unshackles the
developer from the tedious task of allocating and
deallocating memory. However, it introduces a
similar set of problems. If a block of memory is
referenced when it is no longer needed, it won’t
be garbage collected. Other applications will be
prevented from using it, thereby leading to
resource problems again.

Another solution is to implement code
instrumentation. This serves to log the details of

memory allocations, which will simplify the
process of debugging memory leaks. However,
this approach still doesn’t address the problem of
array access errors. Some integrated
development environments (IDEs) attempt to
track this in debug builds by setting uninitialized
memory to a semaphore value. At runtime, the
system checks for the value and displays a
warning that uninitialized memory has been
accessed. However, this approach doesn’t work
when using release builds of applications or
libraries.

3 Description of Purify

3.1 What does it do?
Rational Purify is a tool used to dynamically
check for memory leaks and a wide range of
memory violations, such as: array bound errors,
uninitialized memory errors, and invalid write
errors, to name a few. There are versions of
Purify available for Windows and Linux. It
supports Java, C/C++, and .Net managed code.
In the Windows version, there is integrated
support for the Visual Studio 6.0, .Net, and
Eclipse IDEs.

3.2 How is it used?
After an executable has been compiled, Purify is
launched in one of two manners: either directly
within the IDE, or as a standalone application.
The application is then launched by invoking the
“Run…” command, which runs the application
normally. As memory errors are encountered,
they are displayed in the main window of Purify,
along with the details of the error. Upon
termination of the application, errors are
displayed for any memory that has been leaked.

3.3 How does it work?
Rational Purify addresses the problem of
detecting memory violation errors in two
manners. First, it instruments the code using its
Object Code Insertion (OCI) technology. This
performs automated code weaving when the
executable is first loaded, and requires no
changes to be made to the source code. Another

Page 2 of 8

key feature of OCI is that the source code isn’t
required, which is useful for third-party libraries.
However, for maximum benefit, it should be
used with debug builds, as this allows it to
display the offending source code and the stack
trace leading to the error.

The second approach used by Purify for
detecting memory violations is to use a 2-bit
state machine for each byte of memory that has
been allocated. One bit is used to represent
whether the memory has been allocated, while
the second bit is used to record whether or not
the memory has been initialized. This allows
Purify to track the state of every memory
location and display warnings appropriately. For
instance, it is valid to write to uninitialized
memory, but not to read from it.

3.4 How sound is it?
Rational Purify is an unsound analysis tool. It
cannot prove that your code is free of defects,
since this information is only available at
runtime. However, it can guarantee that if a
control flow path is taken, Purify will report the
correct results. Its analysis is both safe and
precise for edges of the control flow graph that
have bee traversed. In order to cover the testing
gap left by this unsound analysis method, a code
coverage tool should also be used, such as
Rational PureCoverage. This would allow the
testing engineer to report that a certain
percentage of the code has been tested, and that
subset of code is free of memory violations.

4 Experiment Plan

We chose to evaluate the Windows version of
Rational Purify. In order to evaluate the product,
we first decided upon our evaluation criteria. We
decided to capture qualitative data on the ease of
setup, and the ease of use. We also decided to
capture quantitative data associated with the
number of memory defects found, as well as the
test coverage. Finally, we also had to choose the
products on which to test Purify. We chose a
“Hello World” example, to make sure we had the
tool installed correctly and that we knew how to
use it. We also decided to test Putty, a widely
used open-source SSH client for Windows,
based on the OpenSSH library.

5 Results

After executing our experiment plan, these are
the results that we recorded:

5.1 Ease of Setup
The product was difficult to set up and install in
two regards. First, we initially planned to install
the Linux version of the product and use it to test
a third-party code base we intended to
incorporate into another project. However, we
spent a significant amount of time trying to get
the product to work on Linux, approximately 8
hours. The problem we encountered occurred
when we tried to run Purify on our “Hello
World” example. The application crashed and
displayed an obscure error code along with a
stack trace and error report. Please refer to the
appendix for a detailed error report.

Warning: Non-ABI conforming
section found in object file…

However, after searching the product
documentation and performing a search on
Google, we were unable to find any resolution to
the error. We consulted with a Linux enthusiast,
who suggested it was a versioning problem. The
version of Linux we are using is Red Hat Linux
3.3.3-7, and our version of gcc is 3.3.3. This is
much newer that the versions supported by
Purify. However, we didn’t have the time or
resources to find an older version of the
environment, so we opted to revise our
experiment plan.

After shifting our focus to the Windows version
of Purify, we ran into another speed bump. We
installed the tool and imported the downloaded
license file through the license manager.
However, when we attempted to launch Purify
from the IDE, the system just hung for 15-30
seconds, then did nothing. The application
wasn’t launched, and no errors were displayed.
We then tried to launch the standalone version of
the application. This is when we discovered the
source of the problem. On application startup,
Purify uses a helper application to validate the
license file, and then finishes the startup process.
In our case, Purify managed to find another
license server on the network. However, Purify
was unable to communicate with it due to a
problem with a non-standard port number. After
timing out, it failed to next try the valid license
file that was given to it.

Page 3 of 8

Despite the initial setup problems, there were no
problems integrating the product into the IDE.
When the IDE was launched, there were new sets
of buttons to provide the functionality provided
by Purify. This tight level of integration is
crucial for developer adoption. It allows a
software engineer to test and validate code
without having to incorporate many extra steps
in the development process.

5.2 Ease of Use
After we installed the tool, we found the
interface to be very intuitive. Checking a
program for memory violations was as simple as
browsing for the executable and running it. This
was important, as it doesn’t require any
modifications to be performed to the source code
in order to see results. The benefits were
immediately available.

The results were relatively easy to comprehend.
Please refer to figure 1 below. One potential
sticking point is that the memory errors are given
a 3 letter code, such as ABR, IPW, or UMR.
However, the description of the code is always
displayed next to it. An explanation of the class
of error is also contained in the help file.

The error summary can also be expanded to
reveal details about the execution trace that lead
to the error, as can be seen in figure 2. The
address and thread information is displayed, as
well as the stack trace. If source code is available,
the stack trace can be expanded to reveal the
exact location of the memory violation.

We encountered one major usability problem
when using the product. We encountered a bug
when executing the following steps: enable
“Engage Purify Integration” in the IDE, run
Purify within the IDE, attempt to shut down
Visual Studio. A window was displayed with the
following error:

Microsoft Development Environment cannot
shut down because a modal dialog is active.
Close the active dialog and try again.

However, there was no dialog box to be seen.
The only recourse was to kill the process in the
Windows task manager.

5.3 Defects Found
The following are the quantitative results
uncovered by our experiment plan:

5.3.1 Hello world
In order to validate our understanding of how
Purify is set up and how to interpret the results,
we created a “Hello World” application into
which we injected several memory defects.
Please refer to appendix 11.2 for the source code.

Purify was able to detect all five errors that we
injected into the code. Please refer to figures 1
and 2 for screenshots of the results:

• 2 memory leaks
• 1 array bounds read (ABR) error
• 1 invalid pointer write (IPW) error
• 1 uninitialized memory read (UMR)

error

Since there was only one control flow path, the
line coverage was 100%.

As an additional qualitative measurement, we
had initially planned on capturing the amount of
time required to fix the defects in the source code.
However, there would be too much variance in
this measurement, since the amount of time to
fix a defect depends on the severity of the defect.
The figure would be further skewed if the system
had to be redesigned to avoid the problem.

5.3.2 Putty
The main test of our experiment was to use
Purify to analyze an open source
communications application on the Windows
platform. We chose Putty, a secure shell client
based on OpenSSH, due to its widespread usage.

The sequence of events we chose to test was
opening up an SSH connection to a server,
perform some operations on the server, and then
log out. Figure 3 shows the results captured by
Purify. As we can see, there are three main
memory leaks that were detected, and no array
violations, with a total of 32% line coverage.

We should also mention that although there are
more memory leaks than the three listed, those
are leaks in dynamically linked libraries against
which Putty is linked. These need to be tracked
down, but this is difficult, as we don’t have the
source code for the third-party libraries. This
might also be an indication of misused library
interfaces.

After delving into the source code, we tracked
down the three memory leaks. We should first

Page 4 of 8

mention that Putty wraps up the memory
management functions malloc, realloc, and free
with the functions safemalloc, saferealloc, and
sfree. This is for the purposes of being able to
switch the memory management routines with a
compile-time switch. However, this adds another
level of indirection for memory allocations and
potentially obscures the source of errors.

In all three memory leaks, the wrapper functions
allocated memory on the behalf of another
function, which then initialized a field of a data

structure, which was in turn copied and returned
from another method. It becomes very unclear as
to who is responsible for freeing the memory.
There are several references to the same data
structure, and if it is deleted too soon, other
references then become invalid. This is a poor
design, and is a good candidate to be
reengineered in C++, where it is easier to
encapsulate data and avoid this problem.

Figure 1: Screenshot of error summary for “Hello World”

Figure 2: Screenshot of error details for “Hello World”

Page 5 of 8

Figure 3: Screenshot of error summary for Putty

6 Difficulties

6.1 Difficulties with Linux
As was mentioned above, the difficulties we
encountered with the Linux version caused us to
abandon our original experiment plan.

6.2 Outdated support information
In an effort to save our initial Linux experiment
plan, we attempted to contact Rational technical
support via an email address listed in the product
documentation. However, the email address was
outdated, presumably on account of IBM’s
purchase of Rational. Additionally, our efforts to
contact IBM’s technical support were in vain. It
was also difficult to find any updates or support
information on IBM’s website.

6.3 Problem with Visual Studio .Net
After shifting our experiment plan to test the
Windows version, we compiled the “Hello
World” example with Visual Studio .Net, Visual
C++ 7.0. However, when we attempted to test
the executable with Purify, it failed to find any of
the memory violations we inserted into the code.
We failed to determine the root cause of the
problem, but our hypothesis was that VC7 was
performing some of its own optimization or
instrumentation, which got in the way of Purify’s
OCI process. This caused us to revert to Visual
C++ 6.0, which worked fine.

6.4 Problem Building Putty Source
We finally got the “Hello World” example to run
and we were able to find the inserted errors. We
then proceeded to test the Putty application.
However, we ran into a linker problem and were

initially unable to build the source code. We
tracked the problem down to an incompatibility
with the IPv6 library that was installed with VC7
and the library that was expected by Putty. We
were able to link to the correct version after
using a compile time #define in the project
settings.

6.5 Problem with Incremental Builds
We finally got Purify to run on the Putty source
code. However, Purify was displaying some
strange errors in addition to the detected memory
leaks:

Pure: Trap bits found in live
chunk at 0x27ab28b,
flags=0x2000, handle=0x0

Of course, this made absolutely no sense to us at
first. In the help file, it listed this as an internal
exception thrown from within Purify. There were
also several possible causes listed, one of which
was a problem with incremental builds causing
the debug information to get out of date. After
turning off incremental builds, everything
worked fine.

6.6 Obscure errors
The multiple errors we encountered while
installing the Linux version, setting up the
license server, and testing incremental builds
could have been resolved much more easily had
the system displayed more intuitive errors. One
important usability principle is to give users
enough information to fix problems themselves.
However, Purify fails to address this concern in

Page 6 of 8

the manners described above. This definitely
leaves some room for improvement.

6.7 Lack of documentation
Although there was ample documentation for
general usage of Purify, we found a lack of
support documentation in the application or on
the Internet for tracking down obscure errors.

7 Strengths and Weaknesses

In summary, here are the strengths and weakness
of Purify that we determined:

7.1 Strengths:
• Integration into IDE
• Doesn’t require modifications to source

code
• Source code isn’t required
• Results are easy to interpret
• Offending source code is easy to find
• Works well with code coverage tool
• If errors are displayed, they are guaranteed

to be valid errors.

7.2 Weaknesses:
• Poor product support
• Obscure errors with no description or

reasoning behind them.
• Versioning support on Linux
• There are several critical software defects

lending to usability problems. However,
workarounds were found.

• Unsound analysis. However, this can be
augmented with a code coverage tool for
more accurate results.

8 Conclusion

Although we had some difficulties with setting
up Rational Purify, once it was running the tool
provided us with immediate results without
having to modify the source code. The user
interface displayed the exact error and location
of the memory violations, which made it easy to
track the problems down. Although it uses
unsound analysis methods, it can be coupled
with a code coverage tool like Rational
PureCoverage for more comprehensive test
results. Purify should be a part of any test suite
in which memory leaks could potentially be a
problem.

9 References

[1] “Getting Started With Rational Purify Plus”,
Rational Software Corporation, 2002.

10 Biography

Mike Hagen has worked as a
software developer for Day-Timer
Technologies and as a programmer/
analyst for the State of Alaska. His
technical skills include programming

in C/C++ and C#/.Net, developing web solutions,
interfacing with SQL Server databases; he has
experience working on both Windows and Unix
platforms. Mike graduated from Stanford
University with a Bachelor of Science degree in
Electrical Engineering with an emphasis in
computer hardware design.

Zhen Zhang has been previously
employed at Unisys and Motorola
Research and Design Center in
China. His main expertise is in C
on the SCO Unix platform. Zhen
earned his Bachelor of Science

degree in Computer Science at the Beijing
University of Aeronautics and Astronautics.

Page 7 of 8

11 Appendix

11.1 Error report for Linux version
Runtime Error of checking “Hello_world”:
[zhangz@msepc6 example]$ purify -g cc hello_world.o

Purify or PureCoverage engine: Warning: Unrecognize d option '-g'
ignored.
Purify 2003a.06.13 Linux (32-bit) (c) Copyright IBM Corp. 1992, 2004
All rights reserved.
Instrumenting: hello_world.o libgcc_s.so.1
Purify engine: While processing file /lib/libgcc_s. so.1:
Warning: Non-ABI conforming section found in object file
/lib/libgcc_s.so.1.
Type code is 0x6ffffff7. Treating section as unint erpreted data.
collect2: parse.c:4342: ProcessSpecialSymbols: Asse rtion `offset <
((((((ofile->dyn_got_block_info)->block))->block_of ile-
>elf_sec_headers+(((ofile->dyn_got_block_info)->blo ck))-
>elf_block_index)->sh_size))' failed.

Purify engine 2003a.06.13 got signal 6 (SIGABRT - Aborted)
 sigcode=-6; pc=0x5ef7a2; sp=0xbfff4f18; addr=0x32a 4
Please contact IBM Support at www.ibm.com/software/ support.

11.2 “Hello World” source code
#include <stdio.h>
#include <string.h>

static char *helloWorld = "Hello, World";

int main(int argc, char * argv[])
{
 char *mystr = (char *) new(char [strlen(helloWorld)]);

 strncpy(mystr, helloWorld, 12);
 printf("%s\n", mystr);

 int * pArray = new int [20];
 pArray[27] = 42;
 printf("memory: %d", pArray[5]);

 return 0;
}

11.3 Putty source code

11.3.1 First memory leak:
[file: C:\My Projects\putty\ssh.c, line: 7632, function: ssh_init]

 const char *p;
 Ssh ssh;

-> ssh = snew(struct ssh_tag);

Page 8 of 8

 ssh->cfg = *cfg; /* STRUCTURE COPY */
 ssh->version = 0; /* when not ready yet */
 ssh->s = NULL;

11.3.2 Second memory leak:
 [file: c:\my projects\putty\windows\winucs.c, line: 541, function: init_ucs]

 continue;
 if (!ucsdata->uni_tbl) {
-> ucsdata->uni_tbl = snewn(256, char *);
 memset(ucsdata->uni_tbl, 0, 256 * sizeof(char *)) ;
 }

11.3.3 Third memory leak:
[file: c:\my projects\putty\settings.c, line: 778, function: get_sesslist]

 if (bufsize < buflen + len) {
 bufsize = buflen + len + 2048;
-> list->buffer = sresize(list->buffer, bufsize, char);
 }
 strcpy(list->buffer + buflen, otherbuf);

