

ANALYSIS OF SOFTWARE ARTIFACTS

FINAL REPORT

TEAM NEO

JonggunGim

Chankyu Park

Heewon Lee

Miyul Park
Jeongwook Bang

TEAM NEO

2005-08-27 PM 12:22 2/17 ANALYSIS OF SOFTWARE ARTIFACTS

Project ReportProject ReportProject ReportProject Report

1. Overview

1.1. Title of Project

Evaluation of “FindBugs 0.8.7” as an alternative of Code Review

1.2. Members

JonggunGim jggim@andrew.cmu.edu Team Representative

Chankyu Park ckp@andrew.cmu.edu Warnings Investigation

Heewon Lee heel@andrew.cmu.edu Tool Study

Miyul Park mip@andrew.cmu.edu Process Manager

Jeongwook Bang jbang@andrew.cmu.edu Warnings Investigation

2. Project Description

Code Inspection is considered to be one of the most effective Software Engineering Practices in
improving the quality of software. Although in many cases, its huge cost of initial investment
discourages developers of active adoption of the practice. But recent studies show that large portion of
errors detected by code inspection could be detected by automated static code inspection [1]. Common
belief about logical errors is that they are usually very subtle and that static analyses are not adequate
to find such errors. But it is getting more obvious, with empirical data, that static error detectors can
sieve a big portion of logical errors. One such example is shown below.

If (in == null)

Try {

 In.close();

}////////from Eclipse 3.0.0 M8

FindBugs is one such tool. The team initiated the project in the hope of adapting these tools to help the
team in code review for the studio project of team neo.

Type of this project was Tool Evaluation of FindBugs version 0.8.7 that was released on April-14, 2005.

1.3. Objectives of Project

Three of team members work in the same MSE studio project developing a Rule Based Management
System named BizRules. These members wanted to analyze java libraries to be used for developing
BizRules to enter the implementation phases with confidence about its robustness.

TEAM NEO

2005-08-27 PM 12:22 3/17 ANALYSIS OF SOFTWARE ARTIFACTS

Another objective for all team members was to analyze java code created by them to understand
common error patterns and prevent them.

3. Tool Description

FindBugs is a static Bug Pattern Detector that looks for both specific bugs and style violation that, in
many cases, indicates problematic code. A bug pattern is a code idiom that is likely to be an error.
Occurrences of bug patterns are places where code does not follow usual correct practice in the use of
a language feature or library API. [01]

FindBugs defines a number of bug patterns, and automatically detects the bugs matched to the
patterns. In addition, FindBugs uses static techniques, which explore abstractions of all possible
program behaviors, and thus reduces the overhead by code inspection.

Figure 1. Overview of FindBugs

There are many tools similar to FindBugs. For example, ESC/Java we had considered as our analysis
tool is also one of java bug finding tools. ESC/Java stands for the Extended Static Checking system for
Java, and it basically performs formal verification of properties of Java source code. Besides, there are
other similar tools: JLint, Eclipse (method naming), IntlliJ, IDEA, PMD, CheckStyle Jtest, FlawDetector,
Wasp, and inForce.

FindBugs utilizes BCEL (Byte Code Engineering Library) to scan compiled java class files. Hence,
source files are not prerequisites for analysis, but they can help the analysis to pinpoint the location of
warnings in source codes.

1.4. How does this work?

A short Warning Code represents each bug pattern. Currently, FindBugs contains about 50 bug
patterns. Besides, the bug detector part of FindBugs is implemented using the Visitor design pattern;
each detector visits each class of the analyzed library or application. [1] One of the main techniques
that FindBugs uses is to syntactically match source code to known suspicious programming practice.
For example, FindBugs checks that calls to wait(), used in multi-threaded Java programs, are always

TEAM NEO

2005-08-27 PM 12:22 4/17 ANALYSIS OF SOFTWARE ARTIFACTS

within a loop—which is the correct usage in most cases. In some cases, FindBugs also uses dataflow
analysis to check for bugs. For example, FindBugs uses a simple, intra-procedural (within one method)
dataflow analysis to check for null pointer dereferences. FindBugs can be expanded by writing custom
bug detectors in Java. We set FindBugs to report “medium” priority warnings, which is the
recommended setting.

1.5. Feature

Bug pattern detectors of FindBugs are divided into 4 categories; they are Single-threaded correctness
issue, Thread/synchronized correctness issue, Performance issue, and Security and vulnerability to
malicious un-trusted code. These detectors are implemented to catch various bug patterns. That is,
Find bugs can find out the following types of bugs by using these detectors:

� OVERRIDE HASHCODE: Classes that override equals() must override hashCode.

� BOOLEAN CONSTANTS: Boolean is immutable; there are only two values.Constructing
objects of this type is just a waste of memory.

� SERIALIZABLE: Serializable classes that contained non-Serializable, nontransient
attributes. These classes could not be unserialized.

� REDUNDANT NULL COMPARISON: Comparison between two values that are both null,
or when exactly one is null. This usually happens when a null check is made on a
constructed object (since constructors can't return null), or when a null check is made on an
object that is being previously referenced. Mostly these were simply unnecessary (and
therefore inefficient), but in some cases they indicated real bugs.

� STRING CONSTRUCTION: String constructor is called unnecessarily. String s = new
String (“some string”);

� UNUSED FIELDS: Unused (private) fields.

� STRING COMPARISON: When comparing String objects, the equals() method should be
used (unless both strings are constants or have been interned).

� FINALIZE: Some classes that were overriding finalize() were not doing so correctly.

� NULL DEREFERENCE: Possible null pointer dereferences.

� THREAD START: Classes that start a thread in the constructor cannot be reasonably
extended.

� UNREAD FIELD: Unused fields.

� STATIC CONSTANTS: Instance fields that are never read.

� MUTABLE STATICS: Non-final static fields. These are fields that can be changed by
another package.

� BOOLEAN LOGIC ERROR: if ((tagged == null) && (tagged.length < rev))

Below are examples of Null Dereference warnings and Redundant Null Comparison warnings.

Null Dereference

// Eclipse 3.0.0 M8

Control c= getControl();

TEAM NEO

2005-08-27 PM 12:22 5/17 ANALYSIS OF SOFTWARE ARTIFACTS

if (c == null && c.isDisposed())

return;

// Eclipse 3.0.0 M8

String sig = type.getSignature();

if (sig != null || sig.length() == 1) {

return sig;

}

// JDK 1.5 build 42

if (name != null || name.length > 0) {

if (flags != null) {

if (flags.length >= NUM_FLAGS)

this.flags = ...

else

this.flags = ...

} else

this.flags = ...

if (flags[RENEWABLE_TICKET_FLAG]) {

Redundant null comparison

protected Node findNode(Fqn fqn, ...) {

int treeNodeSize = fqn.size();

...

if (fqn == null) return null;

1.6. Usage

To perform analysis, we installed two kinds of FindBugs programs. One is Eclipse plug-in version, and
the other is standalone program. Both are easy to install, but they are not identical. That is, each tool
has different advantages, and hence we need to consider what tool is more suitable to us.

The characteristics of each tool are as follows:

 Advantages Disadvantages

Eclipse plug-in

1. Each bug guides the user on
where the relevant bug occurs.
For example, if a program has
some bugs, and they are
detected, FindBugs will display
the list of found bugs on the
Problem view. On clicking one of
the bugs, the user can reach the
place the bug occurs. This source
trace function of FindBugs Eclipse
plug-in is really helpful to fix bugs.

1. FindBugs for Eclipse plug-in is
not available in some
environment. Even though the
program is installed, it is not
working. We think that the reason
is maturity of the FindBugs.

2. FindBugs for Eclipse plug-in
does not provide refined display.
Because of this, collecting
meaningful bugs can be tricky.

TEAM NEO

2005-08-27 PM 12:22 6/17 ANALYSIS OF SOFTWARE ARTIFACTS

2. Basic functions of Eclipse plug-
in can be used to fix found bugs.
Even though this is not the
character of FindBugs, as it
combining with Eclipse, our
objective, which is reducing the
inherent bugs, can be achieved
more easily.

Standalone

1. This version can display the
categorized results. The
supported categories are classes,
packages, bug types, and bug
category.

2. It supports to export results to
XML. This tool has the feature to
summarize the analysis result. In
addition, this results can be saved
as a XML file, and hence we can
get more readable results.

1. Standalone program provides
source-trace only as using a
notepad. In addition, not all bugs
can be traced. Therefore, fixing a
bug is annoying, because we may
add new bugs during editing.

2. Poor GUI can be also one of
disadvantages. Poor GUI means
poor usability. It has only basic file
editing functions such as edit,
copy, and paste. However,
recently, many analysis tools
provide usable design. Therefore,
GUI will be a limitation of this tool.

Based on our experience, since we needed to correct discovered bugs and to sort out meaningful
errors, FindBugs for Eclipse plug-in was a better choice. The refined source codes would be used for
Studio project in the future. In light of this, as using editor functions of Eclipse, we could easily correct
the errors which FindBugs found, and hence the codes became more mature.

Bug Details:

Description of

the selected
bug

Categorized
by bug results

Summary of

execution

result of
FindBugs

Figure 2. Standalone FindBugs - Categorized results

TEAM NEO

2005-08-27 PM 12:22 7/17 ANALYSIS OF SOFTWARE ARTIFACTS

Problem view:

display the
result of
FindBugs

Figure 3. FindBugs for Eclipse plug-in - problem view to display bugs

Bug Details:
Description of
the bug which
the selected
codes have

Bug
occurrence
mark

Figure 4. FindBugs for Eclipse Plug-in - Source Traceability
1.7. Strength

� It is easy to install and to run: As stated above, the installation of FindBugs is very simple.
We just downloaded a zip file and extracted it. Then, it was done. We just run the bat file.

� FindBugs is extensible: We can add our own bug pattern codes into existing FindBugs.
This implies that there is no limitation in term of types of bugs. If we can handle to
implement the bug patterns, FindBugs will be a more powerful analysis tool.

1.8. Weakness

� Provided source code metrics are too simple: FindBugs only provides simple data about
source codes, such as the number of classes or the number of packages. However, the
number of field variables or static variables can be a criterion, because FindBugs catches
the case that a static variable is assigned directly. To handle this problem, we have to use
another metric tool to analyze the results of FindBugs.

TEAM NEO

2005-08-27 PM 12:22 8/17 ANALYSIS OF SOFTWARE ARTIFACTS

� FindBugs does not have help files: even though it is easy to run, the absence of manual or
help files can lead to convenience.

Additional
plug-in to
collect metrics

Figure 5. Additional metrics plug-in

4. Analysis Description

1.9. Objectives of Analysis (Expected Results)

Analysis using FindBugs is a two-phase activity; collecting warnings by running FindBugs with java
class files / jar files (team decided to call this “Analysis”) and Investigating the errors reported by
FindBugs (team decided to call this “Investigation”).

Analyses by FindBugs take trivial amount of time even with programs of very large size. Hence, the
team agreed that analyzing the characteristics of the analysis progress itself is of very little value to the
team (e.g., measuring analysis time for different size of application, measuring time for analysis for
finding different kind of errors).

Rather, investigating the warnings reported by the tool and measuring/analyzing properties associated
with this activity were focus of experiments believing this will promote the objective of this project (refer
to “objectives of project”).

Main interests of analyses are;

� How much of reported warnings are real errors of the program?

� Do different programs have different error patterns?

� What are common mistakes we make in our code?

� How much time do we need to determine genuineness of each errors? And which types of
errors require more times for investigations?

1.10. Scope of Analysis

Mandarax library (332 classes, 10,259 LOC) being used in neo’s BizRules system was fully analyzed
and investigated. This experiments also revealed FindBugs’ performance in analyzing bug programs.

TEAM NEO

2005-08-27 PM 12:22 9/17 ANALYSIS OF SOFTWARE ARTIFACTS

Two smaller java based programs (22 classes/1,759 LOC and 39 classes/2,733 LOC, respectively)
created by team members as assignments of “Fault Tolerant Middleware” and “Systems Engineering”
were analyzed and investigated. This is mainly for uncovering error patterns of our code to help
preventing similar mistakes in the future.

1.11. Data Collected, Calculated, and analyzed

Both summary data of each analysis and investigation results of individual errors were collected under
following scheme.

4.1.1. Summary of Analysis

NameNameNameName DescriptionDescriptionDescriptionDescription UniUniUniUnitttt Data TypeData TypeData TypeData Type

Title Unique Descriptive Title of Analysis

Date Date when the analysis was performed

Target
Program

Program Analyzed

Class Number of Class each Measured

LOC Line of Code Loc Measured

Warnings Warnings reported by FindBugs without any
filtering parameter given

each Measured

Correctness Number of warnings under category of correctness
problem

each Measured

Malicious Number of warnings under category of malicious
code vulnerability

each Measured

Multithread Number of warnings under category of multithread
correctness

each Measured

Performance Number of warnings under category of
Performance

each Measured

Style Number of warnings under category of Style each Measured

Bug Types Number of types of warnings reported each Measured

Critical Error Number of errors of following six types. They are
usually considered to be REAL errors

each Measured

Eq Number of warnings of Type Eq. each Measured

HE Number of warnings of Type HE each Measured

MS Number of warnings of Type MS each Measured

Se Number of warnings of Type Se each Measured

DE Number of warnings of Type DE each Measured

CN Number of warnings of Type CN each Measured

Serious Number of Errors determined to be real fault and
needing correction after investigation

each Measured

Harmless Number of Errors determined by investigation to be
harmless to program and does not require
modification.

each Measured

False
Positive

Number of Errors determined by investigation to be
ones due to deficiency of analysis algorithm and
not requiring modification.

each Measured

4.1.2. Investigation Results

NameNameNameName DescriptionDescriptionDescriptionDescription UnitUnitUnitUnit Data TypeData TypeData TypeData Type

Id Sequential number unique under each analysis
and Error Type

TEAM NEO

2005-08-27 PM 12:22 10/17 ANALYSIS OF SOFTWARE

ARTIFACTS

Error Type Type of Error Given

Assignee The name of person assigned to investigate the
warning

Begin
Investigation

Time that the assignee began investigating the
warning

Time Measured

Finish
Investigation

Time that the assignee finished investigating the
warning

Time Measured

Elapsed Time Time taken for investigation of each warning Minutes Calculated

Conclusion Serious/Harmless/False Positive, see preceding
table for definition of these conclusions

 Determined

Remarks Can indicate sub type of errors

5. Analysis Result

Below are summaries of three experiment results.

1.12. Program I – Mandarax

Mandarax is java based RBMS system developed by Jens Dietrich of Massey University. Current
version is 3.4 released on March 6, 2005.

Mandarax

#Total Loc #Static
methods

#Classes #Fields #Packages #Static
Fields

#Methods #Interfaces

10,259 lines 66 332 311 28 361 1922 50

Analysis Results From FindBugs

#Correctness 17 11%

#Malicious 109 69%

#Multithread 2 1%

#Performance 14 9%

#Style 16 10%

Bug Category

Total # bugs 158 100%

Bug Code warnings serious mostly harmless false
positive Investig. Time

CD 4 0% 100% 0% 0:02:00

DLS 7 100% 0% 0% 0:00:26

Dm 3 100% 0% 0% 0:01:00

EI 44 100% 0% 0% 0:00:33

EI2 31 100% 0% 0% 0:02:15

HE 3 100% 0% 0% 0:03:20

IS2 2 0% 100% 0% 0:01:00

MS 34 100% 0% 0% 0:00:58

RCN 6 100% 0% 0% 0:03:40

REC 3 100% 0% 0% 0:01:20

SIC 3 100% 0% 0% 0:02:00

ST 2 0% 100% 0% 0:05:30

TEAM NEO

2005-08-27 PM 12:22 11/17 ANALYSIS OF SOFTWARE

ARTIFACTS

Se 2 100% 0% 0% 0:05:00

SnVI 6 100% 0% 0% 0:03:30

UPM 3 100% 0% 0% 0:01:10

UrF 3 100% 0% 0% 0:01:40

WMI 2 0% 100% 0% 0:02:00

1.13. Program II – Logo Robot system for Systems Engineering Class

This java program is developed by one of team member as the project of Systems Engineering class.
This program is developed to run on Jini environment and deployed to Logo Robot system to enable it
to detect intruders.

Codes were written mainly by one person in half a semester.

ESIS Course Robot Project

#Total Loc #Static
methods

#Classes #Fields #Packages #Static
Fields

#Methods #Interfaces

1,759 lines 6 22 90 1 37 153 2

Analysis Results From FindBugs

#Correctness 21 47%

#Malicious 0 0%

#Multithread 0 0%

#Performance 0 0%

#Style 24 53%

Bug Category

Total # bugs 45 100%

Bug Code warnings serious mostly harmless false
positive

Investig. Time

DLS 4 100% 0% 0% 0:03:00

Dm 6 0% 100% 0% 0:01:30

FI 1 100% 0% 0% 0:03:00

Nm 5 100% 0% 0% 0:01:36

NP 1 100% 0% 0% 0:02:00

RR 1 100% 0% 0% 0:01:00

RV 2 100% 0% 0% 0:02:00

SA 1 100% 0% 0% 0:02:00

SC 3 100% 0% 0% 0:00:40

Se 6 100% 0% 0% 0:01:10

ST 14 100% 0% 0% 0:01:30

UR 1 100% 0% 0% 0:02:00

1.14. Program III – Fault Tolerant Lotto System

This program was developed for class project of Fault Tolerant Middleware class. Two of team member
participated in this project. This program is text menu driven CORBA application including both server
and client.

The program was developed by five developers in one semester.

TEAM NEO

2005-08-27 PM 12:22 12/17 ANALYSIS OF SOFTWARE

ARTIFACTS

Fault-tolerant Distrubuted Systems Project

#Total Loc #Static
methods

#Classes #Fields #Packages #Static
Fields

#Methods #Interfaces

2,733 lines 61 39 72 5 72 196 4

Analysis Results From FindBugs

#Correctness 13 37%

#Malicious 13 37%

#Multithread 0 0%

#Performance 4 11%

#Style 5 14%

Bug Category

Total # bugs 35 100%

Bug Code warnings serious mostly harmless false
positive

Investig. Time

CD 2 100% 0% 0% 0:04:00

DLS 2 100% 0% 0% 0:03:00

Dm 3 0% 100% 0% 0:03:00

EI 6 100% 0% 0% 0:02:40

EI2 7 100% 0% 0% 0:01:09

IP 2 100% 0% 0% 0:10:30

Nm 1 0% 100% 0% 0:11:00

ODR 5 100% 0% 0% 0:01:48

REC 1 100% 0% 0% 0:04:00

ST 2 100% 0% 0% 0:04:30

UrF 2 100% 0% 0% 0:04:00

UuF 2 100% 0% 0% 0:01:30

1.15. Observation on Warnings and Errors

Warnings per line of codes are 0.015, 0,025, and 0.012 for each experiment respectively. The E/W
(Error/Warning) ratio for each experiments are 76%, 92% and 83% respectively. So we can say
program II has highest error density.

Three programs show different patterns of warnings in terms of their categories; program I shows the
malicious code vulnerability is most abundant error categories whereas in program II and III,
correctness/style and correctness/malicious code vulnerability are most abundant warnings.

Many of malicious code vulnerability warnings for program I come from EI and MS. These broadly
mean that many of internal reference values are exposed to calling functions and could be mutated to
corrupt internal data.

ST warnings abundantly reported from program II is for writing to static field from instance methods.
These usually do not directly mean error, but this style is reported to be a bad practice frequently
causing troublesome behavior.

EI is an issue in program III also. And ODR is also extensively reported from it. ODR means unclosed
database connection. And this is should be easily investigated and fixed.

TEAM NEO

2005-08-27 PM 12:22 13/17 ANALYSIS OF SOFTWARE

ARTIFACTS

1.16. Observation on Investigation Time

Average investigation times for each program are 1:31, 1:35, and 3:12 respectively. Program III was
investigated by different members than the previous investigations who were also not the developers of
the program. And it required longer time to investigate.

In each experiments, ST/Se, DLS, IP/Nm was found to require longest time to investigate.

ST indicates writing to static field from instance methods.

Se indicates Non-transient non-serializable instance field in serializable class

DLS indicates Dead store to local variable

IP indicates that A parameter is dead upon entry to a method but overwritten

Nm indicates Field/Method names should start with a lower case letter.

Among these five types, now, DLS’ and Nm’s genuineness can be easily investigated.

1.17. Example of Serious Errors

Followings are examples of errors detected in experiments that we should try to avoid.

NP
The result of invoking readLine() is immediately dereferenced. If there are no more lines of text
to read, readLine() will return null and dereferencing that will generate a null pointer exception.

while (true) {

 String sChoice = objReader.readLine().trim();

 if (sChoice.equals("1")) {
 this.surveillantComputer.RCXForward();
 continue;
 }
RCN
This method contains a redundant comparison of a reference value to null. Two types of
redundant comparison are reported:

public void add(ResultSet rs) throws AggregationException {
 Object value = null;

 try {
 value = rs.getResult(var);
 }
 catch (Exception x) {
 throw new AggregationException("Cannot fetch value from result set for
variable",x);
 }
 if (type==null)
 setType(value.getClass());

 if (!(type.isAssignableFrom(value.getClass())))
 throw new AggregationException("Cannot use this function with the value has
been computed");

TEAM NEO

2005-08-27 PM 12:22 14/17 ANALYSIS OF SOFTWARE

ARTIFACTS

 values.add(value);
}

REC: java.lang.Exception is caught when Exception is not thrown
This method uses a try-catch block that catches Exception objects, but Exception is not thrown
within the try block, and RuntimeException is not explicitly caught. It is a common bug pattern to
say try { ... } catch (Exception e) { something } as a shorthand for catching a number of types of
exception each of whose catch blocks is identical, but this construct also accidentally catches
RuntimeException as well, masking potential bugs.

private static org.mandarax.kernel.meta.JPredicate getEqualsNotPredicate() {
 if(equalsNot == null) {
 try {
 Class obj = Object.class;
 Class[] par = new Class[1];

 par[0] = obj;
 equalsNot = new JPredicate (obj.getDeclaredMethod ("equals", par), "equalsNot",
true);
 } catch(Exception t) {

6. Conclusion

1.18. On Using FindBugs

Suppose, as a pessimistic assumption, the E/W ratio is 0.5, and investigation for a warning takes 5
minutes. Then FindBugs allows us to find errors in programs in average 10 minutes. In case of manual
code inspection, recommended inspection rate is 150 lines per hour [02] and if we assume errors per
LOC is 0.02, you will find about 3 errors in an hour. This simple calculation shows using FindBugs is
two times more efficient than manual error finding with most modest assumptions. We concluded using
FindBugs is definitely a good way to reduce bugs in our programs.

But one advantage of manual inspection is that human’s inspection is not limited to predefined patterns.
Humans can imaginatively define new bug patterns as he inspect codes and can find many more types
of errors that we will never be able to patternize. So tools like this will helpful in finding simplest types of
errors but doing manual inspection will be still a good practice if time and resources permit.

We will continue to use FindBugs in our studio project. And if we could find error patterns from our code
that are not currently caught by FindBugs, we will consider extending FindBugs by developing Bug
Pattern Detector plug-in.

The bugs we found in Mandarax library will be reported to the maintainer of the library.

Bug patterns frequently found in our codes are ODR, EI and ST. This information is valuable to
understand our common mistakes in java programming.

1.19. On FindBugs 0.8.2

In general, the tool was stable in spite of its low version number and very recent release date.

Performance was not a problem at all in all our experiments. User interface was intuitive enough to let
us run the analysis not even reading the manual. Only file or directory selection dialog had us to consult
the manual.

TEAM NEO

2005-08-27 PM 12:22 15/17 ANALYSIS OF SOFTWARE

ARTIFACTS

We observed one situation where Eclipse plug-in edition and Java application edition giving different
result of analysis. This has to be further confirmed with more tests.

We found warnings can either can or cannot be related to specific line of code. For example, Circular
Dependency warning cannot be related to one specific line. But we also observed some errors that can
be related to a line do not show the file name and line number.

Documentation was satisfactory in general, and explanation for warning types were succinct and to the
point in most cases.

Not all command line options could be configured in configuration dialog of GUI application. We hope
this can be improved in next versions.

7. Glossary

� Warning: Potential Bugs reported by FindBugs. Requires further manual investigation to
determine whether it is a bug.

� Error: Warnings determined to be real faults in the program that can be fixed by changing
the code.

� Bug: same with Error

� Analysis: the activity of executing FindBugs to find warnings of a certain program.

� Investigation: manual effort to determine whether the warnings generated by FindBugs
analysis is a real error.

8. Reference

[01] Finding Bugs Is Easy, William Pugh, David Hovemeyer

[02] Calculating the Economics of Inspections by Weller
http://www.stickyminds.com/sitewide.asp?ObjectId=3161&Function=DETAILBROWSE&ObjectType=A
RT

[03] A Comparison of Bug Finding Tools for Java, Nick Rutar and Christian B. Almazan

