

Analysis Tool Evaluation:
GrammaTech CodeSonar

Final Report
April 24, 2007

Team
Vishal Garg
Sean Lao
Xiang Shen
Guo-Shiuan Wang
Bradley Wilson
Pengfei Zhao

Carnegie Mellon University

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

 - i -

Document Revision History

Version Date Author(s) Comments
0.1 4/22/07 Sean Lao Initial Template
0.2 4/22/07 Xiang Shen 2.1; part of 2.2; 3.3; 5
0.3 4/22/07 Pengfei

Zhao
Added section 2.1, updated 2.3, updated 3.1,
3.3 , appendix B. Added more columns of some
table.(all changes are tracked)

0.4 4/23/07 Vishal Garg Updated Section 2.3, 3.2, Appendix 6
0.5 4/23/07 Bradley

Wilson
Added sections 1.1 and 1.2.
Changed Section 2.2 to times new roman/12 to
match other sections
Added summary updates for Sockets app

0.6 4/23/07 Guo-shiuan
Wang

Updated section 2.1, 2.3, 3.4, 3.5, 4 and
Appendix 6

0.7 4/23/07 Xiang Shen Added section 2.1; Updated 2.2
0.8 4/24/07 Bradley

Wilson
Changed MB to KB in table.
Added data to 3.2 and appendix B for sockets

0.81 4/24/07 Bradley
Wilson

Fixed table 3.2

0.82 4/24/07 Pengfei
Zhao

Modified experimentation summary and
performance part

1.0 4/25/07 Sean Lao Revision of entire document for grammar,
formatting, and completeness

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

 - ii -

 Table of Contents
1 Introduction... 1

1.1 Description.. 1
1.2 How CodeSonar Works .. 1

2 Experimentation.. 3
2.1 Purpose.. 3
2.2 Test Bench .. 3
2.3 Instructions.. 3

2.3.1 Installation... 3
2.3.2 Execution .. 3

2.4 Summary ... 4
3 Analysis .. 4

3.1 Usability.. 4
3.2 Performance .. 7
3.3 Limitations .. 8
3.4 Types of Defects Found.. 8

3.4.1 Fatal and Critical Defects.. 8
3.4.2 Innocuous Defects... 9
3.4.3 Implications... 9

4 Conclusions and Recommendations.. 9
5 Appendix A – Defect Descriptions... 11
6 Appendix B – Experimentation Data .. 12

6.1 Scribble ... 12
6.2 WordPad ... 12
6.3 eMule .. 12
6.4 Sockets .. 13
6.5 Messaging ... 13
6.6 FileZilla... 13

7 References.. 15

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

 - iii -

List of Figures
Figure 1: Example Summary HTML Page ... 2
Figure 2: Example Bug Comment .. 2
Figure 3: Example Bug Rationale... 2
Figure 4: CodeSonar Execution Process... 2
Figure 5: CodeSonar GUI ... 5
Figure 6: CodeSonar Recording Compilation Information .. 5
Figure 7: “Missing Return Statement” Defect Report ... 6
Figure 8: Call Chain View for a Bug.. 7

List of Tables

Table 1: Summary of Experiment Results .. 4
Table 2: Experiment Performance Data.. 7

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 1 of 1

1 Introduction

1.1 Description
Static analysis tools provide another layer of protection when developing software, and
when used correctly they can help improve the overall quality of the system. At a
fundamental level, these tools can ferret out many bugs that will occur during run-time
without actually running the program with volumes of test cases.

In an effort to explore how well one of these tools works, our team has conducted an
evaluation of the static analysis tool CodeSonar, produced by GrammaTech. The tool is
the flagship application produced by GrammaTech for analysis of C/C++ programs.
Much of their research is government funded, but they also boast a reputable client list.

Although it can uncover a wide array of problems, some of the more interesting bugs it
can uncover are buffer overrun and underrun, null pointer dereference, memory leaks,
unreachable code, and concurrency locking issues.

You should glean from this document a basic understanding of the tool, as well as some
critical analysis of its usefulness within the software engineering process. Other areas of
consideration are general benefits and drawbacks, usability, and depth of information
about the bugs found as it pertains to refactoring a potential software project.

1.2 How CodeSonar Works
CodeSonar operates as a listening application looking for programs that might invoke a
C/C++ compiler. The tool runs concurrently with your C/C++ compilation tool such as
MS Visual Studio, but it also functions in other environments such as Unix. Our
evaluation version is for the Windows platform only, and the user must specify a type of
compiler to look for before running the program.

The tool has a rather extensive list of configuration options, but the interface and
documentation regarding them is quite limited. In fact, it is very similar to a verbose
Linux configuration file. Much of the configuration options are for manipulating the time
CodeSonar spends doing various analysis tasks, thus affecting the overall performance of
the analysis. You can search for a specific bug by suppressing other types, or modify how
the tool creates the abstract representation of your code.

Once you build your application, CodeSonar intercepts the code, and creates an abstract
representation of the program. The nature of the eavesdropping is minimally invasive,
and is one of the architectural features of the application. You do not have to alter your
C/C++ compiler to use the tool. When the compilation is complete, the tool uses the files
it created in the build process to synthesize a model for the program, and then executes
that model to conduct the analysis.

The analysis can take some time depending on the size and complexity of the application
you are analyzing. A small program will take no more than a minute, but large

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 2 of 2

applications can take hours, especially in default mode that looks for all types of bugs it
is capable of finding. Once the analysis is complete, the results are shunted to a highly
interactive HTML report, showing the number and types of bugs found.

Figure 1: Example Summary HTML Page

A nice feature is that the code syntax is ported to HTML so that when you click on a bug
in the HTML report, the syntax is opened, and the bugs are highlighted in yellow for easy
viewing.

Figure 2: Example Bug Comment

Further investigation of the bug opens a subsequent screen that shows in a basic way how
the abstract representation came to this conclusion.

Figure 3: Example Bug Rationale

The following image is a graphical representation of the process.

Figure 4: CodeSonar Execution Process

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 3 of 3

2 Experimentation

2.1 Purpose
We applied CodeSonar to different types of software on different compilation tools. Thus
we were able to get a comprehensive understanding and evaluation about CodeSonar.
Altogether, we ran CodeSonar against six different applications.

2.2 Test Bench
The experiments are classified into the following groups:

- ANSI C platform independent application
o Small size: Messaging

- Windows applications built by Microsoft Visual Studio 2005 under Windows XP.
o Medium size: Scribble (Visual Studio 2005 sample)
o Large size: WordPad (Visual Studio 2005 sample) and FileZilla
o Huge size: eMule 0.44a

- Non-Windows applications built by GCC under Cygwin.
o Medium size: Sockets

These experiments range from small to large sizes, platform-independent to platform-
dependent, C to C++, and buggy to well-tested software. This enabled us to observe the
combined effects of multiple factors on CodeSonar.

2.3 Instructions

2.3.1 Installation
Installation of CodeSonar is described by the following steps:

Windows:
1) Run the installer, following the on-screen prompts to install the software.
2) Save the license file to disk, then set the environment variable LM_LICENSE_FILE

to point to it.

UNIX:
1) Untar the tarball to the directory of your choice. The contents of the tarball will be

extracted into ./CodeSonar-2.1p0.
2) Add codesonar/bin to PATH environment variable for the user.

2.3.2 Execution
Execution of CodeSonar is described by the following steps:

Windows GUI:
1) Start up your regular build environment (for example, Visual C++) and load the

software project that is ready for a build.
2) Invoke the CodeSonar build wizard from the Windows Start menu:
3) On the first screen of the wizard specify a Save As name and directory for your

project and click Next.

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 4 of 4

4) On the second screen of the wizard, click Record.
5) Build your software project in your regular build environment.
6) On the third screen of the wizard, click Finalize.
7) On the fourth screen of the wizard, click Browse Bugs.

Command Line:
1) In the command line, execute:

codesonar hook-html <project-name> <command>

where:
project-name is the name you want to use for your CodeSonar project, and
command is the command you usually use to build your project on the command line
(e.g., make TargetProject).

2) Browse dir/project-name.html to check bugs.

2.4 Summary
Table 1 describes the summary of our experiment results.

Table 1: Summary of Experiment Results
Application Lines of

Code

Total
Defects

Number of
Software
Defects

Number of
Development
environment
Defects

True
Defects/
KLOC

Total
Defects/
KLOC

Messaging 941 4 4 0 4.25 4.25
Scribble 44188 24 2 22 0.045 0.543
Sockets 49274 16 14 2 0.284 0.325
FileZilla 178900 701 607 94 3.393 3.918
WordPad 193182 109 77 32 0.399 0.564
eMule(0.47a) 504242 1126 604 522 1.198 2.233
AVERAGE 161788 330 218 112 1.347 2.040

The table lists the analysis result of CodeSonar for six applications ranging from small to
large sizes. The total defects found in these applications varied from less than 10 to more
than 1000 when the software size increased. During the analysis, we found that a large
amount of defects were located in code automatically generated by the development
environment. We will consider the defects found in the software itself as “true” software
defects. Based on our evaluation, about two-thirds of defects found by CodeSonar are
true software defects. Appendix B contains the details for the specific bug types found for
each application

3 Analysis

3.1 Usability
CodeSonar is a source-code analyzer that identifies complex bugs at compile time. It
supports sophisticated C/C++/Ada source code analysis on major platforms, including
Linux, Windows and Solaris. The tool also supports most modern compilers such as GCC,
G++, Microsoft Visual Studio, Sun CC. Due to the limitations of the evaluation version

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 5 of 5

of CodeSonar we obtained, we have only evaluated it on the Windows platform with
Microsoft Visual Studio 2005 and Cygwin GCC.

The main GUI of CodeSonar on the Windows platform is not intuitive, so inexperienced
users may have trouble using the tool for the first time. Fortunately, CodeSonar provides
a clear user manual with detailed information about operation steps and explanations
about analysis results. Figure 5 contains a snapshot of the CodeSonar GUI in Windows:

Figure 5: CodeSonar GUI

The screenshot in Figure 6 is captured when CodeSonar is recording compilation
information:

Figure 6: CodeSonar Recording Compilation Information

There are many usability issues with this non-intuitive GUI. First, CodeSonar does not
provide a progress bar during the analysis, so users cannot determine how long the

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 6 of 6

analysis may take. Second, the functionality of the “Finalize” button is unclear.
According to the user manual, this button should become enabled only after all analysis
has finished. But in our experiments, this button may become enabled during the analysis.
If the user clicks this button before analysis is complete, we can only get an incomplete
report. Finally, the “Help” button here does not work.

After CodeSonar finishes its analysis, a cleanly organized report will be generated. In this
report, we can easily inspect, filter, and check the analysis results. Figure 7 is an example
defect report for a “Missing Return Statement”.

Figure 7: “Missing Return Statement” Defect Report

As a user, you can easily jump between different parts of the code base by clicking on
function/variable names or bug descriptions. An extremely useful feature of this report is
the detailed call-chain of each function call. For example, the screenshot in Figure 8
captures how a possible memory leak defect can be viewed in this report. When a user
clicks the “+” symbol in front of a function call, CodeSonar will expand that function to
expose the function body code, with call chain descriptions appearing to the left of the
code. This is a really useful feature for a developer to analyze the root cause of this
memory leak defect. Furthermore, the tool also provides the pre-conditions and post-
conditions related to that specific bug, which are also extremely helpful.

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 7 of 7

Figure 8: Call Chain View for a Bug

Generally, although there are many usability issues of the main GUI of CodeSonar, we
were pleasantly surprised by the analysis report. Despite having some disadvantages,
CodeSonar is still a great static source code analysis tool for developers to pinpoint why a
particular bug occurs.

3.2 Performance
We evaluated the performance of CodeSonar based on the criteria in Table 2. We found
that, on average, CodeSonar can find 1.75 real software defects per minute. On our test
applications, the hard disk space required to store the analysis data files ranged from
20MB of space to an enormous 5GB of space. The time spent analyzing each application
ranged from under a minute to 5.5 hours. Generally, the analysis takes longer as the size
of the application increases. The number of defects found also affects the total time
required for analysis. We performed the tests with the default analysis settings (claimed
by CodeSonar to work well with large projects). The performance may have improved if
we had specified minimal status messages and targeted specific bug types.

Table 2: Experiment Performance Data
Application Lines of Code Hard Disk Space

Required for
Results (MB)

Time
Spent
(mins.)

Number of
Software
Defects

Number of
Defects per
Min.

Messaging 941 20 0.5 4 8
Scribble 44,188 600 18 2 0.11
Sockets 49,274 109 8 14 1.75
FileZilla 178,900 2048 240 607 2.53
WordPad 193,182 657 10 77 7.7
eMule (0.44a) 504,242 5250 330 604 1.83
AVERAGE 161788 1447 101 218 1.75

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 8 of 8

3.3 Limitations
Since CodeSonar analysis is performed without actually executing programs built from
the target software, only static code analysis is performed. Defects which could be found
easily by dynamic code analysis may not be well identified by this tool. Performance
analysis such as profiling is not available due to the static nature of the tool. Functionality
defects are also in the blind spots of CodeSonar because dynamic analysis is not
supported.

CodeSonar does not account for the system environment, which it abstracts away. The
tool depends on the areas that a test scaffold covers. The types of bugs that are caused by
inputs not handled by the scaffold, particularly hardware-related issues, survive unnoticed.

3.4 Types of Defects Found
This section describes the types of defects that we found in our experimentation with
CodeSonar.

3.4.1 Fatal and Critical Defects
According to our experimentation results, some bugs that may crash the system were
found. Some of these we describe as fatal, which means they will definitely crash the
system if encountered. Fatal errors include the “divide by zero” and “null pointer
dereference” bugs. Others bugs may or may not crash the system depending on the
runtime behavior of the system and the compiler. The following list contains the fatal and
critical errors we found. Refer to Appendix A for descriptions of these bugs.

- Fatal Errors: Definitely crashes the system
o Divide by zero
o Null pointer dereference
o Double free
o Free null pointer
o Malloc / Memcpy buffer length unreasonable
o Use after free

- Critical Errors: May crash the sysetm
o Buffer overrun / underrun
o Dangerous function Cast
o Format string
o Ignored return value
o Leak
o Negative file descriptor
o Missing return statement
o Null test after deference
o Type underrun
o Redundant condition
o Uninitialized variable
o Delete objects created by new[]

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 9 of 9

3.4.2 Innocuous Defects
Based on the experiment results, some innocuous defects were also found. Innocuous
defects are defects which do not affect the functionality of the system, but are rather
elements of bad coding style which may cause future defects. All of the errors we found
show logical errors committed by the developers. The following list contains the
innocuous errors we found.

- Useless Assignment
- Unreachable code
- Unused value

3.4.3 Implications
Our experimentation data in Appendix B show that CodeSonar found significant amounts
of both fatal/critical defects and innocuous defects. The fatal defect which was found the
most times was “null pointer dereference,” which had 109 occurrences in eMule and 73
occurrences in FileZilla. The innocuous defect which was found the most was
“uninitialized variable,” which had 114 occurrences in eMule and 82 occurrences in
FileZilla. Based on a random sample set of bugs that we analyzed, we did not find any
bugs that were false positives.

4 Conclusions and Recommendations
CodeSonar is an excellent tool for finding possible bugs in the software. The reported
information is helpful for the developer to fix fatal and critical bugs and to think of some
other potential bugs in the software system. The organization of the analysis results
allows clear views of both summary data and detailed data.

The drawbacks that we are really concerned about are its performance and system
resource consumption. It takes a long time to finish the analysis on very large code bases
(magnitude of hundreds of KLOC). For these code bases, the analysis also generates huge
amounts of data which occupies extremely large chunks of disk space. If your system is
large-scale, we suggest you to run the tool using a fast machine with a large amount of
memory and disk space (see our experimentation data for possible resources usage).
Adjusting the configuration of message detail and reported bug types can also improve
the performance of CodeSonar. One other drawback which does not concern us as much
is the lack of descriptions in the user interface. This type of problem is annoying for
inexperienced users and should not occur in commercial software.

CodeSonar can be used in all testing phases of the software development lifecycle. We
recommend that CodeSonar be configured to report the minimal status messages and only
include fatal and critical errors for unit testing. During this phase, fatal and critical errors
are more likely to be encountered since the code has not yet been tested much. Also, the
developer is most likely to understand fully the logic of his or her code during unit testing,
so more detailed status messages in CodeSonar are unnecessary.

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 10 of 10

For integration and system testing, we recommend that all types of bugs be reported by
CodeSonar with normal or maximum message detail. During this stage, there should be
more bugs which are less critical since the most critical bugs were checked during unit
testing. Running CodeSonar on a large code base with most features turned on may
require a huge amount of time so it may save time to run CodeSonar on different
machines for independent modules.

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 11 of 11

5 Appendix A – Defect Descriptions
The following are descriptions of all the bugs that CodeSonar can find. These
descriptions were taken from [1].

 Buffer Overrun: A read or write to data after the end of a buffer.
 Buffer Underrun: A read or write to data before the beginning of a buffer.
 Type Overrun: An overrun of a boundary within an aggregate type.
 Type Underrun: An underrun of a boundary within an aggregate type.
 Null Pointer Dereference: An attempt to dereference a pointer to the address 0.
 Divide By Zero: An attempt to perform integer division where the denominator is 0.
 Double Free: Two calls to free on the same object.
 Use After Free: A dereference of a pointer to a freed object.
 Free Non-Heap Variable: An attempt to free an object which was not allocated on

the heap, such as a stack-allocated variable.
 Uninitialized Variable: An attempt to use the value of a variable that has not been

initialized.
 Leak: Dynamically allocated storage has not been freed.
 Dangerous Function Cast: A function pointer is cast to another function pointer

having an incompatible signature or return type.
 Delete[] Object Created by malloc: An attempt to release memory obtained with

malloc using delete[]
 Delete[] Object Created by new: An attempt to release memory obtained with

new using delete[]
 Delete Object Created by malloc: An attempt to release memory obtained with

malloc using delete
 Delete Object Created by new[]: An attempt to release memory obtained with

new[] using delete
 Free Object Created by new[]: An attempt to release memory obtained with new[]

using free
 Free Object Created by new: An attempt to release memory obtained with new

using free
 Missing Return Statement: At least one path through a non-void return-type

function does not contain a return statement.
 Redundant Condition: Some condition is either always or never satisfied.
 Return Pointer To Local: A procedure returns a pointer to one of its local

variables.
 Return Pointer To Freed: A procedure returns a pointer to memory that has

already been freed.
 Unused Value: A variable is assigned a value, but that value is never subsequently

used on any execution path.
 Useless Assignment: Some assignment always assigns the value that the variable

being modified already has.
 Varargs Function Cast: A varargs function pointer is cast to another function

pointer having different parameters or return type.
 Ignored Return Value: The value returned by some function has not been used.

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 12 of 12

 Free Null Pointer: An attempt to free a null pointer.
 Unreachable Code: Some of the code in a function is unreachable from the

function entry point under any circumstances.
 Null Test After Dereference: A pointer is NULL-checked when it has already

been dereferenced.
 Format String: A function that should have a format string passed in a particular

argument position has been passed a string that either is not a format string or is
from an untrusted source. (Potential security vulnerability.)

 Double Close: An attempt to close a file descriptor or file pointer twice.
 TOCTTOU Vulnerability: A time-of-check-to-time-of-use race condition that can

create a security vulnerability.
 Double Lock: An attempt to lock a mutex twice.
 Double Unlock: An attempt to unlock a mutex twice.
 Try-lock that will never succeed: An attempt to lock a mutex that cannot possibly

succeed.
 Misuse of Memory Allocation: Incorrect use of memory allocators.
 Misuse of Memory Copying: Incorrect use of copying functions.
 Misuse of Libraries: Misuse of standard library functions.
 User-Defined Bug Classes: Checks for arbitrary bug classes can be implemented

through the CodeSonar extension functions.

6 Appendix B – Experimentation Data
This section provides the experimentation data of our test applications. For each bug type,
the number of true defects found is listed.

6.1 Scribble
Bug Type Number Found

(True defects)
Useless Assignment 2

6.2 WordPad
Bug Type Number Found

(True defects)
Buffer Underrun 3
Dangerous Function Cast 4
Missing Return Statement 1
Null Pointer Dereference 3
Redundant Condition 7
Uninitialized Variable 36
Unreachable Code 5
Unused Value 14
Useless Assignment 4

6.3 eMule
Bug Type Number Found

(True defects)
Buffer Overrun 15

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 13 of 13

Bug Type Number Found
(True defects)

Buffer Underrun 4
Dangerous Function Cast 40
Division By Zero 5
Free Null Pointer 6
Ignored Return Value 31
Leak 27
Negative file descriptor 9
Null Pointer Dereference 109
Null Test After Dereference 11
Redundant Condition 85
Uninitialized Variable 114
Unreachable Code 69
Unused Value 29
Use After Free 2
Useless Assignment 43
delete Object Created by new[] 4
malloc Buffer Length Unreasonable 1

6.4 Sockets
Bug Type Number Found

(True defects)
Null Pointer
Dereference

2

Redundant
Condition

1

Uninitialized
Variable

3

Unreachable
Code

4

Unused Value 3
Ignored Return
Value

1

6.5 Messaging
Bug Type Number

Found
(True
defects)

Leak 2
Ignored Return Value 2

6.6 FileZilla
Bug Type Number Found

(True defects)
Buffer Overrun 21
Buffer Underrun 4
Dangerous Function Cast 109
Double Free 1

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 14 of 14

Bug Type Number Found
(True defects)

Format String 1
Free Null Pointer 3
Ignored Return Value 25
Leak 4
Negative file descriptor 4
Null Pointer Dereference 73
Null Test After Dereference 3
Redundant Condition 36
Type Underrun 10
Uninitialized Variable 82
Unreachable Code 84
Unused Value 122
Useless Assignment 23
memcpy Length Unreasonable 2

Analysis Tool Evaluation: GrammaTech CodeSonar – Final Report

Page 15 of 15

7 References
[1] GrammaTech Representative List of CodeSonar Checks,
http://www.grammatech.com/products/codesonar/listofchecks.html, last viewed on
4/26/07.

