Evaluating Java PathFinder on Log4J

David A. Dickey, B. Sinem Dorter, J. Michael German
Benjamin D. Madore, Mark W. Piper, Gabriel L. Zenarosa

Master of Software Engineering Program
School of Computer Science
Carnegie Mellon University

ddickey@andrew.cmu.edu, bsd@andrew.cmu.edu, jgerman@andresdamu.
madorb@cs.cmu.edu, mwpiper@cmu.edu, gzen@cs.cmu.edu

1. Introduction

Advances in finite-state model checking have made possiltial successes in tool-

based checking of complex, realistic, multi-threaded narog, without the need for
specialized modeling languages. In this paper, one suchidoeValuated through

verifying the presence of known bugs in the 12,546-line Log¥d lilarary. The model

checker evaluated is NASA Ames Research Center's tigaeeased Java PathFinder
(JPF).

First, similar model checking tools will be consideredh introduction to the approach,
features, and extensibility mechanisms used by JPwilbllowed by simple examples
of the applications of JPF. JPF will then be evaluatedetail through assessing its
ability to confirm six known bugs in Log4J involving uncaugbnhtime exceptions,
unclosed resources, and threading issues. Lastlyctiefls upon the capabilities of the
tool will be given.

1.1 An Introduction to Log4J

Log4J is a mature open-source project, started in 1996 andywided throughout
industry today, providing advanced logging capabilities in the fofma Java library.
Among the unique features of Log4J are its hierarchical logtgagegories,” which
allow categories of output to be enabled or disabled, foeshaand sent to different
output sources, even at runtime. Different output ssuare supported by allowing
loggers to write to different types of appendeisciuding file, screen, archive, socket,
event log, SMTP, and multi-threaded asynchronous messagpenders. Configuration
occurs dynamically via local files, or configurations stbon remote servers.

2. Selection of a Model Checking Tool

While Log4J provides a useful example of a realistic ptajsed in industry, it was at
first unclear which model checkers would be appropriateliecking Log4J. Although
PathFinder is the tool used in this evaluation, it is amlg of several available model
checkers. Two alternative tools that were consideneddifying defects in Log4J were

1 An appender allows you to specify destination for log daiz provide a custom layout for it, through
which all log messages will be formatted [www.mojag/docs/api/3.0/mojavi/logging/Appender.html].

Bandera, and Crystal/Fluid. This section describesdaasons why these tools were not
chosen.

2.1 Bandera

Bandera is a toolset for model checking (developed asa&8tate University's SAnToS
laboratory) that focuses on checking concurrency issues [Bpndera constructs
abstracted models from Java code using a combination gfgenoslicing techniques and
a rule-based abstraction engine [4]. These intermedlagacted models can then be
automatically converted into verifier-specific language$icv will be used by the
different model checking engines (such as SPIN, SM¥,S#L).

There are, however, several reasons why Banderaatatiosen for verifying Log4J.

» Installation — Due to the fact that Bandera cannot function withathier
model-checking engines, installation of Bandera is patiydifficult.

» Maturity — Although Bandera has been in development for over 5 y#da
code was branched after the 0.2 release to focus®maftementation of the
entire tool [6], featuring the object-oriented Bogor modbakcker as a
backend, and a set of Eclipse plugins as the front&gnddnly a very limited
command-line prerelease version of this re-implememtgtidich is planned
to eventually become the 1.0 version) is availablethénhmeantime, the only
realistic option is to use the abandoned (and relativetyature) 0.3 release.

* User Interface —Bandera 0.3’s user interface is very outdated. Whileighis
not a problem of functionality, in evaluation, it wdifficult to determine the
types of errors it reports.

» Learning Curve — Bandera’s learning curve is considerable. Users have to
understand not only the Bandera abstraction system, iteetf also the
backend model checkers. Since no analysis capabiligeme@uded as ‘out-
of-the-box’ functionality, it is a somewhat dauntingkias discover how to

use the tool.
Formalism: Pattern: Scope:
| LTL - ‘ |Absence v| Globally v|
—Property Specification Wing DW
|P " IMam rreind 1 y
= File 111C Property Slice Abstract BIRC Checker Execute Help |
[[11! (Main maint11))]
[New|
I Epand ® (P) <default package> 4| Hpublic static void mainf) -
oSN 3 Heap . ¢1 = new Connector ()
OMainmaing 1 1) @ @ Contiactor

@ (C) Main { new Stage1 ()), start ()
M void mainQ :
M) Maing -
O (€) Staga1 gl e
® (€} Heap @ forinti=1;i<10; |++

¥) Connector 1 Heap .1 add (1) SOUICe Window

Heap . c1 . stop

R | |

=| | « [FEEEE
sepw:9of1ss Counter Example Window

 Reset || stepback |[Stepforward || Close | ! Bandel a

Figure 1: Bandera's User Interface, Version 0.3
(borrowed from Bandera: Extracting Finite-state Models from Java Source Code [4])

2.2 Crystal/Fluid

Crystal/Fluid is a model-checker that includes a robusbtation-based concurrency
verifier (including an Eclipse GUI), and a framework tbe creation of other analyses
based on the Java abstract syntax tree. While thiss@®lconsidered for evaluation, it
has already been used to check Log4J for concurremoyser Rather than repeat this
task, it was felt it would be more beneficial to ass¥ds's ability to detect similar errors
as found with Crystal/Fluid.

3. Installation of Java PathFinder (JPF)

In this section we discuss the installation of JPFbioth the advance version and the
open source version since they both presented a chalegeonveyed these challenges
to our contact at NASA Ames, Willem Visser, and dant our step-by-step directions so
that he may make them available.

3.1 Installation of the Advance Copy of JPF

Before the open source release of JPF, we were provitle@mvadvance copy that could
be built from the command line using the Ant tool fromdgaorg. Several prerequisite
libraries had to be downloaded in order to successfulkalindPF. JPF requires Java
SDK 1.4.*, as well as the following third-party libraries:[1]

o BCEL - the Bytecode Engineering Library to load classfiles

o Xerces — the XML parsing library to parse execution psititreed in XML, and;

o0 The MDS5 library (from Timothy W. Macinta) to efficiélg build MD5 state hash

codes.

All of these libraries must be included within the CLASSPA even though they can
reside outside of the JPF directory tree. In additiba following build tools must be
installed [1]:

0 JUnit — the Java regression test framework to run urg,tesd,;

0 Ant —the Java build system to resolve dependenciescanglile JPF sources.

After completing installation prerequisites, we used #mtmanually build JPF. We
appended the location of the Ant script to our PATH, dmehtadded ant.jar to our
CLASSPATH. (The other prerequisite libraries were alyean our CLASSPATH.)
Then, we switched to the directory where we installch JPathFinder, and ran Ant to
compile all JPF sources and run the regression tests.

3.2 Installation of the Open Source Version of JPF

We decided to install JPF from within the Eclipse IDE sin@ already had some of our
test environments setup within the IDE. However, settinthampen source version of
JPF to run within the Eclipse platform ended up being quiteadlenge. The usually
bundled.projectfile was removed from the package (according to aryemttheir open
forums) because it referenced libraries that werepmetequisites of the current JPF
version. It should have been easy for us to simmgter our own project and checkout
the CVS project for JPF using the Eclipse IDE; howetls pserverconnection to the
repository could not be established from within the IDE.

Additionally, in contrast to the installation of the adee version, the required libraries
were not bundled in this version. To make the instafigbrocess less cumbersome, we
simply reused the libraries from the advance versi@@ince then, the required libraries
have been packaged and made available on the JPF SourceEbsge.)

We settled on the following steps to install JPF towithin the Eclipse platform. We
assigned one person to perform the following steps andtetigobaseline JPF project
for the rest of the group to use.

1. Checkout (using the system shell) the CVS project foridteFa location outside of
the Eclipse workspace folder.

2. Create a Java project (e.jgvapathfindey on Eclipse.

3. Copy the CVS folder from the root directory of the clestiout JPF (in step 1) into
the Java project (in step 2).

4. Create the following source folders manually:
a. src
b. extensions/LTL2Buchi/src
c. env/jpf
d. examples
e. test
Note: These have to be created manually; otherwise, the @pdatefunction in
Eclipse will create them as packages rather than staidsss.

5. Update the Java project (using the Eclipse @g8atefunction).

6. Create a lib/ folder under the Java project.

7. Download the prerequisite JAR files (bcel.jar, xercesljplxmlParserAPIs.jar,
junit.jar, fast-md5-2.5.zip) into the lib/ folder (in step 6)

8. Build the project in Eclipse.

9. Test it using the examples.

4. Java PathFinder (JPF) Explained

JPF is a NASA-developed software model checker thabeglall possible execution
paths of a Java program in order to find property violatidhsloes this by exhaustively
simulating the program in a custom Java Virtual MachineM)JWhile property-
checking modules observe the execution for certairditons. When a property
violation is discovered, JPF outputs the violation finfation and the specific trace that
lead to it. The out-of-the-box property checking meduhandle deadlocks, uncaught
exceptions, and assertion errors.

Because JPF performs a simulation of the progranegitires a main function. JPF is
then able to use this main function as the root of all iblesexecution paths. This
approach gives JPF advantages over other model checkingaapes. Consider the
following trivial example:

Code Listing 1: An example of JPF's path exploration

public void someFunction(boolean arg)

{

if (arg == true) { return; /* Branch that executes normally */ }
else { throw new Exception(“Branch that cras hes the code.”); }

}

By utilizing simulation starting from the main functiafRF is capable of analyzing only
those paths that are actually executed in the progréthe bnly calls tasomeFunction
occur usingtrue as the argument, JPF will only need to analyzetrine branch.
However, if JPF is unable to determine the argumerbri@Function , it will analyze
both branches of the function.

Like other model checkers, JPF suffers from statecespaxplosion—the model
exponentially grows with respect to the size of theggpam—making it difficult to model

large programs. The recommended size of programs t@beled is below 10,000 lines
of code, although it has been successfully executed rgerl@grograms. In order to
counter the explosion effect, JPF uses several techriguaprove efficiency.

Backtracking — Since JPF checks all paths in a program, it must be ablevisit
previous branch points. Instead of re-traversing thewia path to recreate a branch
point, JPF is able to “undo” previous decisions.

State Matching — In order to save unnecessary work, JPF remembers ¢hmysly
visited execution states, and when it detects an alrgmited state, it skips it and
backtracks to the next non-deterministic decision.

Heuristic Choice Generator— In order to simplify the evaluation of complex dbjzes,
simplified evaluation techniques can be added. For examplen-deterministic floating
point value that is passed into a method would require d@hapossible values be
evaluated. This however would be very difficult to modee to the number of
combination. Instead, a small number of pre-selectettehaan be used to reduce the
number of values to model.

Partial Order Reduction (POR) — When model checking a multithreaded program, all
possible thread interleavings must be checked in orderrify @ possible concurrent
conditions. However, certain code segments arepnee¢mptable by other threads,
allowing the entire code segment to be interleavedadsbé the sub elements. JPF uses
this approach to reduce the number of thread interleaving®del.

State Abstraction— Instead of storing all heap, stack, and process informaliRF- uses
an abstracted model of these elements in order to rethwegs overhead and improve
lookup time.

One problem with the JPF approach is that the JVM cartygdree what occurs within
any native calls. Native calls are requests out®fctntrol of the JVM to the operating
system (OS) to perform OS level tasks, such as fdesscor network transactions. Since

JPF cannot reason about these calls it cannot modelbdteavior. Therefore explicit
models must be created to abstract the behavior ofothdelel native call. These
models are created through the Model Java Interface ,(M@igh is discussed in the next
section.

NASA successfully used JPF to detect defects withim gedtware and recently (April
26" 2005) open-sourced the project with the hopes that thesmene community will
adopt JPF and create new uses for it [7]. By puttingidRlke hands of the community,
more developers can create interesting model-checking regjdas well as continue to
create the models required for the many unsupported naitlige c

5. Extending JPF

“One can think of JPF as an execution system framework forradskof dynamic,
runtime oriented verification purposed2] JPF Website

One of JPF’s main qualities is its ability to be extehdaeth new functionality. New
functionality is not limited to verification of prope@s, but can be anything that desires
to use JPF's systematic program execution approach. xaarpde, it could be used to
produce coverage metrics in order to show code thatvsrised often.

Search- and VMListeners

JPF uses a Listener pattern that allows modules to rdobdo events in the virtual
machine. When the event occurs the module is callediatioit to query the execution
and states as well as allowing it to change the suweebsihavior of the JVM. This
allows for powerful extensions to be added without teednto modify the internals of
JPF.

This is the primary means of adding new evaluations toJ&ie framework. New
modules for checking conditions like race-conditionsildaise this listener approach in
order to track the execution and to determine when a condstimet.

Model Java Interface (MJI)

JPF cannot reason about native calls and thereforé usesmodels instead. These
models are created using the MJIl and are used instead adtthed native method. The
model developer is responsible for abstracting the impbdiaaracteristics of the native
call and retaining it through the model. JPF can theroneabout the behavior of the
native call through the use of the model.

6. “Hello, World!” for JPF

One of the first example programs we tested using JBie igest program shown below.
This is an adapted test program from one of the sangite ¢&€ our Exceptions Analysis
project (i.e., Project #1) for our coursenalysis of Software Artifacts(Note that we
implemented anain(...) function.)

Code Listing 2: Proj1Ex.java

import java.io.*;

public class Proj1Ex {
public void foo(int i) throws FileNotFoundExcep tion {
if (i>0)
throw new RuntimeException();
throw new FileNotFoundException();

}

public void bar(int i) throws RuntimeException {
try {
foo(i);
} catch (IOException e) {
}
}

public static void main(String[] args) {
(new Proj1Ex()).bar(0);

JPF does not report any unhandled exceptions in the pnagave. This is because the
program does not execute the line of code that throws dmhandled
RuntimeException ~ due to the zero value passed to functwar(...) . Changing the
parameter tdar(...) fromO to 1 allows JPF to find the bug.

In an effort to have JPF report all possible unhandlegmions for non-deterministic
input, we changed the parameter passeshio..) from absolute values to randomized
values, as shown below.

Code Listing 3: An attempt at non-determinism

bar((new java.util. Random(System.currentTimeMillis())).nextint())

This, however, does not cause JPF to report all unhancitegtéons since it does not ask
JPF to explore all paths. What this statement &spliather, is that JPF will check a run
of the test program using the specific randomized integeéurned by the
Random(...).nextInt() function. Therefore, for different verification rurd the
program, JPF may or may not find the unhandled exception.

We emailed the question of how to enable JPF to exg@trpaths to our contact at
NASA Ames, Willem Visser. He replied within a few hewith the answer: we must
use the JPF functioNerify.random(int n) method to instruct JPF to simulate
execution using all values from 0 to n.

Code Listing 4: Proj1Ex.java Using Verify.random()

import java.io.*;
import gov.nasa.jpf.jvm.Verify;

public class Proj1Ex {

public void foo(int i) throws FileNotFoundExcep tion {
if (i>0)
throw new RuntimeException();
throw new FileNotFoundException();

}

public void bar(int i) throws RuntimeException {

try {
foo(i);

}
catch (IOException e) {}
}

public static void main(String[] args) {
(new Proj1Ex()).bar(Verify.random(1));

After making this change, JPF was able to find the unhar@letdmeException
thrown within functiorfoo(...) as shown below.

JPF Output Listing 1: Project 1 Unhandled Exception

java.lang.RuntimeException
at examples.Proj1Ex.foo(examples\Proj1Ex.java:15)
at examples.Proj1Ex.bar(examples\Proj1Ex.java:22)
at examples.Proj1Ex.main(examples\Proj1Ex.java:28)

path to error (2 steps):
Step #0 Thread #0
examples\Proj1Ex.java:28 (new Proj1Ex()).b ar(Verify.random(1));
examples\Proj1Ex.java:9 public class Proj1Ex {
examples\ProjlEx.java:28 (new Proj1Ex()).bar(Ve rify.random(1));
Step #1 Thread #0 Random #1
examples\ProjlEx.java:28 (new Proj1Ex()).bar(Ve rify.random(1));
examples\Proj1Ex.java:22 foo(i);
examples\ProjlEx.java:14 if (i>0)
examples\Proj1Ex.java:15 throw new RuntimeExce ption();

end error path

1 Error Found: uncaught exception

thread stacks
end thread sta cks

7. Log4J Bugs to be checked

In our evaluation of JPF we decided to examine 6 known bugsrious versions of
Log4J. As Log4J is a very mature project, we were npefub that we would be able to
find new bugs in the project; thus, we located the bugs by exagnihe Log4J bug
database for verified and resolved bugs. We then attdnptase JPF to detect these

bugs by obtaining the appropriate Log4J source code both kmefdrafter the bug was
fixed. Log4J is very specific in that it provides the usgth the following contract:
“Log4J will not throw unexpected exceptions at run-time piddy causing your
application to crash.” [8] This means that Log4J shoekenallow an exception that is
not explicitly declared as being thrown to escape fitsmode. This is important to our
discussion as one of the selected bugs is a violatidnso€ontract.

7.1 Bug Types

We identified 3 different types of bugs in the Log4J sasjrtfeese were:
1. Unclosed Resource Bugs - 1 bug;
2. Exception contract violations - 1 bug, and;
3. Threading issues (both deadlock and race-conditionsugd. b

7.2 Bug 11186

7.2.1 Bug Description

This bug is a result of violating the Log4J exception @arttr It arises when a user
extends a Logger class, and inserts code that mightvtarountime exception. While

this is a bug that arises from user behavior, it giillates the contract of Log4J, and is
something that might easily occur in practice.

7.2.2 Experiences

Initially when we ran JPF upon the code, JPF would crastl eeport an
ArraylndexOutOfBoundsException . This actually turned out to be coming from the
lack of an MJI for code withijava.net ; however, no error message was given to
indicate this was the source of the error, and the stac& was from seemingly unrelated
code. To be truly useful JPF must provide better efmrsuch “easily” determined
things as a missing MJI. After commenting out the code rdferred to elements of the
java.net package, JPF correctly reported an uncaught exception error.

7.3 Bug 7793

7.3.1 Bug Description

This bug occurs when a stream is opened ¢avaanet.URL object in one piece of
code, and this is then sent taP@pertyConfigurator that uses the stream but never
closes it.

7.3.2 Experiences

As this bug uses theva.net package, and thus cannot currently be checked with JPF,
we attempted to create a similar example using@nStream . In attempting to verify
the bug in this manner, we actually inadvertently stumaéedss a bug in JPF.

Code Listing 5: JPF Bug

public class StringError {

public static void main(String[] args) {
byte buff[] = {97, 98, 99, 65, 66, 67};

String s = new String(buff); /[Error!!
System.out.printin("Ouput: " + s);

When running JPF on the preceding code, JPF crashed tgroamother
ArrayIindexOutOfBoundsException . We submitted this bug to Willem Visser and he
replied indicating that there is a known bug in JPF irgatio its use ofrhreadLocal

He also told us that our example was the most succoug that exhibited this behavior
and would be very helpful in resolving the bug.

Eventually though, we were able to create a simple plaof an unclosed resource, and
were able to use JPF and its ability to do assertienkihg to locate the bug.

Code Listing 6: Unclosed Resource Bug

import gov.nasa.jpf.jvm.Verify;

public class OpenClose {

}

public static void main(String[] args) {
Closeable ¢ = new Closeable();
int rand = Verify.random(2000);

if (rand == 1327) {
//do nothing
}else {
c.close();

assert (c.isClosed == true) : "It is not closed";

}

class Closeable {

}

public boolean isClosed = true;
public Closeable() {

isClosed = false;
}

public void close() {
isClosed = true;
}

While this is certainly a contrived example, it demonsgabne of the uses of JPF:
checking for assertion errors. We again usedvihiy.random(int n) method to

instruct JPF to simulate execution using all values fbto n, which simulates non-
deterministic behavior such as user-input. In this exawelesee that we close the
Closeable resource on every possible execution padpefar one. This type of defect
is very difficult to locate during testing (assuming a-tivial example). Although there

is only one instance where the assertion will fail, ame easily able to detect this using
JPF.

10

JPF Output Listing 2: Unclosed Resource Assertion Chéc

java.lang.AssertionError: It is not closed
at OpenClose.main(OpenClose.java:14)

path to error (2 steps):
Step #0 Thread #0
OpenClose.java:4 public class OpenClose {
OpenClose.java:6 Closeable ¢ = new Closeable()
OpenClose.java:21 public Closeable() {
OpenClose.java:19 public boolean isClosed = tr ue;

OpenClose.java:22 isClosed = false;
OpenClose.java:23

OpenClose.java:6 Closeable ¢ = new Closeable()
OpenClose.java:7 int rand = Verify.random(200 0);

Step #1 Thread #0 Random #1327
OpenClose.java:7 int rand = Verify.random(200 0);
OpenClose.java:9 if (rand == 1327) {
OpenClose.java:14 assert (c.isClosed == true) : "It is not closed";

end error path

thread stacks

end thread sta cks

1 Error Found: uncaught exception

The preceding is the output of JPF on the buggy codshoivs, not only the error found
by JPF, but also a program trace that leads to the error.

7.4 Bug 1505

7.4.1 Bug description

Bug 1505 is a threading bug involving the implementation odsymchronous append
function within Log4J. Log4J exposes an append function thents can call
asynchronously. Inside Log4J is a background thread thatipsrtbe actual append to
the log. The append function in the background thread icedtéhe following:

Code Listing 7: Log4J’s asynchronous appender thread waitinpr buffer space before appending

if (bf.isFull()) {
bf.wait();

}
/I Append to the buffer bf below...

The code’s intent is to check if what it is appendmgt , is full or not. Ifbf is full the
intent is to wait until it is no longer full. Howeweas this is aif statement rather then a
while statement, it is not always the case thfatwill be empty after thevait —the
thread responsible for emptying the buffer may have het®nrupted, but the thread
waiting to append may have also been notified to proceed.

11

The example used to find this bug was a piece of coaleconsisted of three threads.
The main thread infinitely generated asynchronous append aallackground thread
continually interrupted the main appending thread; lastijyr@ad inside Log4J fulfills
the asynchronous append request (a portion of this codevisisgbove). Running this
example eventually fillef . The next append call then results in Log4J’s thread inigck
uponwait . However, because of the interrupting thread, the dode the append calls
may be interrupted and the execution would then go batkddJ, in the append, with
bf still being full.

7.4.2 Bug experiences

To try and capture this behavior with Log4J we added an ass¢ement after thé
statement.

Code Listing 8: Asynchronous appender with an assertion

if (bf.isFull()) {
bf.wait();

assert !bf.isFull();

When running the code without JPF, eventually an asseridation is raised; however
the program continues to run endlessly after therémse The reason it continues to run
endlessly is because of the interrupting thread. Tdgll thread dies from the assertion
failure, the appending main thread stops (it does not bagdJ to call anymore), and
because of this, the interrupting thread indefinitely coa@s to sleep, then interrupt the
main thread, then sleep, and so on. This occurs becausedhepting thread is killed
from a call in the main thread only after the bug’s d&seis triggered. However, the
placement of the assertion causes the main threaelvey know about the bug, and thus,
the main thread can never Kkill the interrupter thread.

Ouir first run with JPF raised two null pointer exceptians an internal JPF null pointer
exception. The internal null pointer exception wase@ because JPF caught the 2 null
pointer exceptions and raised an exception of its ows. Aull pointer was coming from
a getMethod() call in ss.successor();. JPF could not fimgéthod from the getMethod()
call when trying to step to the next state or threatsinhecking model. The specific call
that caused this waategory cat = Category.getinstance("test_cat");

We debugged this and found a statement in Log4J that cauBetb Jeach this null
pointer error. It was a default that seemed to nanibalized when Log4J was run with
JPF. Since the default was not needed it was comthente

With the commented out version of JPF we got it toaarthe code. However JPF was
unable to identify the bug. It returned “No Errors Fountdoking into this we tried to
generate a simple program that reproduced this error; walgnive found one. The
program was one that looped forever in a main threddeaantually would fail an assert
statement, generating an assertion error in a backgtbueald. JPF could not find the
assertion error in this case. However, if we addedrd gratement or sleep statement in
the iteration of the loop in the main thread JPF wdaldl it.

12

This bug was submitted and the reply we got was thaa# avknown bug, but not a
documented one. “Ahh the Assertion check! Now thene stmbled on something |
thought nobody would :-)” [Willem Visser, personal copesdance]. It seems that if
there are only local transitions in a part of the cdlde,partial order reduction scheme
will turn it into one mega-transition. A local tramsn here is anything that would not
lead outside of the current thread or current functiomaBse of this, in the case of our
code, the mega transition was an infinite loop and @vouly transition to itself in JPF’'s
model. The background thread had the transition to amtiasserror, but the model
could never transition into it once it hit our mega-titéms, as there was no way out of
the infinite self loop. In the case of code with &iHions that are not local, such as a
system call or thread transition call, JPF will gdrorder reduce the code to still have
transitions to other functions or threads. Thusnewvmugh the infinite loop exists in
both cases, only in the case where no local tramsitexist will JPF be able to transition
to the assertion error.

Our only option was therefore to try and find what codeag4J (or in the test code for
Log4J) caused the infinite loop mega transition. Usingptioeess of elimination on the

generated code, we were unable to identify the infiloitgp. Next we looked inside

Log4J to find the infinite loop, but the most logicalgda did not contain the error. The
time it would have taken to test Log4J by trial and eraosrekamine all the parts of

Log4J that were being accessed) would have been fad®wotsr scope. Thus we stopped
trying to use JPF to find this bug. We settled upon havirgghilng as an example of our
problems with JPF.

7.5 Other Unresolved Bugs

We attempted to resolve a number of other Log4J bugs, én& wnsuccessful in doing
so. Attempting to locate the bugs using JPF resulted inusexceptions occurring in
JPF itself. We submitted all found JPF bugs to Wilkisser and attempted to work
around them as much as possible, but each inevitably ledesolvable problems. For
reference, the other Log4J bugs that we attempted to veeify. 1507, 1603, and 23912.

Although we were unable to validate the existence obfathe bugs that we set out to
locate, we were able to contribute a number of JPF lhagthe JPF developers.
According to Willem Visser, these bug reports will beyéelpful in locating and
removing the bugs, thus creating an improved version of JPF.

8. Conclusion

We evaluated three different model checking tools: Bandéuad/Crystal, and JPF. We
pursued the evaluation of JPF and attempted to locate kbogsin Log4J. During our
evaluation we ran into a number of challenges, althoughe nof which were
insurmountable. We had difficulty installing the advanod apen source versions of
JPF. Some of these challenges (such as missing dibydrave since been corrected in
the latest version on the JPF SourceForge websitgo, Areating an Eclipse project for
JPF was a complex task. Although we were hindered by ddg® in JPF, we were able
to submit useful bug reports to the project. Additionasdlyme of the JPF bugs were a

13

result of unimplemented MJI packages that the Log4J code uBkd JPF developers
hope that open-sourcing JPF will lead to an increased@&uaf MJI implementations.

JPF is a very powerful framework that is likely to iope rapidly now that it is an open
source project. While it still requires a little momerk to become a tool for industrial
use, we feel that it offers great potential.

Finally, we would like to thank Mr. Willem Visser whoaw extremely swift and helpful
in responding to our numerous questions and bug submissions.

14

9. References

[1]
[2]
[3]
[4]

[5]
[6]
[7]

[8]

Java PathFinder - http://javapathfinder.sourceforgfe.ne
http://javapathfinder.sourceforge.net/$Extensibilityiht
http://bandera.projects.cis.ksu.edu/index.shtml

Bandera: Extracting Finite-state Models from Java Source Céalimes Corbett,
Matthew Dwyer, John Hatcliff, Corina Pasareanu, Rostnawn Laubach,
Hongjun Zheng in Proceedings of the 22nd Internatiooalf€?ence on Software
Engineering, June, 2000.

http://bogor.projects.cis.ksu.edu/
http://bandera.projects.cis.ksu.edu/roadmap.shtml

JPF Open Source Press Release —
http://www.nasa.gov/centers/ames/news/releases/2005/05_28#R.ht

http://logging.apache.org/log4j/docs/faq.html

15

