
 1

Evaluating Java PathFinder on Log4J

David A. Dickey, B. Sinem Dorter, J. Michael German,
Benjamin D. Madore, Mark W. Piper, Gabriel L. Zenarosa

Master of Software Engineering Program

School of Computer Science
Carnegie Mellon University

ddickey@andrew.cmu.edu, bsd@andrew.cmu.edu, jgerman@andrew.cmu.edu,

madorb@cs.cmu.edu, mwpiper@cmu.edu, gzen@cs.cmu.edu

1. Introduction
Advances in finite-state model checking have made possible initial successes in tool-
based checking of complex, realistic, multi-threaded programs, without the need for
specialized modeling languages. In this paper, one such tool is evaluated through
verifying the presence of known bugs in the 12,546-line Log4J Java library. The model
checker evaluated is NASA Ames Research Center’s recently released Java PathFinder
(JPF).

First, similar model checking tools will be considered. An introduction to the approach,
features, and extensibility mechanisms used by JPF will be followed by simple examples
of the applications of JPF. JPF will then be evaluated in detail through assessing its
ability to confirm six known bugs in Log4J involving uncaught runtime exceptions,
unclosed resources, and threading issues. Lastly, reflections upon the capabilities of the
tool will be given.

1.1 An Introduction to Log4J
Log4J is a mature open-source project, started in 1996 and widely used throughout
industry today, providing advanced logging capabilities in the form of a Java library.
Among the unique features of Log4J are its hierarchical logging “categories,” which
allow categories of output to be enabled or disabled, formatted, and sent to different
output sources, even at runtime. Different output sources are supported by allowing
loggers to write to different types of appenders,1 including file, screen, archive, socket,
event log, SMTP, and multi-threaded asynchronous messaging appenders. Configuration
occurs dynamically via local files, or configurations stored on remote servers.

2. Selection of a Model Checking Tool
While Log4J provides a useful example of a realistic project used in industry, it was at
first unclear which model checkers would be appropriate for checking Log4J. Although
PathFinder is the tool used in this evaluation, it is only one of several available model
checkers. Two alternative tools that were considered for verifying defects in Log4J were

1 An appender allows you to specify destination for log data and provide a custom layout for it, through
which all log messages will be formatted [www.mojavi.org/docs/api/3.0/mojavi/logging/Appender.html].

 2

Bandera, and Crystal/Fluid. This section describes the reasons why these tools were not
chosen.

2.1 Bandera
Bandera is a toolset for model checking (developed at Kansas State University’s SAnToS
laboratory) that focuses on checking concurrency issues [3]. Bandera constructs
abstracted models from Java code using a combination of program slicing techniques and
a rule-based abstraction engine [4]. These intermediate abstracted models can then be
automatically converted into verifier-specific languages, which will be used by the
different model checking engines (such as SPIN, SMV, and SAL).

There are, however, several reasons why Bandera was not chosen for verifying Log4J.

• Installation — Due to the fact that Bandera cannot function without other
model-checking engines, installation of Bandera is potentially difficult.

• Maturity — Although Bandera has been in development for over 5 years, the
code was branched after the 0.2 release to focus on a re-implementation of the
entire tool [6], featuring the object-oriented Bogor model checker as a
backend, and a set of Eclipse plugins as the front-end [5]. Only a very limited
command-line prerelease version of this re-implementation (which is planned
to eventually become the 1.0 version) is available. In the meantime, the only
realistic option is to use the abandoned (and relatively immature) 0.3 release.

• User Interface — Bandera 0.3’s user interface is very outdated. While this is
not a problem of functionality, in evaluation, it was difficult to determine the
types of errors it reports.

• Learning Curve — Bandera’s learning curve is considerable. Users have to
understand not only the Bandera abstraction system itself, but also the
backend model checkers. Since no analysis capabilities are included as ‘out-
of-the-box’ functionality, it is a somewhat daunting task to discover how to
use the tool.

Figure 1: Bandera's User Interface, Version 0.3

(borrowed from Bandera: Extracting Finite-state Models from Java Source Code [4])

 3

2.2 Crystal/Fluid
Crystal/Fluid is a model-checker that includes a robust annotation-based concurrency
verifier (including an Eclipse GUI), and a framework for the creation of other analyses
based on the Java abstract syntax tree. While this tool was considered for evaluation, it
has already been used to check Log4J for concurrency errors. Rather than repeat this
task, it was felt it would be more beneficial to assess JPF’s ability to detect similar errors
as found with Crystal/Fluid.

3. Installation of Java PathFinder (JPF)
In this section we discuss the installation of JPF for both the advance version and the
open source version since they both presented a challenge. We conveyed these challenges
to our contact at NASA Ames, Willem Visser, and sent him our step-by-step directions so
that he may make them available.

3.1 Installation of the Advance Copy of JPF
Before the open source release of JPF, we were provided with an advance copy that could
be built from the command line using the Ant tool from apache.org. Several prerequisite
libraries had to be downloaded in order to successfully install JPF. JPF requires Java
SDK 1.4.*, as well as the following third-party libraries [1]:

o BCEL – the Bytecode Engineering Library to load classfiles;
o Xerces – the XML parsing library to parse execution paths stored in XML, and;
o The MD5 library (from Timothy W. Macinta) to efficiently build MD5 state hash

codes.
All of these libraries must be included within the CLASSPATH, even though they can
reside outside of the JPF directory tree. In addition, the following build tools must be
installed [1]:

o JUnit – the Java regression test framework to run unit tests, and;
o Ant – the Java build system to resolve dependencies and compile JPF sources.

After completing installation prerequisites, we used Ant to manually build JPF. We
appended the location of the Ant script to our PATH, and then added ant.jar to our
CLASSPATH. (The other prerequisite libraries were already in our CLASSPATH.)
Then, we switched to the directory where we installed Java PathFinder, and ran Ant to
compile all JPF sources and run the regression tests.

3.2 Installation of the Open Source Version of JPF
We decided to install JPF from within the Eclipse IDE since we already had some of our
test environments setup within the IDE. However, setting up the open source version of
JPF to run within the Eclipse platform ended up being quite a challenge. The usually
bundled .project file was removed from the package (according to an entry in their open
forums) because it referenced libraries that were not prerequisites of the current JPF
version. It should have been easy for us to simply create our own project and checkout
the CVS project for JPF using the Eclipse IDE; however, the pserver connection to the
repository could not be established from within the IDE.

 4

Additionally, in contrast to the installation of the advance version, the required libraries
were not bundled in this version. To make the installation process less cumbersome, we
simply reused the libraries from the advance version. (Since then, the required libraries
have been packaged and made available on the JPF SourceForge website.)

We settled on the following steps to install JPF to run within the Eclipse platform. We
assigned one person to perform the following steps and export the baseline JPF project
for the rest of the group to use.

1. Checkout (using the system shell) the CVS project for JPF into a location outside of
the Eclipse workspace folder.

2. Create a Java project (e.g., javapathfinder) on Eclipse.
3. Copy the CVS folder from the root directory of the checked-out JPF (in step 1) into

the Java project (in step 2).
4. Create the following source folders manually:

a. src
b. extensions/LTL2Buchi/src
c. env/jpf
d. examples
e. test
Note: These have to be created manually; otherwise, the CVS update function in
Eclipse will create them as packages rather than source folders.

5. Update the Java project (using the Eclipse CVS update function).
6. Create a lib/ folder under the Java project.
7. Download the prerequisite JAR files (bcel.jar, xercesImpl.jar, xmlParserAPIs.jar,

junit.jar, fast-md5-2.5.zip) into the lib/ folder (in step 6).
8. Build the project in Eclipse.
9. Test it using the examples.

4. Java PathFinder (JPF) Explained
JPF is a NASA-developed software model checker that explores all possible execution
paths of a Java program in order to find property violations. It does this by exhaustively
simulating the program in a custom Java Virtual Machine (JVM) while property-
checking modules observe the execution for certain conditions. When a property
violation is discovered, JPF outputs the violation information and the specific trace that
lead to it. The out-of-the-box property checking modules handle deadlocks, uncaught
exceptions, and assertion errors.

Because JPF performs a simulation of the program, it requires a main function. JPF is
then able to use this main function as the root of all possible execution paths. This
approach gives JPF advantages over other model checking approaches. Consider the
following trivial example:

 5

Code Listing 1: An example of JPF's path exploration
public void someFunction(boolean arg)
{
 if (arg == true) { return; /* Branch that executes normally */ }
 else { throw new Exception(“Branch that cras hes the code.”); }
}

By utilizing simulation starting from the main function, JPF is capable of analyzing only
those paths that are actually executed in the program. If the only calls to someFunction
occur using true as the argument, JPF will only need to analyze the true branch.
However, if JPF is unable to determine the argument to someFunction , it will analyze
both branches of the function.

Like other model checkers, JPF suffers from state space explosion—the model
exponentially grows with respect to the size of the program—making it difficult to model
large programs. The recommended size of programs to be modeled is below 10,000 lines
of code, although it has been successfully executed on larger programs. In order to
counter the explosion effect, JPF uses several techniques to improve efficiency.

Backtracking – Since JPF checks all paths in a program, it must be able to revisit
previous branch points. Instead of re-traversing the execution path to recreate a branch
point, JPF is able to “undo” previous decisions.

State Matching – In order to save unnecessary work, JPF remembers the previously
visited execution states, and when it detects an already visited state, it skips it and
backtracks to the next non-deterministic decision.

Heuristic Choice Generator – In order to simplify the evaluation of complex data types,
simplified evaluation techniques can be added. For example, a non-deterministic floating
point value that is passed into a method would require that all possible values be
evaluated. This however would be very difficult to model due to the number of
combination. Instead, a small number of pre-selected choices can be used to reduce the
number of values to model.

Partial Order Reduction (POR) – When model checking a multithreaded program, all
possible thread interleavings must be checked in order to verify all possible concurrent
conditions. However, certain code segments are not preemptable by other threads,
allowing the entire code segment to be interleaved instead of the sub elements. JPF uses
this approach to reduce the number of thread interleavings to model.

State Abstraction – Instead of storing all heap, stack, and process information, JPF uses
an abstracted model of these elements in order to reduce storage overhead and improve
lookup time.

One problem with the JPF approach is that the JVM cannot observe what occurs within
any native calls. Native calls are requests out of the control of the JVM to the operating
system (OS) to perform OS level tasks, such as file access or network transactions. Since

 6

JPF cannot reason about these calls it cannot model their behavior. Therefore explicit
models must be created to abstract the behavior of the low-level native call. These
models are created through the Model Java Interface (MJI), which is discussed in the next
section.

NASA successfully used JPF to detect defects within their software and recently (April
26th, 2005) open-sourced the project with the hopes that the open source community will
adopt JPF and create new uses for it [7]. By putting JPF in the hands of the community,
more developers can create interesting model-checking add-ons, as well as continue to
create the models required for the many unsupported native calls.

5. Extending JPF
“One can think of JPF as an execution system framework for all kinds of dynamic,

runtime oriented verification purposes.” [2] JPF Website

One of JPF’s main qualities is its ability to be extended with new functionality. New
functionality is not limited to verification of properties, but can be anything that desires
to use JPF’s systematic program execution approach. For example, it could be used to
produce coverage metrics in order to show code that is traversed often.

Search- and VMListeners
JPF uses a Listener pattern that allows modules to subscribe to events in the virtual
machine. When the event occurs the module is called allowing it to query the execution
and states as well as allowing it to change the successive behavior of the JVM. This
allows for powerful extensions to be added without the need to modify the internals of
JPF.

This is the primary means of adding new evaluations to the JPF framework. New
modules for checking conditions like race-conditions would use this listener approach in
order to track the execution and to determine when a condition is met.

Model Java Interface (MJI)
JPF cannot reason about native calls and therefore must use models instead. These
models are created using the MJI and are used instead of the actual native method. The
model developer is responsible for abstracting the important characteristics of the native
call and retaining it through the model. JPF can then reason about the behavior of the
native call through the use of the model.

6. “Hello, World!” for JPF
One of the first example programs we tested using JPF is the test program shown below.
This is an adapted test program from one of the sample tests of our Exceptions Analysis
project (i.e., Project #1) for our course, Analysis of Software Artifacts. (Note that we
implemented a main(…) function.)

 7

Code Listing 2: Proj1Ex.java

import java.io.*;

public class Proj1Ex {
 public void foo(int i) throws FileNotFoundExcep tion {
 if (i>0)
 throw new RuntimeException();
 throw new FileNotFoundException();
 }

 public void bar(int i) throws RuntimeException {
 try {
 foo(i);
 } catch (IOException e) {
 }
 }

 public static void main(String[] args) {
 (new Proj1Ex()).bar(0);
 }
}

JPF does not report any unhandled exceptions in the program above. This is because the
program does not execute the line of code that throws the unhandled
RuntimeException due to the zero value passed to function bar(…) . Changing the
parameter to bar(…) from 0 to 1 allows JPF to find the bug.

In an effort to have JPF report all possible unhandled exceptions for non-deterministic
input, we changed the parameter passed to bar(…) from absolute values to randomized
values, as shown below.

Code Listing 3: An attempt at non-determinism

bar((new java.util.Random(System.currentTimeMillis())).nextInt())

This, however, does not cause JPF to report all unhandled exceptions since it does not ask
JPF to explore all paths. What this statement implies, rather, is that JPF will check a run
of the test program using the specific randomized integer returned by the
Random(…).nextInt() function. Therefore, for different verification runs of the
program, JPF may or may not find the unhandled exception.

We emailed the question of how to enable JPF to explore all paths to our contact at
NASA Ames, Willem Visser. He replied within a few hours with the answer: we must
use the JPF function Verify.random(int n) method to instruct JPF to simulate
execution using all values from 0 to n.

Code Listing 4: Proj1Ex.java Using Verify.random()

import java.io.*;
import gov.nasa.jpf.jvm.Verify;

public class Proj1Ex {

 8

 public void foo(int i) throws FileNotFoundExcep tion {
 if (i>0)
 throw new RuntimeException();
 throw new FileNotFoundException();
 }

 public void bar(int i) throws RuntimeException {
 try {
 foo(i);
 }
 catch (IOException e) {}
 }

 public static void main(String[] args) {
 (new Proj1Ex()).bar(Verify.random(1));
 }
}

After making this change, JPF was able to find the unhandled RuntimeException
thrown within function foo(…) as shown below.

JPF Output Listing 1: Project 1 Unhandled Exception

java.lang.RuntimeException
 at examples.Proj1Ex.foo(examples\Proj1Ex.java:15)
 at examples.Proj1Ex.bar(examples\Proj1Ex.java:22)
 at examples.Proj1Ex.main(examples\Proj1Ex.java:28)

----------------------------------- path to error (2 steps):
Step #0 Thread #0
 examples\Proj1Ex.java:28 (new Proj1Ex()).b ar(Verify.random(1));
 examples\Proj1Ex.java:9 public class Proj1Ex {
 examples\Proj1Ex.java:28 (new Proj1Ex()).bar(Ve rify.random(1));
Step #1 Thread #0 Random #1
 examples\Proj1Ex.java:28 (new Proj1Ex()).bar(Ve rify.random(1));
 examples\Proj1Ex.java:22 foo(i);
 examples\Proj1Ex.java:14 if (i>0)
 examples\Proj1Ex.java:15 throw new RuntimeExce ption();
------------------------------------ end error path

===================================
 1 Error Found: uncaught exception
===================================

------------------------------------ thread stacks
------------------------------------ end thread sta cks

7. Log4J Bugs to be checked
In our evaluation of JPF we decided to examine 6 known bugs in various versions of
Log4J. As Log4J is a very mature project, we were not hopeful that we would be able to
find new bugs in the project; thus, we located the bugs by examining the Log4J bug
database for verified and resolved bugs. We then attempted to use JPF to detect these

 9

bugs by obtaining the appropriate Log4J source code both before and after the bug was
fixed. Log4J is very specific in that it provides the user with the following contract:
“Log4J will not throw unexpected exceptions at run-time potentially causing your
application to crash.” [8] This means that Log4J should never allow an exception that is
not explicitly declared as being thrown to escape from its code. This is important to our
discussion as one of the selected bugs is a violation of this contract.

7.1 Bug Types
We identified 3 different types of bugs in the Log4J sources, these were:

1. Unclosed Resource Bugs - 1 bug;
2. Exception contract violations - 1 bug, and;
3. Threading issues (both deadlock and race-conditions) - 4 bugs.

7.2 Bug 11186

7.2.1 Bug Description
This bug is a result of violating the Log4J exception contract. It arises when a user
extends a Logger class, and inserts code that might throw a runtime exception. While
this is a bug that arises from user behavior, it still violates the contract of Log4J, and is
something that might easily occur in practice.

7.2.2 Experiences
Initially when we ran JPF upon the code, JPF would crash and report an
ArrayIndexOutOfBoundsException . This actually turned out to be coming from the
lack of an MJI for code within java.net ; however, no error message was given to
indicate this was the source of the error, and the stack trace was from seemingly unrelated
code. To be truly useful JPF must provide better errors for such “easily” determined
things as a missing MJI. After commenting out the code that referred to elements of the
java.net package, JPF correctly reported an uncaught exception error.

7.3 Bug 7793

7.3.1 Bug Description
This bug occurs when a stream is opened on a java.net.URL object in one piece of
code, and this is then sent to a PropertyConfigurator that uses the stream but never
closes it.

7.3.2 Experiences
As this bug uses the java.net package, and thus cannot currently be checked with JPF,
we attempted to create a similar example using an InputStream . In attempting to verify
the bug in this manner, we actually inadvertently stumbled across a bug in JPF.

Code Listing 5: JPF Bug

public class StringError {

 public static void main(String[] args) {
 byte buff[] = {97, 98, 99, 65, 66, 67};

 10

 String s = new String(buff); //Error!!
 System.out.println("Ouput: " + s);
 }
}

When running JPF on the preceding code, JPF crashed throwing another
ArrayIndexOutOfBoundsException . We submitted this bug to Willem Visser and he
replied indicating that there is a known bug in JPF relating to its use of ThreadLocal .
He also told us that our example was the most succinct code that exhibited this behavior
and would be very helpful in resolving the bug.

Eventually though, we were able to create a simple example of an unclosed resource, and
were able to use JPF and its ability to do assertion checking to locate the bug.

Code Listing 6: Unclosed Resource Bug

import gov.nasa.jpf.jvm.Verify;

public class OpenClose {
 public static void main(String[] args) {
 Closeable c = new Closeable();
 int rand = Verify.random(2000);

 if (rand == 1327) {
 //do nothing
 } else {
 c.close();
 }
 assert (c.isClosed == true) : "It is not closed";
 }
}

class Closeable {
 public boolean isClosed = true;

 public Closeable() {
 isClosed = false;
 }

 public void close() {
 isClosed = true;
 }
}

While this is certainly a contrived example, it demonstrates one of the uses of JPF:
checking for assertion errors. We again used the Verify.random(int n) method to
instruct JPF to simulate execution using all values from 0 to n, which simulates non-
deterministic behavior such as user-input. In this example we see that we close the
Closeable resource on every possible execution path except for one. This type of defect
is very difficult to locate during testing (assuming a non-trivial example). Although there
is only one instance where the assertion will fail, we are easily able to detect this using
JPF.

 11

JPF Output Listing 2: Unclosed Resource Assertion Check

java.lang.AssertionError: It is not closed
at OpenClose.main(OpenClose.java:14)

----------------------------------- path to error (2 steps):
Step #0 Thread #0
 OpenClose.java:4 public class OpenClose {
 OpenClose.java:6 Closeable c = new Closeable();
 OpenClose.java:21 public Closeable() {
 OpenClose.java:19 public boolean isClosed = tr ue;
 OpenClose.java:22 isClosed = false;
 OpenClose.java:23 }
 OpenClose.java:6 Closeable c = new Closeable();
 OpenClose.java:7 int rand = Verify.random(200 0);
Step #1 Thread #0 Random #1327
 OpenClose.java:7 int rand = Verify.random(200 0);
 OpenClose.java:9 if (rand == 1327) {
 OpenClose.java:14 assert (c.isClosed == true) : "It is not closed";
------------------------------------ end error path

------------------------------------ thread stacks
------------------------------------ end thread sta cks

===================================
 1 Error Found: uncaught exception
===================================

The preceding is the output of JPF on the buggy code. It shows, not only the error found
by JPF, but also a program trace that leads to the error.

7.4 Bug 1505

7.4.1 Bug description
Bug 1505 is a threading bug involving the implementation of an asynchronous append
function within Log4J. Log4J exposes an append function that clients can call
asynchronously. Inside Log4J is a background thread that performs the actual append to
the log. The append function in the background thread contained the following:

Code Listing 7: Log4J’s asynchronous appender thread waiting for buffer space before appending

if (bf.isFull()) {
 bf.wait();
}
// Append to the buffer bf below…

The code’s intent is to check if what it is appending to, bf , is full or not. If bf is full the
intent is to wait until it is no longer full. However, as this is an if statement rather then a
while statement, it is not always the case that bf will be empty after the wait —the
thread responsible for emptying the buffer may have been interrupted, but the thread
waiting to append may have also been notified to proceed.

 12

The example used to find this bug was a piece of code that consisted of three threads.
The main thread infinitely generated asynchronous append calls; a background thread
continually interrupted the main appending thread; lastly, a thread inside Log4J fulfills
the asynchronous append request (a portion of this code is shown above). Running this
example eventually fills bf . The next append call then results in Log4J’s thread blocking
upon wait . However, because of the interrupting thread, the code doing the append calls
may be interrupted and the execution would then go back to Log4J, in the append, with
bf still being full.

7.4.2 Bug experiences
To try and capture this behavior with Log4J we added an assert statement after the if
statement.

Code Listing 8: Asynchronous appender with an assertion

if (bf.isFull()) {
 bf.wait();
}
assert !bf.isFull();

When running the code without JPF, eventually an assertion violation is raised; however
the program continues to run endlessly after the assertion. The reason it continues to run
endlessly is because of the interrupting thread. The Log4J thread dies from the assertion
failure, the appending main thread stops (it does not have Log4J to call anymore), and
because of this, the interrupting thread indefinitely continues to sleep, then interrupt the
main thread, then sleep, and so on. This occurs because the interrupting thread is killed
from a call in the main thread only after the bug’s assertion is triggered. However, the
placement of the assertion causes the main thread to never know about the bug, and thus,
the main thread can never kill the interrupter thread.

Our first run with JPF raised two null pointer exceptions and an internal JPF null pointer
exception. The internal null pointer exception was raised because JPF caught the 2 null
pointer exceptions and raised an exception of its own. The null pointer was coming from
a getMethod() call in ss.successor();. JPF could not find a method from the getMethod()
call when trying to step to the next state or thread in its checking model. The specific call
that caused this was Category cat = Category.getInstance("test_cat");

We debugged this and found a statement in Log4J that caused JPF to reach this null
pointer error. It was a default that seemed to not be initialized when Log4J was run with
JPF. Since the default was not needed it was commented out.

With the commented out version of JPF we got it to run on the code. However JPF was
unable to identify the bug. It returned “No Errors Found.” Looking into this we tried to
generate a simple program that reproduced this error; eventually we found one. The
program was one that looped forever in a main thread and eventually would fail an assert
statement, generating an assertion error in a background thread. JPF could not find the
assertion error in this case. However, if we added a print statement or sleep statement in
the iteration of the loop in the main thread JPF would find it.

 13

This bug was submitted and the reply we got was that it was a known bug, but not a
documented one. “Ahh the Assertion check! Now there you stumbled on something I
thought nobody would :-)” [Willem Visser, personal correspondance]. It seems that if
there are only local transitions in a part of the code, the partial order reduction scheme
will turn it into one mega-transition. A local transition here is anything that would not
lead outside of the current thread or current function. Because of this, in the case of our
code, the mega transition was an infinite loop and would only transition to itself in JPF’s
model. The background thread had the transition to an assertion error, but the model
could never transition into it once it hit our mega-transition, as there was no way out of
the infinite self loop. In the case of code with transitions that are not local, such as a
system call or thread transition call, JPF will partial order reduce the code to still have
transitions to other functions or threads. Thus, even though the infinite loop exists in
both cases, only in the case where no local transitions exist will JPF be able to transition
to the assertion error.

Our only option was therefore to try and find what code in Log4J (or in the test code for
Log4J) caused the infinite loop mega transition. Using the process of elimination on the
generated code, we were unable to identify the infinite loop. Next we looked inside
Log4J to find the infinite loop, but the most logical places did not contain the error. The
time it would have taken to test Log4J by trial and error (or examine all the parts of
Log4J that were being accessed) would have been far outside our scope. Thus we stopped
trying to use JPF to find this bug. We settled upon having this bug as an example of our
problems with JPF.

7.5 Other Unresolved Bugs
We attempted to resolve a number of other Log4J bugs, but were unsuccessful in doing
so. Attempting to locate the bugs using JPF resulted in various exceptions occurring in
JPF itself. We submitted all found JPF bugs to Willem Visser and attempted to work
around them as much as possible, but each inevitably led to irresolvable problems. For
reference, the other Log4J bugs that we attempted to verify were: 1507, 1603, and 23912.

Although we were unable to validate the existence of all of the bugs that we set out to
locate, we were able to contribute a number of JPF bugs to the JPF developers.
According to Willem Visser, these bug reports will be very helpful in locating and
removing the bugs, thus creating an improved version of JPF.

8. Conclusion
We evaluated three different model checking tools: Bandera, Fluid/Crystal, and JPF. We
pursued the evaluation of JPF and attempted to locate known bugs in Log4J. During our
evaluation we ran into a number of challenges, although none of which were
insurmountable. We had difficulty installing the advance and open source versions of
JPF. Some of these challenges (such as missing libraries) have since been corrected in
the latest version on the JPF SourceForge website. Also, creating an Eclipse project for
JPF was a complex task. Although we were hindered by a few bugs in JPF, we were able
to submit useful bug reports to the project. Additionally, some of the JPF bugs were a

 14

result of unimplemented MJI packages that the Log4J code used. The JPF developers
hope that open-sourcing JPF will lead to an increased number of MJI implementations.

JPF is a very powerful framework that is likely to improve rapidly now that it is an open
source project. While it still requires a little more work to become a tool for industrial
use, we feel that it offers great potential.

Finally, we would like to thank Mr. Willem Visser who was extremely swift and helpful
in responding to our numerous questions and bug submissions.

 15

9. References

[1] Java PathFinder - http://javapathfinder.sourceforge.net/

[2] http://javapathfinder.sourceforge.net/$Extensibility.html

[3] http://bandera.projects.cis.ksu.edu/index.shtml

[4] Bandera: Extracting Finite-state Models from Java Source Code, James Corbett,
Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn Laubach,
Hongjun Zheng in Proceedings of the 22nd International Conference on Software
Engineering, June, 2000.

[5] http://bogor.projects.cis.ksu.edu/

[6] http://bandera.projects.cis.ksu.edu/roadmap.shtml

[7] JPF Open Source Press Release –
http://www.nasa.gov/centers/ames/news/releases/2005/05_28AR.html

[8] http://logging.apache.org/log4j/docs/faq.html

