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Abstract 

The DARPA Urban Challenge held on November 3, 2007, pitted autonomous robotic passenger 
vehicles against each other in a head-to-head race to see which one could drive the most effi-
ciently and safely on suburban roads with real traffic, while following all of the rules of the road. 
Tartan Racing of Carnegie Mellon University won with Boss, a modified Chevrolet Tahoe with  
multiple laser and radar sensors, GPS, a rack of computers, and over 400 000 lines of C++ 
code to run the show. The team followed a formal quality assurance regime, undertaking fre-
quent whole system tests, code inspections, and bug tracking. Static code analysis tools were 
not used, partially due to mistrust of and unfamiliarity with tools capable of analyzing C++ code. 
In this project we evaluated two C++ static analysis tools on the Tartan Racing code in an effort 
to determine how helpful they would have been to the project. One of these tools was Coverity 
Prevent (the other has been excised from this document due to confidentiality constraints). This 
project was undertaken with the generous support of Coverity, who offered their tools for this 
evaluation. 

 

1. Coverity Prevent 
 

Coverity Prevent gave a good impression in terms of its appearance, documentation, 
cleaner and simpler build process. It has support for tracking multiple analysis runs on 
an evolving code base and keeping track of the same issues within the code even as 
the code evolved. The build and analysis steps both ran very quickly. Prevent also 
maintains a database of internal representation so that analyses can be re-run without 
going through the build step again. 

The reported philosophies of the differ with regard to false positives and false negatives.  
Coverity claims that they prefer to deliver no false positives at the risk of giving false 
negatives. Prevent reported only 173 issues on the entire code base. However, many of 
these issues were at least interesting, if not dangerous. 

It was not possible to determine the severity of all issues found by static analysis, but I 
was able to guess. 



 

 

Problem Type # In-
stances 

# Major # Minor 

Uncheck return value 18 0 2 

Bad virtual method override 1 0 2 

Bad character I/O - assign int to char 3 0 3 

Dead code 13 0 10 

Use of possibly null pointer 38 0? 17? 

Missing return 0   

Return unsigned into from function declaring 
negative return value 

7 0? 2? 

Null return value from function 3 0 3 

Overrun dynamic array 0   

Overrun static array 1 1 (in boost 
library) 

0 

Resource leak 7 0 3 

Return reference to local variable 0 0 0 

Use pointer and check if it’s null later 15 0 0 

Use numerical value and check if it’s nega-
tive later 

1 0 0 

Uninitialized value 46 2 10? 



 

 

Problem Type # In-
stances 

# Major # Minor 

Unused value 3 0 0 

Use after free 0   

Misuse of varargs 0   

 

 
Issues unaccounted for in either the Major or Minor columns were deemed not an issue 
at all, either because they were intentional or Prevent was confused. 

 

An variety of issue reported frequently by Prevent looked like the following: 

 if( dynamic_cast<Bar *>( foo ) ) { 
    Bar *bar = dynamic_cast<Bar *>( foo ); 
   // Prevent thinks bar could be null 
 } 
 

This code is actually acceptable. One might think there could be a race condition with 
another thread changing foo, but objects can’t change their type at run-time, so this 
should not be a problem. If there is a race condition and foo is freed by another thread, 
the problem is really not local to this code. 

A very common issue about potential uses of null pointers was code following this pat-
tern: 

 void f (SuperType *obj) { 
   if( obj->typecode == SuperType::SUBTYPE ) { 
     SubType *obj2 =dynamic_cast<SubType*>(obj); 
     // obj2 could be null… 
   } 
 } 
The robotics application may have many classes of, for example, moving obstacles that 
require slightly different handling. Both the format and operation on these classes may 
change frequently during the development effort. Therefore, fitting all classes into a co-
herent type hierarchy with a well-factored set of polymorphic methods is too expensive 
given the modifiability demands. We engaged in the unclean practice of switching on 
type codes, which gave rise to numerous complaints by Prevent like the above. This is a 



 

 

valid complaint for it to make, and if we had used Prevent in the project we would have 
silenced it by changing the syntax of this idiom. 

Local Planner 
 
The LocalPlanner process is responsible for finding an open path down the lane ahead 
of the vehicle that balances priorities such as staying in the lane and avoiding obstacles. 
In the following figure, the vehicle is driving from left to right. The red boxes ahead and 
to its left are obstacles it must avoid, while the blue lines running above and below are 
the nominal boundaries of the lane it is driving in. The red line between the blue lines is 
the middle of the lane which the robot is trying to drive along. The squid tentacles ema-
nating out of the front of the vehicle represent paths the Local Planner is considering 
taking, and the dark blue one near the bottom is the one chosen as the best balance of 
priorities within the constraints. 

  

 

The Local Planner was one of the most important tasks in the system. The vehicle tra-
vels at up to 30 mph. If it dies, the vehicle will screech to a halt, but possibly not before 
hitting something. Finding crash bugs in the process is a high priority. The last crash 
bug encountered during the development effort happened a month before the race. I 
chose five crash bugs reported for the Local Planner from the project’s Bugzilla bug 
tracking software, to see if Prevent could provide any clues. The following is a screen-
shot of the comments on the bug. We see that the Local Planner has been identified as 
the culprit in a robot misbehavior, but there are not enough logs to determine the prob-
lem. The problem was not observed again after a week and it is still not known if it was 
resolved by some other bug fix applied later. 



 

 

 

I checked out the code and ran Prevent, but it did not point out any obvious crash bugs. 

The second bug was due to a memory consumption issue that could not have been 
found by a vanilla static analysis. The memory was not technically leaked. This incident 
does, however, point to a potential program annotation that could be used to prevent 
this kind of bug. That is, that global or heap data items should be annotated with the 
program scope in which they are allowed to grow. If any global variable is found which 
is added to but never emptied, the analysis could raise a warning if it is not annotated 
as being permitted to do so. 

  

The third problem was due to an infinite loop. I checked out the code for the revision 
identified as used in the test, but Prevent did not identify any infinite loops. This is espe-
cially odd since the main code of all tasks are infinite loops. They only exit when the 
task receives a signal, which may be why Prevent did not identify them. 

 

The fourth problem was a bounds check in an iterator class written to iterate over the 
cells of an occupancy grid data structure, used to represent obstacles in the environ-



 

 

ment that the vehicle should avoid. This grid data structure is heavily used in time-
critical code and is highly optimized for performance. For that reason, there are no 
bounds checks in the iterator accessor. 

 

Prevent did not find this problem. 

The fifth and final issue that I attempted to find with Prevent was with code that as-
sumed that the length of a vector returned to it from a function would always be non-
zero. Due to bad input from another part of this system, this was not always true. Pre-
vent did not identify the faulty code in this case. 

 

It could be argued that it is too much to ask Prevent to identify known crash bugs lurking 
in a huge code base full of not only messy code, but code similar in style and that ap-
pears to take similar risks. This experience does show that the project manager’s opi-
nion of static analysis tools was reasonable - he did not trust them to solve many prob-
lems. I believe that static analysis tools at least push quality higher, even if they don’t 
guarantee perfection. The possibility of writing custom analyses to address specific 
types of errors that you know are endemic to your own software, due to the nature of 
the problem, or of your employees, or of legacy factors, however, is very interesting. In 
the next section we look at the potential role of custom static analyses to help in debug-
ging a distributed real-time system such as the Tartan Racing code. 

Repeatability 
 
In the first of the Local Planner bugs examined above, the developer responsible 
claimed that there were not enough logs to track down the problem. In fact, even had he 



 

 

had the logs, they may well not have contained enough information to isolate the offend-
ing code.  Tartan Racing recorded one sort of log - the message passed between tasks. 
In a typical single-threaded program, the input passed to the program is enough to re-
produce its behavior exactly by running it on the same input, as long as its behavior 
does not depend on the time, or other quantities which are not recorded. If a program 
has this property we will say it is repeatable. However, in a threaded program, or in a 
system of communicating processes where messages may arrive in slightly different or-
ders from run to run, guaranteeing repeatability is a challenge and may have a cost.  

McLean and Fujimoto[1] identified four categories of sources of non-determinism.  

• Message delivery - order of, timing of, and losses of 

• External inputs such as sensors or operator inputs - these are the quantities normally 
logged by Boss 

• Operating system calls, e.g. gettimeofday() 

• Hardware interrupts, affecting thread scheduling 

All of these variables must be logged. The results of thread-related calls, shown for ex-
ample in the following, must be logged by recording in which order threads acquired 
locks. 

 pthread_mutex_lock(&readReadyMutex_); 
 receivedMovingTargetSetListReadThread_.push_front(r); 
 pthread_mutex_unlock(&readReadyMutex_); 

 

Threaded applications in the Tartan Racing code base were not too complicated. They 
were typically perception algorithms that had to be threaded to deal with the tremend-
ous amount of data flowing in from the numerous sensors on the robot. One thread 
would deal with reading the data into an internal data structure, another with running 
some perception algorithm on the data, and another with publishing the results out to 
other tasks. The following figure shows an example. 



 

 

 

There are a few data structures shared by the threads, some protected by mutexes, and 
some with read/write locks. Logging which threads acquired which locks in which order 
for later playback should be simple enough, but there is a hidden problem - if there is a 
race condition in the program, then the logs are not valid and playback is impossible, 
invalidating the entire exercise. 

Therefore, a certain degree of correctness in the code must be guaranteed before we 
can use logs to find errors. It should be possible to use static analysis techniques to 
guarantee that there are no race conditions. Risks of aliasing shared data must be miti-
gated, which to approach with static analysis would require a wholesale adoption of 
code annotation techniques in the spirit of the Fluid project in the ISRI. Applying these 
techniques to C++ would be a useful undertaking. 



 

 

Conclusion 
 
We examined the performance of Coverity’s Prevent static analysis tool on the Tartan 
Racing code base. Prevent successfully analyzed the code, delivering just a few certain 
or almost-certain bugs. Prevent was then used to analyze code with known bugs to see 
if it could have found them before testing, and was unable to identify the cause of the 
bugs. We found reason to believe that improving the logging of internal process activity 
would be useful in tracking down the causes of bugs once encountered in a program 
run, and that static analysis on race conditions in threaded programs would be neces-
sary to make this work. 
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