Effect of Grammar on Security of Long Passwords

Ashwini Rao Birendra Jha Gananand Kini
Carnegie Mellon University Massachusetts Institute of Carnegie Mellon University
arao@cmu.edu Technology ganu@cmu.edu

bjha@mit.edu

ABSTRACT

Use of long sentence-like or phrase-like passwords such as
“abiggerbetterpassword” and “thecommunistfairy” is increas-
ing. In this paper, we study the role of grammatical struc-
tures underlying such passwords in diminishing the security
of passwords. We show that the results of the study have
direct bearing on the design of secure password policies, and
on password crackers used for enforcing password security.
Using an analytical model based on Parts-of-Speech tagging
we show that the decrease in search space due to the presence
of grammatical structures can be more than 50%. A signifi-
cant result of our work is that the strength of long passwords
does not increase uniformly with length. We show that using
a better dictionary e.g. Google Web Corpus, we can crack
more long passwords than previously shown (20.5% vs. 6%).
We develop a proof-of-concept grammar-aware cracking al-
gorithm to improve the cracking efficiency of long passwords.
In a performance evaluation on a long password dataset, 10%
of the total dataset was exclusively cracked by our algorithm
and not by state-of-the-art password crackers.

Categories and Subject Descriptors: D.4.6 [Operat-
ing Systems]: Security and Protection—Authentication

General Terms: Security, Algorithms, Performance

Keywords: Password; Passphrase; Cracking; Grammar;
Policy

1. INTRODUCTION

Text-based password authentication is a widely deployed
user authentication mechanism. Use of text-based pass-
words involves a trade-off between usability and security.
System assigned passwords and user-selected passwords sub-
ject to complex constraints (e.g. including mixed-case, sym-
bols and digits) are harder to guess, but less usable[22].
Conversely, simple, memorable user-selected passwords of-
fer poor resilience to guessing.

To obtain a good compromise between security and usabil-
ity, researchers and organizations are recommending the use
of longer user-selected passwords with simpler composition

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODASPY’13, February 18-20, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1890-7/13/02 ...$15.00.

requirements, e.g. minimum 16 character passwords[21] and
sentence-like or phrase-like passphrases[6, 11, 3, 12, 27]. In
the minimum 16 character password policy, the only restric-
tion is that passwords cannot contain spaces. An example
of a passphrase policy is “choose a password that contains
at least 15 characters and at least four words with spaces
between the words”[6]. The increase in the length of the
password supposedly makes the password difficult to guess.

To memorize longer passwords users may rely on mem-
ory aids such as rules of English language grammar. Users
may use memory aids voluntarily or due to policy recom-
mendations. Our analysis of a set of 1434 passwords of 16
characters or more from a published study[21] shows that
more than 18% of users voluntarily chose passwords that
contain grammatical structures. Each of these passwords
contains a sequence of two or more dictionary words. An
example is “abiggerbetterpassword” that contains the gram-
matical structure “Determiner Adjective Adjective Noun”.
Table 1 provides more examples. In addition to grammati-
cal structures we also found other types of structures such
as postal addresses, email addresses and URLs. Given the
evidence of use of structural patterns in long passwords, we
are motivated to investigate its effect on password security.
Studies on password security so far have focused only on
structural dependencies at the character level[35, 33, 21].

Main Contributions: (1) We propose an analytical frame-
work to estimate the decrease in search space due to the pres-
ence of grammatical structures in long passwords. We use
a simple natural language processing technique, Parts-of-
Speech (POS) tagging, to model the grammatical structures.
(2) We show that the strength of a long password does not
necessarily increase with the number of characters or words
in the password. Due to the presence of structures, two pass-
words of similar length may differ in strength by orders of
magnitude. (3) We develop a novel cracking algorithm to in-
crease the cracking efficiency of long passwords. Our crack-
ing algorithm automatically combines multiple words using
our POS tagging framework to generate password guesses.
(4) We show that it is necessary to analyze the distribution
of grammatical structures underlying password values in ad-
dition to the distribution of password values themselves to
quantify the decrease in guessing effort.

2. BACKGROUND AND RELATED WORK

Parts-of-Speech Tagging: It is the process of assign-
ing a part of speech to each word in a sentence[25]. In
English language, parts of speech are noun, verb, adjec-
tive etc. For example, the parts of speech for a sentence

Table 1: Examples of phrases in long password dataset

Category Password Example Phrase Total
Simple abiggerbetterpassword a bigger better password 178
Substitution thereisnomoredOts there is no more dots 20
Extra Symbol longestpasswordever8 longest password ever 70
Total out of 1434 268

Brown Corpus Statistics

N
=3
S
S
=

Words 1161192
Unique Words 49815
15000 Sentences 57340

Characters per Word 4.26
‘Words per Sentence 20.25
Unique Characters 58
Content Genres 15

Unique Word Count
I
(=]
3

u
=3
S
S

0
SN EP v& QXQ,’LQéoé\@QQ‘oQ @V&\% PO
POS Tag

Figure 1: Brown Corpus statistics and count of
unique words (Unique Word Count) for top 21
Parts-of-Speech tags (POS Tag) in the Brown Cor-
pus. N, NP, ADJ,... correspond to Noun, Noun
Proper, Adjective,... The uneven distribution of
word counts among POS tags has important implica-
tions on password search space and guessing effort.

“She runs fast” are “Pronoun Verb Adverb”. Given a se-
quence of words (word;words . . . wordy,), a POS tagger such
as CLAWSJ[19] can output a sequence of tags, one tag per
word ((words, tag,) (wordse, tag,) ... (word,, tag,)).
Natural Language Corpora: The field of natural lan-
guage processing commonly uses collection of real data sam-
ples or corpus to train and test tools[25]. Two examples are
the Google Web Corpus[17] and the Brown Corpus[23]. The
Google Web Corpus is a corpus of 1 trillion word tokens of
English text collected from web pages and it contains 1 to 5
word n-grams and their frequency counts. The Brown Cor-
pus is a corpus of printed English language of more than 1
million words. It contains articles from 15 genres such as
fiction, government, news, and user reviews. Because of the
presence of multiple genres, the Brown Corpus is considered
a balanced corpus that well represents the entire printed
English language. Sentences in the Brown Corpus are POS
tagged. The Simple Brown POS tag set consists of 30 tag
types. Fig. 1 contains the statistics of the Brown Corpus
and the unique word counts for popular tag types.
Password Security: Current password security primar-
ily focuses on the relationships at character level. In[33]
the authors estimate the password search space using Shan-
non entropy[32] at the character level. Password crackers
that enumerate password search space use zeroth or higher
order Markov models trained on character probability distri-
bution[7, 26]. In[26] authors assume that for memorability,
user models a password as a sequence of characters whose
distribution is similar to the distribution of characters in her
native language. In[16] authors studied the linguistic prop-
erties of Amazon Payphrase[l] dataset where majority of the
Payphrases are a sequence of two words. Authors investi-
gate whether users choose their Payphrases as a sequence
of words which occurs as-is in an existing natural language
corpus. Further, they conjecture about guessing effort of

passphrases if the distribution of passphrases are identical
to the distribution of phrases in a natural language corpus
such as Google Web Corpus. In this work, we assume that
users model their password as a sequence of words following
the rules of grammar such as “Determiner Adjective Noun”.
The sequence need not occur as-is in a natural language
corpus. An example of such password is “the communist
fairy” that occurs in the long-password dataset presented in
Table 1 but not in the Google Web Corpus. By making a re-
laxed assumption we model a more powerful adversary who
can attack defenses such as use of nonsensical phrases[27].

3. SEARCH SPACE ANALYSIS

The password search space is the set of all possible unique
password values. In this section we investigate how the pres-
ence of grammatical structures modifies the password search
space. One can consider a password value as a sequence of
characters, a sequence of words, or a sequence of words gen-
erated using the rules of grammar. We propose an analytical
framework to estimate the size of the password search space
under each of the three assumptions. By comparing the
three estimated sizes we can understand the level of reduc-
tion in the size of the password search space when grammar
structures are present. Via numerical evaluation, we show
that the reduction in search space could be 50% or more.

3.1 Computing Search Space Size

Consider a password that contains up to n words. If
the words are from a dictionary D={the, run, king, hand-
some,. .. } that contains numw unique words, the size of the
password search space of all possible word sequences is

G(word) = Z numw' (1)

Consider a word as any sequence of characters, for exam-
ple “llmmnn”; and not only the elements in a standard dic-
tionary. Now, the password search space is bigger than
G(word). Let numc be the number of unique characters
possible and avgc be the average number of characters per
word. We can approximate the size of the password search
space of all possible character sequences as

G(char) = Z numc*’9*’ (2)
i=1

Let us now consider a password as a sequence of words cre-
ated using grammatical rules. For example, a user may pick
“thehandsomeking” based on the grammatical rule “Deter-
miner Adjective Noun”. To estimate the search space under
this assumption, we need to define the set of valid grammat-
ical rules. Modeling rules of natural language grammar is
a difficult problem|[25]. English language parsers and gen-
erators use Context Free Grammar (CFG) or more pow-
erful Context Sensitive Grammar (CSG) to approximately
model the rules of grammar. A CFG or CSG can recur-
sively generate infinitely long sentences. For long passwords,

211 T T
2"l e ® char N
r++ word
” 2%t x x grammar .
8 t* * fixed entropy i
147 — L[]
g2t sample . N
> L x
52115, ° ;
+
° o X
9 _s3 *
i 2 O * N +
+* [* *
251, ° . . *
L *
199 * % *
27—
B X L
2 4 n 6 8 10

Figure 2: Comparison of the size of password search
space treating password as a sequence of charac-
ters (char), a sequence of words (word), and a se-
quence of words generated using grammatical struc-
tures (grammar). Numbers are based on the Brown
Corpus statistics. n is the number of words in the
password. The difference between word and gram-
mar widens as n increases. We also plot search space
estimation using 1.75 bits per character of Shannon
entropy (fivred entropy) and the actual number of
unique n-word sequences in the Brown Corpus (sam-
ple). We explain their significance in Section 6.3.

it is unlikely that we will need to generate infinitely long
sentences. For finite length sentences, a Regular Language
is sufficient and it reduces computational complexity from
O(n®) to O(n). Parts-Of-Speech (POS) tagging technique
described in Section 2 is equivalent to using a Regular Lan-
guage, and we use it to model the rules of grammar.

We consider each grammatical rule as a sequence of POS
tags. We extract POS tag sequences from a POS-tagged
corpus that is representative of a long password dataset.
This approach of generating grammatical rules is similar to
expanding the CFG rewrite rules up to a finite length sans
the complexity of the CFG rewrite rules. We can modify
the grammar by including or excluding POS tag sequences.

Consider the set of all POS tags {Noun, Verb, Adjective,
Determiner,. .. }. Each POS tag is associated with a dictio-
nary of words e.g. dictionary of “Noun” is {king, queen,. .. }.
Examples of POS tag sequences include “Determiner Adjec-
tive Noun” and “Determiner Determiner Noun”. We con-
sider a POS tag sequence as grammatical if it is observed in
a corpus. We refer to a grammatical tag sequence as a tag-
rule. “Determiner Adjective Noun” is a tag-rule because it is
present in the Brown Corpus. However, “Determiner Deter-
miner Noun” is not a tag-rule because it is not present in the
corpus. The search space of a tag-rule is the set of word se-
quences it generates. For example, the tag-rule “Determiner
Adjective Noun” generates the set of word sequences {“the
handsome king”, “the beautiful queen”,...}. The size of the
search space of a tag-rule is equal to the product of the size
of dictionaries of individual tags in the sequence. The size
of the grammatical password search space, G(grammar), is
equal to the sum of the sizes of search space of the tag-rules.
For precise equations, refer to [30].

3.2 Numerical Evaluation

We need a corpus to numerically evaluate the password
search space model proposed in Section 3.1. We use the
Brown Corpus, a balanced corpus that contains representa-

Table 2: grammar password search space as a per-
centage of word password search space (from Fig. 2).
Note the significant decrease in password search
space due to the presence of grammatical structures.
#words 1 2 3 4 5
gramvmar oz 1 100 99.92 96.90 80.66 46.95

word

2% + « possible tag sequences i
§236 -- observed tag sequences | *
gzzs .
.
2520
o) 2]
* 4 --"
2 4 6 8 10

Figure 3: Comparison of the number of tag se-
quences observed in the Brown Corpus with the
number of tag sequences possible with 30 POS tags.
The observed tag sequences, which are a small frac-
tion of the possible tag sequences, generate the gram-
mar password search space in Fig. 2.

tive grammatical structures (tag-rules) for English language.
We believe users will model their long passwords using tag-
rules similar to the tag-rules in the Brown Corpus; we find
that 84% of the long passwords from “Simple” category in
Table 1 were generated using tag-rules from the Brown Cor-
pus. Using the Brown Corpus should provide useful insights
into the effect of structure on the password search space.

To evaluate the size of password search space of charac-
ter sequences, G(char) in (2), and word sequences, G(word)
in (1), we use the character and word statistics from Fig. 1.
The number of unique characters numc=>58, number of unique
words in the dictionary numw=49815, and average number
of characters in a word avgc=4.26. In Fig. 2 we plot the size
of the password search space char=5826%% and word=49815
as a function of number of words ¢ in the password.

To evaluate the password search space of word sequences
generated by tag-rules, G(grammar), we need a set of POS
tags, a dictionary for each POS tag, and the set of tag-rules.
We use the Simple Brown Corpus POS tag set with 30 tags.
We get the dictionary for each tag from the Brown Corpus
(Fig. 1). We extract the tag-rules from the Brown Corpus as
explained in[30]. In Fig. 3, we plot the number of observed
tag sequences (tag-rules) and possible tag sequences. Num-
ber of observed tag sequences is much less than the number
of possible tag sequences, and the difference increases with
length. Observed tag sequences and possible tag sequences
generate the grammar and word search spaces in Fig. 2.

From Fig. 2 we can compare the password search space
sizes of char, word, and grammar. Note that char > word
> grammar. To emphasize the decrease in password search
space due to the presence of grammar, we tabulate the ratio
of grammar to word in Table 2. Observe that for a password
of length 5 words, the decrease is more than 50%.

4. DISTRIBUTION ANALYSIS

When password values have underlying grammatical struc-
tures, it is important to understand the role of these struc-
tures in decreasing the guessing effort. Guessing effort can
be defined as the number of values an attacker has to enu-
merate to guess a password. Guessing effort is a function of
(a) size of the password search space, which is the set of all

possible unique password values and (b) distribution of pass-
word values, which depends on how users choose password
values from the password search space. So far, research in-
volving analysis of password distributions[16, 15, 31] has not
considered the effect of underlying grammatical structures.

In Section 3 we showed that the grammatical structures
reduce the password search space, which implies reduced
guessing effort. This is because the maximum number of
values an attacker has to enumerate is equal to the size of the
search space. In this section we show that the distribution of
grammatical structures can also reduce the guessing effort.
This reduction is in addition to the reduction due to the
distribution of the password values themselves.

4.1 Reduction in Guessing Effort

A uniform distribution maximizes the guessing effort[28].
Conversely, a non-uniform distribution reduces the guessing
effort. Usually, user-chosen password distributions are not
uniform[15]. Given a set of user chosen passwords such as
{mypassword, mypassword, iloveu}, non-uniformity is evi-
dent as password values are not unique. In the past, re-
search has associated uniformity solely with uniqueness of
password values. For example, [31] ensures that password
values do not repeat often and [15] computes the distribution
by counting the repetition of password values. However, for
passwords generated using grammatical structures, underly-
ing structure may cause non-uniformity even if the password
values are unique. For example, the values in the set {“tangy
food”, “pretty cat”, “naughty kid”} are unique, but all values
are generated using “Adjective Noun”. Hence, uniqueness of
password values is a necessary, but not sufficient condition
to ensure uniformity.

Grammatical structures, or tag-rules, split the password
search space unevenly; the size of the search space of indi-
vidual tag-rules are different e.g. the size of “Noun Noun”
is greater than the size of “Adjective Noun”. Recall from
Section 3 that the search space of a tag-rule is the number
of word sequences it generates. The effort required to guess
a password generated by a tag-rule is a function of the size
of its search space. Given a set of user chosen passwords,
we can analyze how the underlying tag-rules are distributed.
If users are using certain rules more often than the others,
an attacker can use this information to reduce her guessing
effort. For example, if the password set contains only the
tag-rule “Adjective Noun” then the attacker need not enu-
merate other tag-rules. Specifically, if the users are choosing
weaker tag-rules more often than the stronger tag-rules, re-
duction in guessing effort can be higher. In Fig. 4 we group
the tag-rules from the Brown Corpus by their search space
size expressed in bits or log,. Observe that some tag-rules
have small search spaces e.g. for tag-rules of length 3 (8-
gram), 8.9% of the rules have 10-19 bits of strength. Fur-
ther, our analysis of unique 2-word and 3-word sequences
from the Brown Corpus shows that weaker tag-rules occur
more often than stronger tag-rules. More details about this
analysis is available in[30].

To ensure uniform distribution over a set of password val-
ues (a) password values have to be unique, and (b) each
tag-rule should have proportional representation. Intuitively,
proportional representation implies that a tag-rule with a
larger search space should generate more password values
in the set. Unless these conditions are satisfied, the dis-
tribution is not uniform, and the guessing effort decreases.

Figure 4: Tag-rules of length 2 to 5 grouped by the
size of their search space (in bits or log,). Num-
bers outside indicate the range of bits, and num-
bers inside indicate the percentage of tag-rules with

those many bits. Tag-rules divide the password
search space unevenly, and many tag-rules have low
strength. For example, 8.9% of 3-gram tag-rules have
10-19 bits of strength.

Table 3: Data set ExSet

Password Phrase
Thave3cats I have 3 cats
Thaveddogs I have 4 dogs

Thavebfish 1T have 5 fish
Thadlcat. I had 1 cat.
Thadlgoat I had 1 goat

We prove this in[30] by posing the problem of computing an
attacker’s guessing effort as an optimization problem.

S. PASSWORD CRACKERS

We investigate whether state-of-the-art cracking tools such
as John the Ripper (JTR)[7], Hashcat[5], and Weir Algo-
rithm[35] can crack long passwords efficiently. This is im-
portant because crackers are used in auditing user passwords
and estimating the strength of password policies[21]. We
discuss the shortcomings of these crackers in cracking long
passwords. We show ways to improve cracking efficiency
for both long passwords in general and long passwords gen-
erated using grammatical structures. We propose a novel
algorithm to improve cracking efficiency. Our cracking algo-
rithm uses the POS tag framework introduced in Section 3.

5.1 Shortcomings of Current Crackers

A password cracker tries to recover a plain text value of
a password hash value. The cracker generates candidate
password guesses, hashes them, and compares them with
the available hashes until a match is found. A heuristic
dictionary-based cracker[7, 5, 35] uses a dictionary of values
to generate candidate passwords. A dictionary may con-
tain leaked passwords[21], words from many languages[10],
common quotes, music lyrics, movie titles[24] etc. Cracker
may use the dictionary values as-is or transform them by
applying mangling rules. An example of a mangling rule
is “capitalize first alphabet”, which transforms a dictionary
value “password” to “Password”. Alternatively, an intelli-
gent brute-force cracker, eventually, enumerates the entire
password search space[7]. Below we explain the main short-
comings of current crackers in cracking long passwords using
the example data set, ExSet in Table 3 and a dictionary,
ExD={I, have, had, cats, dogs, fish, cat, goat}.

JTR in Wordlist mode and Hashcat are dictionary-based
crackers. Their mangling rules can combine a single dic-
tionary value in different ways, for example “catscats” or
“catsstac” from “cats”. They can append, prefix or insert
specific strings to a dictionary value, and delete parts of the
dictionary value. However, JTR can not combine multiple

values from the dictionary to form longer passwords. To
crack passwords such as “Ihave3cats” from ExSet using dic-
tionary ExD, user has to (1) write multiple mangling rules
for example “prefix I”, “append had” or “prefix Ihave” or (2)
explicitly add the value “Ihave3cats” to the dictionary ExD.
To add longer values to the dictionary, user has to generate
the values himself or collect them from existing sources such
as books, Web etc. Hashcat can combine up to two values
from the input dictionary, but for more values it has issues
similar to JTR.

Weir Algorithm is another dictionary based technique. It
improves cracking efficiency by improving the order in which
mangling rules are applied to the values in the dictionary.
Weir Algorithm generates a set of base structures from a
training corpus. A base structure in Weir Algorithm is a
sequence of “L”, “D”, and “S” that denote “Letter”, “Digit”,
and “Special Symbol”. Each base structure is assigned a
probability. Weir Algorithm learns the digits and special
symbols to insert into “D” and “S” from the training corpus.
For letter sequences in a base structure, Weir Algorithm
tries to fit values from the dictionary whose length exactly
matches the length of the letter sequence. For example, for
“LLLL” in a base structure “LLLLDLLLS”, it tries to fit
values {have, cats, dogs, fish, goat} from dictionary ExD.
It cannot combine shorter values such as “I” and “had” to
form a longer value “Ihad” that fits the sequence “LLLL".
This shortcoming is similar to that of JTR and Hashcat.
Although trained on passwords in dataset ExSet, Weir Al-
gorithm cannot crack any password from dataset ExSet us-
ing the dictionary ExD; it cannot create “Ihave” and “Ihad”
from “I”, “have” and “had”.

To force Weir Algorithm to generate longer values, we
can train it with passwords containing words separated by
a single space. Weir Algorithm treats space as a special
symbol. We have to remove spaces from the generated pass-
word guesses. If we train Weir Algorithm on phrases listed in
the dataset ExSet, it generates a base structure “LSLLLSD-
SLLLL”. Now, it can crack passwords such as “Ihad3cats” us-
ing dictionary ExD. However, this approach generates guesses
such as {Ihadlhad, Ifish5have, Icats3fish ...} that may be
in the search space of all word sequences, G(word), but not
in the search space of word sequences generated using gram-
matical structures, G(grammar). From Section 3, G(word)
can exceed G(grammar) by more than 50% for 5-word length.

JTR Incremental mode, an intelligent brute-force cracker,
uses a Markov model trained on 3-gram letter frequency
distribution to generate password guesses. Based on our
experiments, letter frequencies are effective for conventional
short passwords consisting of sequence of characters but not
for longer passwords with multiple words.

5.2 Evaluation on Long Password Dataset

We evaluate the cracking efficiency of JTR, Hashcat and
Weir Algorithm with experiments on a published long pass-
word dataset[21]. We introduce this dataset in Section 1.
It contains 1434 passwords of minimum length 16 charac-
ters, and was collected as part of a field study. Subjects
could create their passwords using any character except the
space character. To test the cracking efficiency on long pass-
words, we use the complete long password dataset, hence-
forth referred to as P16. To test the cracking efficiency on
long passwords with underlying grammatical structures, we
use a subset from P16 containing simple phrases, hence-

Table 4: Dictionaries used for evaluating crackers.
Dictionary “L” is a large dictionary combining the
datasets Myspace, Rockyou, Brown, lgram, Dic-
0294, Basic Full, Basic Alphabetic, Free Full, Free
Alphabetic, Paid, Alphabetic, Paid Lowercase. In
column Name “-x” indicates minimum length of the
words in the dictionary.

Name #Words Description

L-8 35267653 Minimum length 8 values from L

LASCII 39251222 All length ASCII values from L

GW25-8 3625636435 Google Web Corpus 2-5 grams

B210 5942441 Brown 2-10 gram word sequences

Table 5: Performance of crackers on long passwords
(P16) and long passwords with underlying grammat-
ical structures (P16S). Ezperiment is the name of
the experiment. NM indicates no mangling. %P16
Cracked is % of passwords cracked out of 1434 pass-
words in P16. %P16S Cracked is % of passwords
cracked out of 144 passwords in P16S. Guesses is the
total number of password guesses. SC? indicates if
experimental session completed after Guesses.

Experiment %Cracked Total SC?
P16 P16S Guesses
JTR L-8 13.6 6.9 2.31E10 Yes
JTR L-8 NM 8.5 4.8 3.42E7 Yes
JTR GW25-8 20.5 34.7 2.48E12 Yes
JTR GW25-8 NM 11.08 27.7 3.4E9 Yes
Weir LASCII 12 4.8 1.07E12 No
Weir Space LASCII 7.6 3.4 1.26E12 No
JTR Incremental 0 0 2.48E12 No

forth, P16S. We are not aware of datasets that exclusively
contain user-selected long passwords with underlying gram-
matical structures. P16S contains 144 passwords. To cre-
ate P16S, we manually examine each password in P16 us-
ing tools such as the Microsoft Word Breaker[34], and iden-
tify passwords with multiple words. We initially include all
passwords with two or more words (e.g. “compromisede-
mail”, “thereisnomored0ts”) except those that contain repe-
titions of a single word (e.g. “elephantelephant”). We further
categorize the passwords into three groups: simple phrase,
phrase with symbol substitution and phrase with extra sym-
bols. Table 1 shows example for each category. For our ex-
periments, we use passwords with simple phrases containing
2 to 5 words. One of our experiments uses the Google Web
Corpus that contains n-grams of length up to 5. Hence, test-
ing on passwords with more than 5 words will not permit fair
comparison. Table 4 describes our dictionaries;“L” contains
publicly available datasets, “GW” has data from the Google
Web Corpus and “B” has data from the Brown Corpus.

We tabulate our experimental results in Table 5. We allow
all experiments to make up to 2.5E12 guesses; we indicate if
an experiment terminated earlier in the “SC?” column. We
terminated two experiments before 2.5E12 guesses due to
their excessive memory consumption. For brevity, we omit
the less significant experimental results from Table 5. In
our experiments, we try to overcome the main shortcoming
of current crackers: They do not generate longer values au-
tomatically; user has to generate and add longer values to
the dictionary. Specifically, we do the following;:

Use a better dictionary of long values: given the evidence
that, for longer passwords, users choose word sequences, we

hypothesize that a corpus of word sequences is a better dic-
tionary. Experiments on long password datasets until now
have not tested this hypothesis. We test the hypothesis us-
ing word-grams in the Google Web Corpus and the Brown
Corpus, but other corpora may also be explored. Using the
Google Web Corpus as dictionary, we crack 20.5% of long
passwords from dataset P16 (“*JTR GW25-8”). For the same
number of guesses, published experiments, using publicly
available datasets similar to dictionary “L”, crack 6% from
P16[21]. Using the Brown Corpus, we crack only 0.3% from
P16 (“JTR B210”).

Use workarounds to generate longer values automatically:
we use the workaround for Weir Algorithm explained in Sec-
tion 5.1. From experiment “Weir Space LASCII”, we find
that this approach generates large number of guesses and
fails to improve cracking efficiency of long passwords.

JTR L-8, JTR L-8 NM, JTR GW25-8, JTR GW25-
8 NM: we run JTR in word mode using dictionaries L-
8 and GW25-8. We run JTR with and without mangling
rules. Dictionary values have minimum 8 characters as man-
gling rules can concatenate them to form 16-character length
guesses. JTR GW25-8 outperforms other experiments. Us-
ing 2.48E12 guesses it cracks 20.5% passwords from P16 and
34.7% passwords from P16S. Even with lower number of
guesses it outperforms other experiments.

Weir LASCII: we train the Weir Algorithm using mini-
mum 16-character passwords from the Myspace and Rock-
you, and run it using the dictionary LASCII. We terminated
this experiment before 2.5E12 guesses as the memory con-
sumption became unwieldy. Weir LASCII does not match
the performance of JTR GW25-8.

Weir Space LASCII: we train Weir Algorithm on se-
quences of 1 to 10 words from the Brown Corpus and run
it using the dictionary LASCII. The words were separated
with a single space. We strip spaces from the generated
guesses and check if they crack any passwords. Weir Space
LASCII does not match the performance of JTR GW25-8.
JTR Incremental: we train JTR Incremental mode on
minimum 16-character passwords from Myspace and Rock-
you datasets. We configure it to generate passwords between
16 and 23 characters in length inclusive. JTR Incremental
mode experiment fails to crack any passwords.

Experimental results show that using a good dictionary of
long password values can improve cracking efficiency. How-
ever, relying only on existing sources to build dictionaries
may not be ideal. Existing sources contain values that peo-
ple use often and by relying on them we may fail to crack
passwords that contain uncommon and nonsensical phrases
e.g. “the communist fairy” in P16S. Building a Markov
model based on word gram frequencies as opposed to let-
ter gram frequencies may be useful. However, training these
word gram models on existing sources can run into simi-
lar issues. We explore a novel technique to automatically
generate longer password values.

5.3 Grammar Aware Cracking

A cracker should ideally emulate user behavior to gener-
ate password candidates; if passwords contain grammatical
structures, crackers should use grammatical structures. We
develop proof-of-concept of such a cracker using the POS tag
framework in Section 3. It automatically combines words
into longer password values using sequences of POS tags.
Main challenges in our approach are (1) identify a set of POS

Table 6: Performance of grammar-aware cracker on
long passwords with underlying grammatical struc-
tures (P16S). %Cracked BWeb is % of P16S cracked
using dictionary BWeb. % Cracked with BWeb90 is
% of P16S cracked with dictionary BWeb90. %FEz-
clusive is % of P16S cracked by grammar-aware
cracker, but not by other crackers in Table 5.

Guesses %Cracked %Cracked %Exclusive
with BWeb with BWeb90

5E10 9.7 18.7 4.8

1E12 14.5 25 9

2.5E12 15.2 27 10.4

10E12 20.1 29.1 11.8

40E12 25.6 35.4 13.8

tag sequences that are grammatical (tag-rules). It is possi-
ble to identify tag-rules from existing corpus e.g. the Brown
Corpus or long password datasets and (2) build a dictionary
for individual POS tags. The level of difficulty in building
tag dictionaries depends on the type of POS tag. Closed
tags such as “Determiner” and “Conjunction” (e.g. the, and)
contain small number of values that do not change much
with time. Open tags such as “Noun” and “Noun Proper”
have large dictionaries and also grow with time.

Our main goal is to evaluate the value of a grammar aware
cracking approach. Will a grammar-aware cracker allow
an attacker to crack passwords that can not otherwise be
cracked? We assume that an attacker has access to a good
set of tag-rules. We believe that assuming otherwise leads
to a security-through-obscurity model. As use of long pass-
words increases, it is likely that long password data sets will
become public, and attackers can use tag-rules from these
datasets. To simulate a scenario that provides maximum ad-
vantage to an attacker, we extract tag-rules from P16S long
password dataset used in Section 5.2. We tag the passwords
in P16S using the CLAWS[19] POS tagger.

First, we build a dictionary for each POS tag using the
Brown Corpus and a small web text corpus[9]. We include
the web text corpus because the Brown Corpus, compiled
in year 1961, does not contain Internet related words. We
use all words, including repetitions, from the Brown Corpus
and all words that occurred at least 10 times in the web text
corpus (373 words). Words in the Brown Corpus are tagged.
We tag the words in the web text corpus using CLAWS. If
a word has a noun tag, we assign it to the noun dictionary
and so on. We refer to this first set of tag dictionaries as
BWeb. Next, we build an alternate set of tag dictionar-
ies from BWeb. To reduce the size of a tag dictionary, we
compute the cumulative probability distribution of word fre-
quencies within the dictionary and discard words that do not
meet the 0.9 cumulative probability cutoff. We apply this
reduction process to all POS tags except “Noun”, “Proper
Noun”, “Adjective”, and “Cardinal Number”. We call this
alternate set BWeb90. Intuition for BWeb90 is that users
use few popular words for closed tags, but not for open tags.

The inputs to the grammar aware cracker are a set of tag-
rules, a set of tag dictionaries, and the maximum number
of guesses it can make. The cracker computes the size of
each tag-rule (Section 3), sorts the tag-rules by their size,
and selects the subset of smallest tag-rules whose sizes add
up to the number of guesses. The cracker generates word
sequences from identified tag-rules using the tag dictionaries,
and outputs them as password candidates.

Table 7: Comparison of passphrase strength; strength is not a direct function of length. Tag-Rule lists the
tag-rule that can generate the passphrase. Guesses is based on the size of the search space of Tag-Rule and
effort required to mangle the phrase. Time estimates the time required to guess a given passphrase.

Passphrase

Tag-Rule

Guesses Time

Th3r3 can only b3 #1!

Hammered asinine requirements. VD ADJ N
NP V ADJ ADV
PRO NP V ADJ ADV

Superman is $uper strOng!
My passwOrd is $uper strOng!

EX MOD V DET PRO 1.3E12

22 min
12.6E12 3.5h
12.3E15 142 d
1.7E18 56 yr

Table 6 details the performance of our grammar-aware
cracker. The columns “%Cracked with BWeb” and “%Cracked
with BWeb90” list percentage of dataset P16S cracked us-
ing dictionaries BWeb and BWeb90 respectively. The “Ex-
clusive” column lists the percentage of P16S that was ex-
clusively cracked by grammar-aware cracker, but not by
other crackers in Table 5. For 5E10 guesses, grammar-aware
cracker cracked 18.7% of passwords, which is better than
“Weir Algorithm” (4.8%) and “JTR Incremental” (0%). Al-
though not listed in Table 6, it performs better than “JTR, L-
8” for 2.3E10 guesses. At 2.5E12 guesses it cracks 27% pass-
words, but that is not better than the performance of “JTR
GW25-8” (34.7%). However, grammar-aware cracker cracks
10% new passwords from P16S dataset. This 10% was not
cracked by “JTR GW25-8” or other experiments. Grammar-
aware cracker consumes <10MB of storage versus >50GB
for “JTR GW25-8”. It is scalable as number of guesses in-
creases, easier for operations such as network transfer and
dictionary sorting, and provides flexibility in targeting dif-
ferent user groups e.g. use different “Proper Noun” dictio-
nary for users from North America and Asia. From initial
results, we believe that grammar-aware approach has poten-
tial to improve cracking efficiency of long passwords.

6. POLICY IMPLICATIONS

In this section, we highlight the need for policy makers
to understand the impact of grammatical structures on se-
curity of long passwords. We examine some of the implicit
assumptions within passphrase policies in light of the re-
sults on search space and guessing from Sections 3, 4 and
5. Many policies consider a passphrase as a long sequence
of characters or words[8, 2, 3, 6] and estimate security met-
rics such as size of search space and guessing effort accord-
ingly[6, 14]. However, when users choose sentence-like or
phrase-like passphrases, due to grammatical structures the
search space and guessing effort will decrease. Further, be-
cause of structure, the strength of the passphrase does not
increase uniformly with the length i.e. a longer passphrase
is not necessarily stronger than a shorter passphrase.

6.1 Passphrase Strength and Length Relation

Consider the passphrase examples in Table 7. The exam-
ples “Th3r3 can only b3 #1!”, “Superman is $uper strOng!”
and “My passwOrd is $uper strOng!” are from technology
and academic websites[4, 12, 3]. The example “Hammered
asinine requirements.” is a synthetic example based on a
recommendation to use nonsensical phrase[27]. The tag-rule
column lists one of the grammatical structures that can gen-
erate the passphrase. The number of guesses is an estimate
of the total number of passphrases the tag-rule can gener-
ate. It considers the size of the tag-rule search space and a
fixed number of additional guesses required to mangle the
phrase. The time column estimates the time required to

Char histogram
40 I
0!

#Word
weib03sIy pIop

15 20 25 30 350 2040
#Character

Figure 5: User behavior on long passwords contain-
ing simple phrases. Total number of characters in
the passwords tends to remain the same as the num-
ber of words increases (shaded oval). Users seem to
meet the policy requirement of minimum 16 char-
acters with fewer long words (“compromisedemail”)
or more short words (“thosedamnhackers”).

guess passphrases generated by the tag-rule using a guess-
ing rate of 1 billion guesses per second. This rate is realistic
considering that current state-of-the-art GPU accelerated
machines achieve up to 33 billion comparisons per second
and can be built with less than USD 3000[13]. From the
guessing effort and time estimates, we see that passphrase
strength is not a direct function of the number of words or
characters in the passphrase. The passphrase “Th3r3 can
only b3 #1!” has more words than “Hammered asinine re-
quirements.”; but is one order of magnitude weaker. Simi-
larly, “Hammered asinine requirements.” has more charac-
ters than “Superman is $uper strOng!”, but is one order of
magnitude weaker. Underlying structures and not just the
number of characters or words determine the strength of a
passphrase. Passphrase policies that do not consider this[3]
may unwittingly allow passphrases such as “Th3r3 can only
be #1!” and “My passwOrd is $uper strOng!” that differ in
strength by three orders of magnitude.

6.2 User Behavior and Passphrase Policy

While studying the long password data set[21], we ob-
served that users tend to choose fewer long words or more
short words to generate a password that meets the policy re-
quirement of minimum 16 characters. For example, the pass-
words “compromisedemail” and “thosedamnhackers” contain
16 characters, but two and three words respectively. Fig. 5
plots the word and character statistics for long passwords in
simple category from Table 1. All passwords in the shaded
oval have 19 characters (x-axis) and between two to eight
words (y-axis). Observe similar behavior for passwords with
16, 17, etc. characters. We found some explanation for this
behavior in the field of cognitive psychology. Jahnke and
Nowaczyk say regarding experiments on word-length and
short-term memory[20, Chap. 4], “Strings of short words
(e.g. cup, war) given in tests of immediate memory are
much more likely to be recalled correctly than are equally

long strings of equally familiar long words (e.g. opportunity,
university). Stated alternatively, subjects can remember for
immediate recall about as many words as they can say in 2
s, and obviously they can say more short than long words in
that time.” From Section 6.1, we know that two passwords
of equal length (same number of characters), but different
number of words may vary in strength by orders of magni-
tude. Hence, passphrase policies such as “choose a password
that contains at least 15 characters and at least 4 words with
spaces between the words”[6] may allow weaker passphrases
unless they consider user behavior and effect of structure.

6.3 Passphrase Entropy

To determine size of passphrase search space, subsequently
passphrase security, some evaluations[29] use fixed entropy
estimate of the English language[32]. We explain below,
why this approach may be incorrect. Informally, entropy
measures how much the values emitted by a source can be
compressed. When values repeat more often, compression is
higher and entropy is lower. Since search space of a source
is the set of unique value it emits, we can use entropy to
estimate size of the search space. However, an accurate es-
timate of entropy is necessary to do so. It is incorrect to
use estimation derived from one source (e.g. English lan-
guage) for another (e.g. long passwords) as they can have
different distribution of values. To illustrate this point, in
Fig. 2, we plot the search space estimate using the equation
QLTEX4.26xX1 where 4 is the number of words in the password.
We use fixed entropy estimate of 1.75 bits per character for
printed English from[18], which derived the estimate using
a 3-word gram language model trained on large amounts of
printed English sources and tested on the Brown Corpus.
We use 4.26 average word length statistic from the Brown
Corpus (Fig. 1). We observe from Fig. 2 that the estima-
tion for 3-word phrases closely matches the true number
of unique 3-word phrases in the Brown Corpus. For other
lengths, there is varying degrees of inaccuracy.

7. CONCLUSIONS

Long passwords is a promising user authentication mecha-
nism. However, to achieve the level of security and usability
envisioned with long passwords, we have to understand the
effect of structures present in them. Further, we have to
make policies and enforcement tools cognizant of the effect
of structures. As a first step, we developed some techniques
to achieve these goals. We studied grammatical structures,
but other types of structures such as postal addresses, email
addresses and URLs present within long passwords may have
similar impact on security. More research is necessary to
fully understand the effect of structures on long passwords.

8. REFERENCES

[1] Amazon payphrase. www.amazon.com/payphrase, 2011.

[2] Bitcoin passphrase policy. https:
//en.bitcoin.it/wiki/Securing_your_wallet#Password_Strength,
2012.

[3] Carnegie Mellon University passphrase policy and FAQ. http://www.cmu.

edu/iso/governance/guidelines/password-management.html;http:

//www . cmu. edu/computing/doc/accounts/passwords/faq.html#8,

2012.

Cheap GPUs rendering strong passwords useless.

http://it.slashdot.org/story/11/06/05/2028256/

cheap-gpus-rendering-strong-passwords-useless, 2012.

Hashcat advanced password recovery.

http://hashcat.net/oclhashcat-plus/, 2012.

[4

[5

[6] Indiana University passphrase policy and strength estimation.
http://kb.iu.edu/data/acpu.html#atiu;http:
//protect.iu.edu/cybersecurity/safeonline/passphrases, 2012.

[7] John The Ripper password cracker. http://www.openwall.com/john/,
2012.

[8] Massachusetts Institute of Technology passphrase policy.
http://ist.mit.edu/security/passwords, 2012.

[9] NLTK Web Text Corpus.
http://nltk.googlecode.com/svn/trunk/nltk_data/index.xml,
2012.

[10] Openwall wordlists collection. http://www.openwall.com/wordlists/,
2012.

[11] University of Maryland passphrase policy.
http://www.security.umd.edu/protection/passwords.html, 2012.

[12] University of Minnesota passphrase policy. http:
//www.oit.umn.edu/security/topics/choose-password/index.htm,
2012.

[13] Whitepixel GPU Hash Auditing. http://whitepixel.zorinaq.com/,
2012.

[14] T. Baekdal. Passphrase usability and strength estimation.
http://www.baekdal.com/insights/password-security-usability,
2012.

[15] J. Bonneau. The science of guessing: analyzing an anonymized corpus
of 70 million passwords. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 538-552, 2012.

[16] J. Bonneau and E. Shutova. Linguistic properties of multi-word
passphrases. In Workshop on Usable Security, pages 1-13, 2012.

[17] T. Brants and A. Franz. Web 1T 5-gram Version 1. Linguistic Data
Consortium. Philadelphia, PA, 2006.

[18] P. F. Brown, V. J. D. Pietra, R. L. Mercer, S. A. D. Pietra, and J. C.
Lai. An estimate of an upper bound for the entropy of English. Comput.
Linguist., 18(1):31-40, 1992.

[19] CLAWS. Part-Of-Speech tagger for English.
http://ucrel.lancs.ac.uk/claws/, 2012.

[20] J. C. Jahnke and R. H. Nowaczyk. Cognition. Prentice-Hall, Inc., Upper
Saddle River, New Jersey, USA, 1998.

[21] P. G. Kelley et al. Guess again (and again and again): Measuring
password strength by simulating password-cracking algorithms. In
Proceedings of the IEEE Symposium on Security and Privacy, 2012.

[22] S. Komanduri et al. Of passwords and people: Measuring the effect of
password-composition policies. In Proceedings of the Annual Conference
on Human factors in Computing Systems, pages 2595-2604. ACM, 2011.

[23] H. Kucera and W. N. Francis. Computational analysis of present-day
American English. Brown University Press, Providence, RI, 1967.

[24] C. Kuo, S. Romanosky, and L. F. Cranor. Human selection of mnemonic
phrase-based passwords. In Proceedings of the Symposium on Usable
Privacy and Security, pages 67-78. ACM, 2006.

[25] C. D. Manning and H. Schiitze. Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA, USA, 1999.

[26] A. Narayanan and V. Shmatikov. Fast dictionary attacks on passwords
using time-space tradeoff. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 364—372, 2005.

[27] PGP. FAQ: How do | choose a good password or phrase? http:
//www.unix-ag.uni-k1l.de/"conrad/krypto/passphrase-faq.html,
2012.

[28] J. O. Pliam. On the incomparability of entropy and marginal guesswork
in brute-force attacks. In Proceedings of the International Conference on
Progress in Cryptology, pages 67—79. Springer-Verlag, 2000.

[29] S. N. Porter. A password extension for improved human factors.
Computers & Security, 1(1):54-56, 1982.

[30] A. Rao, B. Jha, and G. Kini. Effect of Grammar on Security of Long
Passwords. Technical Report CMU-ISR-12-113, ISR, Carnegie Mellon
University, 2012.

[31] S. Schechter, C. Herley, and M. Mitzenmacher. Popularity is everything:
A new approach to protecting passwords from statistical-guessing
attacks. In Proceedings of the USENIX conference on Hot topics in
Security, pages 1-8, 2010.

[32] C. E. Shannon. Prediction and entropy of printed English. Bell Systems
Technical Journal, 30:50-64, 1951.

[33] R. Shay et al. Encountering stronger password requirements: User
attitudes and behaviors. In Proceedings of the Symposium on Usable
Privacy and Security, pages 1-20. ACM, 2010.

[34] K. Wang, C. Thrasher, and B.-J. P. Hsu. Web scale NLP: A case study
on url word breaking. In Proceedings of the International Conference on
World Wide Web, pages 357-366. ACM, 2011.

[35] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek. Password
cracking using probabilistic context-free grammars. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 391-405, 2009.

