
10-704: Information Processing and Learning Spring 2015

Lecture 5: January 27
Lecturer: Aarti Singh Scribes: Kyle Soska

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

5.1 Summary of Entropy Estimators

5.1.1 Discrete variables

We have a distribution P supported on a finite alphabet {1, ..., d} with P (X = j) = pj where
d∑
j=1

pj = 1. We

observe independent samples {Xi}ni=1 ∼ P and would like to estimate some functional of P , say the entropy:

H(P) = −
d∑
j=1

pj log2(pj)

For this problem, we discussed two estimators:

• Plugin Estimator

The plugin estimator uses empirical estimates of the frequencies p̂j = 1
n

∑n
i=1 1[Xi = j] to obtain an

estimate of the entropy as follows:

Ĥn = −
d∑
j=1

p̂j log2(p̂j)

• LP Estimator

The LP Estimator works by transforming the samples {Xi}ni=1 into a fingerprint, which is the
vector f = (f1, f2, ...) for which fi is the number of elements in the domain that occurred i times in
the sample, i.e. with empirical frequency i/n. The fingerprint is also known as the “type” of a sample.

The fingerprint serves as an estimate of the histogram of the distribution which is defined as the
mapping hp : (0, 1] → N ∪ {0} for which hp(x) is the number of domain elements that occur with
probability exactly x. More formally, hp(x) = |{α : pα = x}|. The entropy can be computed from the
histogram as follows:

H(x) = −
∑

x:hp(x) 6=0

hp(x)x log2(x)

We can then quantize (0, 1] to a grid Q = {q1, ..., qk} and let hj be the variable associated with hp(qj)
to obtain the approximation:

5-1

5-2 Lecture 5: January 27

H̄(x) = −
∑
qjεQ

hjqj log2(qj)

The final estimate Ĥn(x) is obtained using a linear program that matches the hjs to the observed
fingerprint f . For details, see previous lecture. The key take away is that using fingerprint (or type)
instead of empirical frequencies yields an estimator for entropy with optimal sample complexity.

5.1.2 Continuous variables

Here we assume the distribution P is continuous with density p = dP/dµ. As before we obtain independent
samples {Xi}ni=1 ∼ P . We would like to estimate the differential entropy:

H(p) =

∫
p(x) log p(x)dµ(x)

5.1.2.1 Plugin Estimator

There are three different ways to obtain a plug-in estimator using a density estimate p̂(x):

1. Integral Estimate: Ĥ(x) = −
∫
p̂(x) log p̂(x)dx

2. Re-substitution Estimate: Ĥ(x) = − 1
n

∑n
i=1 log p̂(Xi) where p̂ is obtained using the samples

{X1, ..., Xn}.

3. Splitting Data Estimate: Ĥ(x) = − 1
m

∑m
i=1 log p̂(Xi) where p̂ is obtained using the samples

{Xm+1, ..., Xn}. A cross-validation estimate can be defined similarly, e.g. the leave-one-out estimate
is given as Ĥ(x) = − 1

n

∑n
i=1 log p̂i(Xi) where p̂i is obtained using all samples except Xi.

The key difference between the Re-substitution estimate and the Splitting Data Estimate is that the splitting
estimate sums over different samples than the ones used for estimating the density p̂.

5.1.2.2 Density estimators

The plug-in estimators defined above can be obtained by using any density estimator. Some popular examples
are the following:

1. Kernel Density Estimator (KDE)

Kernel density estimation takes the approach of estimating density at a given point using a kernel K
with bandwidth parameter h to form a weighted average using other points from the sample. Intuitively,
the points that are closer to the point whose density is being estimated will have a higher contribution
to the density than points that are further away. The selection of the kernel and the bandwidth
parameter adjust the characteristics of this relationship.

p̂h =
1

nhd

n∑
i=1

K

(
||x− xi||

h

)

Lecture 5: January 27 5-3

2. KNN Estimator

KNN density estimation at a point x follows by obtaining n samples from a distribution and computing
the volume V olKNN needed to encapsulate k nearest points to x and then taking the ratio:

p̂(x) =
k

nV olKNN (x)
≡ k

n(distKNN (x))d

5.1.2.3 Von Mises Expansion

The Von Mises expansion (essentially a functional Taylor’s expansion) of second-order for the entropy is as
follows:

H(p) = H(q) +

∫
(log(q(x) + 1)(q(x)− p(x))dx+O(||q − p||22) = −

∫
p(x) log(q(x)) +O(||q − p||22)

This allows us to analyze the error of a data-splitting entropy estimate as follows (let q = p̂):

Ĥ(p)−H(p) = − 1

n

n∑
i=1

log(p̂(Xi)) +

∫
p(x) log(p̂(x)) +O(||p̂− p||22)

The first two terms on the right hand side can be bounded using standard concentration inequalities that
control deviation of empirical mean from true mean, and the third term is simply the mean square error
of the density estimate which is typically known e.g. for kernel or k-NN density estimate. We will discuss
the mean square of a kernel density estimator next, and the resulting error guarantee on the corresponding
integral estimate of the entropy.

5.2 Kernel Density Estimation Mean Square Error

We will consider Hölder-β smooth density functions.

Holder Smoothness: a function f is β-Holder if ∀r ≤ bβc, |f (r)(x+ µ)− f (r)(x)| ≤ C|µ|β−r

The mean square error of the Kernel Density Estimator decomposes into a Bias and a Variance term:
E[||p̂n − p||2] = Bias2 + V ariance. Here the Bias2 scales as O(h2β) and Variance scales as O(1

nhd
). .

The bandwidth parameter h may be selected to balance the bias-variance tradeoff. One strategy would be
to set the derivative of the sum equal to 0 and solve:

∂

∂h

(
h2β +

1

nhd

)
= 2βh2β−1 − d

nhd+1
= 0 ⇒ h � n

−1
2β+d

assuming β, d are constants. The resulting mean square error is n
−2β
2β+d . Thus, Kernel density has poor

performance in higher dimensions (as d becomes large) and is often impractical for dimensions higher than
5. Smoother function (β higher) have better convergence, but for any finite β, the density estimator cannot
achieve parametric rate of mean square error convergence (which is n−1).

5-4 Lecture 5: January 27

5.3 Integral Entropy Estimate Error

The entropy estimation error can be decomposed as:

|Ĥ(p)−H(p)| ≤ |EĤ(p)−H(p)|+ |Ĥ(p)− EĤ(p)|

The first term can be regarded as Bias and the second as standard deviation for entropy estimation.

If p is Hölder-β smooth, then it can be shown that for the integral entropy estimator, we have:

Bias � hβ +
1

nhd
St.dev :

1√
n

We can pick h to optimize the bias-st.dev tradeoff for entropy estimation:

d

dh

(
hβ +

1

nhd

)
→ βhβ−1 − d

nhd+1
= 0 h � n

−1
β+d

With this setting (note its different than the optimal bandwidth for kernel density estimation), we have:

Bias � n
−β
β+d , st.dev. � 1√

n
, and hence |Ĥ −H| � max{n

−β
β+d , n−1/2} � 1√

n
if β ≥ d

Thus, for smooth functions with β ≥ d, the integral entropy estimator achieves parametric rate (which is
n−1/2).

The Von-Mises estimator (data-splitting estimator with Von-Mises expansion error analysis) can achieve
parametric rate when β ≥ d

2 , and hence outperforms the integral entropy estimator.

It can be shown that the optimal value is β ≥ d
4 to achieve parametric rate and this can be achieved by

using higher-order expansion in the Von-Mises expansion.

5.4 Estimating Mutual Information

Estimating quantities such as mutual information can be reduced to the problem of estimating entropy or
density by expressing mutual information in terms of these quantities:

Î(X,Y) = Ĥ(X) + Ĥ(Y)− Ĥ(X,Y)

Î(X,Y) = D(p̂(x, y)||p̂(x)p̂(y)) =

∫
p̂(x, y) log

p̂(x, y)

p̂(x)p̂(y)
dxdy

5.5 Application to machine learning: Estimating Structure of Graph-
ical Models

The joint distribution of a collection of random variables can be expressed using chain rule as:

p(X1, ..., Xp) =

p∏
i=1

p(Xi|Xi−1...X1)

Lecture 5: January 27 5-5

.

It may be the case that the distribution of random variables admits a more restricted form which can be
characterized by a graphical structure in which case we define pa(Xi) to be the set of parents of Xi and the
joint probability can be expressed as:

p(X1, ..., Xp) =

p∏
i=1

p(Xi|pa(Xi))

Graphical models capture the relationship of conditional independence among variables. For a variable
Xi, Xi ⊥ non− descendants|pa(Xi). Other conditional independence relations represented by the graphical
model can be read off using d-separation. Tests for the conditional independence of random variables becomes
essential to the estimation of graphical models. A test for conditional independence can be based on mutual
information since the latter is zero for independent variables.

We may observe the p random variables n times [X
(i)
1 , ..., X

(i)
p]ni=1 and want to estimate the structure of the

underlying graphical model. Without making any simplifying assumptions this problem is NP-Hard as we
need to test independence relations between all possible pairs of subsets of nodes conditioned on another
subset of nodes. However, the problem is feasible for specific graphs such as trees.

Tree Assumption: each node has only one parent, that is ∀Xi, |pa(Xi)| = 1.

Under the tree assumption, the factorization of the joint distribution can be written as:

p(X1, ..., Xp) =

p∏
i=1

p(Xi, pa(Xi))

p(pa(Xi))
=

p∏
i=1

p(Xi)
∏

(i,j)εE

p(Xi, Xj)

p(Xi)p(Xj)

where E be the set of edges belonging to the graph. This follows since each node appears as many times
in the second product term as its degree, but is a parent only degree-1 times (hence the need for the first
product term).

We want to maximize the likelihood of the data (or equivalently minimize the negative log likelihood) over
the edge set.

max
E

n∏
i=1

p
(
X

(i)
1 , ..., X(i)

p

)
≡ min

E

n∑
i=1

[
log

1

p(X
(i)
1 , ..., X

(i)
p)

]

Lets look at the edge set which minimizes expected negative log likelihood. Using the factorized form of the
distribution, the problem is equivalent to:

min
E

E

 p∑
i=1

log

(
1

p(Xi)

)
−
∑
i,jεE

log

(
p(Xi, Xj)

p(Xi)p(Xj)

)

= min
E

n∑
i=1

H(Xi)−
∑

(i,j)εE

I(Xi, Xj)

This is equivalent to finding edge set that maximizes mutual information of pairs maxE
∑

(i,j)εE I(Xi, Xj)
which is the maximum weight spanning tree problem where the weights correspond to pairwise mutual
information. The maximum weight spanning tree can be found very efficiently using Chow-Liu Algorithm

5-6 Lecture 5: January 27

(also known as Kruskal’s algorithm). The algorithm consists of picking pairs with max mutual information
greedily (largest to smallest) and joining them provided no loop is formed.

If the true distribution does not correspond to a tree graphical model, it can be shown that this method
(run with mutual information computed using bi-variate and uni-variate marginals of the distrribution) still
finds the best tree approximation to any distribution.

Since the true mutual information is unknown, an estimate (discussed above) will need to be used. Further
reading on estimating trees and sample complexity guarantees can be found at [CL68], [LH11].

References

[CL68] Chow, C. and Liu, C., “Approximating discrete probability distributions with dependence
trees,” Information Theory, IEEE Transactions on, 1968, pp. 462-467.

[LH11] Liu, H., Xu, M., Gu, H., Gupta, A., Lafferty, J., Wasserman, L., “Forest density
estimation,” The Journal of Machine Learning Research 12, 2011, pp. 907-951.

