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In this lecture, we will look at information-theoretic tools to bound probability of large deviations and
hypothesis testing error via Sanov’s Theorem. Before we do that, we first talk about the method of types.

24.1 Method of types

We used the idea of a typical set earlier when proving source and channel coding theorems. Now we look at
a more powerful approach called method of types that lets us associate a type to each sequence, and then
by evaluating how many sequences have a particular type, we can bound the probability of events. We start
with a few definitions.

Type: The type Pxn (or empirical probability distribution) of a sequence x1, x2, ..., xn is the relative

proportion of occurrences of each symbol a ∈ X (i.e. Pxn(a) = N(a,xn)
n for all a ∈ X, where N(a, xn) is the

number of times the symbol a occurs in the sequence xn ∈ Xn). The type of a sequence xn is denoted as
Pxn and it is a probability mass function on X .

Set of types: Let Pn denote the set of types with denominator n. For example, if X={0, 1}, the set of
possible types with denominator n is

Pn = {(P (0), P (1)) : (
0

n
,
n

n
), (

1

n
,
n− 1

n
), ..., (

n

n
,

0

n
)}

Type class: If P ∈ Pn, the set of sequences of length n and type P is called the type class of P, denoted as
T(P):

T (P ) = {xn ∈ Xn : Pxn = P}.

The idea of types will be used to bound probability of large deviations, as we discuss next.

24.2 Large Deviation Theory

The subject of large deviation theory can be illustrated by one example as follows. The event that 1
n

∑
Xi

is near 1
3 if X1, X2, ..., Xn are drawn i.i.d Bernoulli( 1

3 ) is a small deviation. But the probability that 1
n

∑
Xi

is greater than 3
4 is a large deviation. We will show that the large deviation probability is exponentially

small. Note that 1
n

∑
Xi = 3

4 is equivalent to Pxn = ( 1
4 ,

3
4 ). Recall that the probability of a sequence

{Xi}ni=1 depends on its type Pxn . Amongst sequences with 1
n

∑
Xi ≥ 3

4 , the closest type to the true
distribution is (1

4 ,
3
4 ), and we will show that the probability of the large deviation will turn out to be around

2−nD(( 1
4 ),(

3
4 )) || ((

2
3 ,

1
3 ))).

Essentially, large deviation theory is same as concentration inequalities you might have seen in other courses.
The key tool for large deviation is Sanov’s theorem which applies only to discrete random variables, but it
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can bound probability of general large deviation events, while concentration inequalities are often focused
on deviations from true mean.

Theorem 24.1 (Sanov theorem) Let X1, X2, ..., Xn be i.i.d Q(x) distribution. Let E ⊆ P be a set of
probability distributions. Then

Qn(E) = Qn(E ∩ Pn) ≤ (n+ 1)|χ|2−nD(P∗||Q)

where
P ∗ = arg min

P∈E
D(P ||Q)

is the distribution in E that is closest to Q in relative entropy, i.e. the Information-projection of Q onto E.
If in addition, the set E is the closure of its interior, then

1

n
logQn(E)→ −D(P ∗||Q).

Remark 1: The theorem says that the probability of set E under a distribution Q is the same as the
probability of the type P ∗ in E that is closest to Q (in terms of KL distance) up to first order in exponent.

Remark 2: The polynomial term in the bound can be dropped if E is a convex set of distributions.

The proof will be discussed later and will use the method of types.

Lets consider two examples of using the Sanov’s theorem.
Example 1: Suppose that we wish to find Pr{ 1n

∑n
i=1 gj(Xi) ≥ αj , j = 1, 2, ..., k}.. Since 1

n

∑n
i=1 gj(Xi) =∑

a∈X Pxn(a)gj(a), the set E is defined as

E = {P :
∑
a

P (a)gj(a) ≥ αj , j = 1, 2, ..., k}

To find the closest distribution in E to Q, we need to minimize D(P ||Q) subject to the constraints. This
is precisely how we computed information projection earlier. Using Lagrange multipliers, we construct the
functional

J(P ) =
∑
x

P (x) log
P (x)

Q(x)
+
∑
j

λj
∑
x

P (x)gj(x) + v
∑
x

P (x)

We can differentiate and setting the derivative equal to zero, we calculate the closest distribution to Q to be
of the form

P ∗(x) =
Q(x)e

∑
j λjgj(x)∑

a∈χQ(a)e
∑
j λjgj(a)

where the constants λj are chosen to satisfy the constraints. Note that if Q is uniform, P ∗ is the maximum
entropy distribution subject to the given constraints. Thus, Qn(E) asymptotically follows the distribution
as 2−nD(P∗||Q) by Sanov’s theorem.

For the Bernoulli example mentioned above, there is only one g and the constraint set corresponds to
g(a) = a. Since Q ∼ Bernoulli(2/3, 1/3), we have Q(x) = (2/3)1−x(1/3)x = (2/3) ∗ (1/2)x

P ∗(x) =
2
3

(
1
2

)x
eλx∑

a∈{0,1}
2
3

(
1
2

)a
eλa

=

(
1
2

)x
eλx

1 +
(
1
2

)
eλ

For P ∗ to satisfy the constraint, we must have λ such that
∑
a aP

∗(a) = 3/4, or equivalently P ∗(1) = 3/4.
This implies that eλ = 6. This yields

P ∗(x) =
3x

4
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i.e. P ∗ = (1/4, 3/4), which is precisely the distribution which meets the observation constraint 1
nXi ≥ 3/4

and is closest to the true distribution. Thus, the probability that 1
nXi ≥ 3/4 when Xi ∼ Q = Bernoulli(1/3),

is asymptotically 2−nD((1/4,3/4) || (2/3,1/3)) by Sanov’s theorem.

Example 2 (Independence testing): Testing if two variables are independent or not is an important
problem that comes up in many applications of machine learning as well as communications. In machine
learning, independence tests are used for feature selection, i.e. deciding whether or not to discard a feature
X based on if the label Y is dependent on it or not. (Conditional) independence tests are used for in
causal inference and learning graphical models. Also recall that when proving channel coding theorem, we
were testing whether a received codeword yn is jointly typical with a candidate sent codeword xn. The
probability that two independent sequences (xn, yn) (xn being a codeword other than what was sent when
yn was received) actually appear as dependent was bounded asymptotically as 2−nI(X,Y ). This is essentially
the independence testing problem as described below and Sanov’s theorem allows us to recover the same
result as follows.

Let Q(x, y) be a given joint distribution and let Q0(x, y) = Q(x)Q(y) be the associated product distribution
formed from the marginals of Q. We wish to know the probability that a sample drawn according to Q0 will
appear to be jointly distributed according to Q. Accordingly, let (xi, yi) be i.i.d and Q0(x, y) = Q(x)Q(y).
We define (xn, yn) to be jointly typical with respect to a joint distribution Q(x, y) if the sample entropies
are close to their true values as follows:

| − 1

n
logQ(xn)−H(X)| ≤ ε

| − 1

n
logQ(yn)−H(Y )| ≤ ε

| − 1

n
logQ(xn, yn))−H(X,Y )| ≤ ε

Thus, (xn, yn) are jointly typical with respect to Q(x, y) if the type Pxn,yn ∈ E ⊆ Pn(X,Y ), where

E = {P (x, y) : | −
∑
x,y

P (x, y) logQ(x)−H(X)| ≤ ε,

| −
∑
x,y

P (x, y) logQ(y)−H(Y )| ≤ ε,

| −
∑
x,y

P (x, y) logQ(x, y)−H(X,Y )| ≤ ε}

Using Sanov theorem, the probability is

Qn0 (E) = 2−nD(P∗||Q0)

where P ∗ is the distribution satisfying the constraints that is closest to Q0 in relative entropy. In this case,
as ε→ 0, we will verify that P ∗ is the joint distribution Q, and Q0 is the product distribution formed from
the marginals of Q. So that the probability is 2−nD(Q(x,y)||Q(x)Q(y)) = 2−nI(X;Y ).

To find P ∗ = arg minP∈E D(P ||Q0)we use Lagrange multipliers and construct the Lagrangian function (for
ε = 0)

D(P ||Q0) + λ1
∑
x,y

P (x, y) logQ(x) + λ2
∑
x,y

P (x, y) logQ(y) + λ3
∑
x,y

P (x, y) logQ(x, y) + λ4
∑
x,y

P (x, y)

Taking derivative wrt P (x, y) and setting it equal to zero, we can calculate the closest distribution as

P ∗ = Q0e
λ1 logQ(x)+λ2 logQ(y)+λ3 logQ(x,y)+λ4
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where λ1, λ2, λ3, λ4 are chosen to satisfy the constraints:∑
x,y

P ∗(x, y) logQ(x) = −H(X) =
∑
x

Q(x) logQ(x)

∑
x,y

P ∗(x, y) logQ(y) = −H(Y ) =
∑
y

Q(y) logQ(y)

∑
x,y

P ∗(x, y) logQ(x, y) = −H(X,Y ) =
∑
x,y

Q(x, y) logQ(x, y)

It is easy to check that all constraints are satisfied if P ∗ = Q(x, y).

24.3 Hypothesis Testing

Lets next apply the Sanov’s theorem to bound the error probability in hypothesis testing.

One of the standard problems in statistics is to decide between two alternative explanations for the data
observed. For example, in medical testing, one may wish to test whether or not a new drug is effective.
Similarly, a sequence of coin tosses may reveal whether or not the coin is biased. These problems are
examples of the general hypothesis-testing problem. In the simplest case, we have to decide between two
i.i.d. distributions. For example, the transmitter sends the information bits by bits in communication
systems. There are two possible cases for each transmission: one is that bit 0 is sent (noted as event H0)
and the other is that bit 1 is sent (noted as event H1). In the receiver side, the bit y is be received as either
0 or 1. Based on the y bit received, we can make a hypothesis whether the event H0 happens (bit 0 was
sent at the transmitter) or the event H1 happens (i.e. bit 1 was sent at the transmitter). Of course, we may
make mis-judgement, such as we decode that bit 0 was sent but actually bit 1 was sent. We need to make
the probability of error in hypothesis testing as low as possible.

To be general, let X1, X2, ..., Xn be
i.i.d∼ Q(x). We can consider two hypothesis:

• H0: Q = P0. (null hypothesis)

• H1: Q = P1. (alternative hypothesis)

Consider the general decision function g(x1, x2, ..., xn), where xi ∈ {0, 1}. When g(x1, x2, ..., xn) = 0 means
that H0 is accepted and g(x1, x2, ..., xn) = 1 means that H1 is accepted. Since the function takes on only
two values, the test can be specified by specifying the set A over which g(x1, x2, ..., xn) is 0. The complement
of this set is the set where g(x1, x2, ..., xn) has the value 1. The set A knwon as the decision region can be
expressed as

A = {xn : g(xn) = 0}.

There are two probabilities of error as follows:

1. Type I ( False Alarm ):

αn = Pr(g(x1, x2, ..., xn) = 1|event H0 is true)

2. Type II (Miss):

βn = Pr(g(x1, x2, ..., xn) = 0|event H1 is true)
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In general, we wish to minimize the probabilities of both false alarm and miss. But there is a tradeoff. Thus,
we minimize one of the probabilities of error subject to a constraint on the other probability of error. The
best achievable error component in the probability of error for this problem is given by the Chernoff-Stein
lemma. There are two types of approaches to hypothesis testing based on the kind of error control needed:

1. Neyman-Pearson approach: To minimize the probability of miss given an acceptable probability of
false alarm. It can be expressed as ming β (such that α ≤ ε).

2. Bayesian approach : The goal is to minimize the expected probability of both false alarm and miss,
where we assume a prior distribution on the two hypotheses P (H0) and P (H1). It can be expressed
as ming βnP (H1) + αnP (H0).

The following theorem (stated without proof) characterizes the optimal test under Neyman-Pearson setting,
which is essentially the likelihood ratio test.

Theorem 24.2 (Neyman-Pearson lemma) Let X1, X2, ..., Xn be drawn i.i.d according to probability mass
function Q. Consider the decision problem corresponding to hypothesis H0 : Q = P0 vs H1 : Q = P1. For T
≥ 0, define a region

An(T ) = {xn :
P0(x1, x2, ..., xn)

P1(x1, x2, ..., xn)
≥ T}

Let

α∗ = P0(Acn(T )) (False Alarm)

β∗ = P1(An(T )) (Miss)

be the corresponding probabilities of error corresponding to decision region An. Let Bn be any other decision
region with associated probabilities of α and β. Then, if α < α∗ then β > β∗, and if α = α∗ then β >= β∗.

Note: In the Bayesian setting, we can similarly construct the test with the optimal Bayesian error:

An = {xn :
P0(xn)P (H0)

P1(xn)P (H1)
≥ 1}

24.3.1 Information-theoretic interpretation

Lets re-write the log likelihood ratio test in terms of information theoretic quantities.

Log likelihood ratio = log
P0(xn)

P1(xn)
=

n∑
i=1

log
P0(xi)

P1(xi)

=
∑
a∈X

nPxn(a) log
P0(a)

P1(a)
=
∑
a∈X

nPxn(a) log
Pxn(a)

P1(a)
· P0(a)

Pxn(a)

= n[D(Pxn ||P1)−D(Pxn ||P0)]

Thus, the decision region corresponding to the likelihood ratio test can be written as:

A(T ) =

{
xn : D(Pxn ||P1)−D(Pxn ||P0) >

1

n
log T

}
i.e. it is the region of the probability simplex bounded by the set of types for which the difference of the KL
divergence to the distributions under the two hypotheses is a constant, i.e. the boundary is parallel to the
perpendicular bisector of the line connecting P0 and P1. See Figure 24.1.
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Figure 24.1: The decision region corresponding to a likelihood ratio test is demarcated by boundary that is
parallel to the perpendicular bisector of the line joining the distributions under the two hypotheses P0 and
P1.

To study how the probability of error decays as a function of n in hypothesis testing, we will use large
deviation theory (what is the probability that an empirical observation deviates from the true value).

24.3.2 Error-exponents

Using Sanov’s theorem, we get that asymptotically the probability of false alarm (type I error)

α = P0(Ac) ≈ 2−nD(P∗0 ||P0)

where P ∗0 = arg minP∈Ac D(P ||P0) and

β = P1(A) ≈ 2−nD(P∗1 ||P1)

where P ∗1 = arg minP∈AD(P ||P1).

Let us evaluate the form of P ∗1 (and P ∗0 ). Notice from Figure 24.1 that since the decision regions are
delineated by a line parallel to the perpendicular bisector, P ∗0 (the projection of P0 onto Ac) is same as P ∗1
(the projection of P1 onto A). So we will derive the form of one of them, say P ∗1 (you can check following
the same arguments that the form of P ∗0 is indeed the same).

To evaluate P ∗1 , consider the following constrained optimization:

min
P

D(P ||P1) s.t. P ∈ A ≡ D(P ||P1)−D(P ||P0) >
1

n
log T

Forming the Lagrangian where λ > 0 and ν are Lagrange multipliers (notice that since we require λ > 0, we
consider the constraint written with a < instead of >):

L(P, λ, ν) = D(P ||P1) + λ(D(P ||P0)−D(P ||P1)) + ν
∑

P

=
∑
xn

P (xn) log
P (xn)

P1(xn)
+ λ

∑
xn

P (xn) log
P1(xn)

P0(xn)
+ ν

∑
xn

P (xn)

Taking the derivative with respect to P (xn):

log
P (xn)

P1(xn)
+ 1 + λ log

P1(xn)

P0(xn)
+ ν

∣∣∣∣
P=P∗1

= 0
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and setting it equal to 0 yields P ∗1 :

P ∗1 (xn) = e−ν−1Pλ0 (xn)P 1−λ
1 (xn) =

Pλ0 (xn)P 1−λ
1 (xn)∑

an∈Xn P
λ
0 (an)P 1−λ

1 (an)

where in the last step we substituted for ν by solving for the constraint
∑
xn P

∗
1 (xn) = 1. In the last

expression λ should be chosen to satisfy the constraint D(P ∗1 ||P1)−D(P ∗1 ||P0) = 1
n log T .

From the argument given above, P ∗1 = P ∗0 (= P ∗λ say) and the error exponents:

α ≈ 2−nD(P∗||P0)

and
β ≈ 2−nD(P∗||P1)

where

P ∗λ =
Pλ0 (xn)P 1−λ

1 (xn)∑
an∈Xn P

λ
0 (an)P 1−λ

1 (an)
.

Different choice of threshold T correspond to different λ. Observe that when λ → 1, P ∗λ → P0 and when
λ→ 0, P ∗λ → P1, thus giving us the desired tradeoff between false alarm α and miss β probabilities.

If we take a Bayesian approach, the overall probability of error P
(n)
e = αPr(H0) + βPr(H1) and define the

best achievable exponent in Bayesian probability of error,

D∗ = lim
n→∞

min
A⊆Xn

− 1

n
P (n)
e .

Using the above error exponents for false alarm (type I) and miss (type II) probabilities of error, we have:

Theorem 24.3 (Chernoff Theorem) The best achievable exponent in Bayesian probability of error

D∗ = D(P ∗λ∗ ||P0) = D(P ∗λ∗ ||P1)

where λ∗ is chosen so that D(P ∗λ∗ ||P0) = D(P ∗λ∗ ||P1). The D∗ is commonly known as Chernoff informa-
tion.

Proof: Consider Pr(H0), P r(H1) to be constants not equal to 0 or 1.

P (n)
e ≈ Pr(H0)2−nD(P∗λ ||P0) + Pr(H1)2−nD(P∗λ ||P1) ≈ 2−nmin(D(P∗λ ||P0),D(P∗λ ||P1))

The right hand side is minimized if λ is such that D(P ∗λ ||P0) = D(P ∗λ ||P1).

Notice that D∗ doesn’t depend on prior probabilities (unless one of the prior probabilities is vanishingly
small), and hence the effect of the prior is washed out for large sample sizes.

If we take a Neyman-Pearson approach instead, and require the probability of false alarm to be fixed (or
converging to 0 arbitrarily slowly), what is the best error exponent for the probability of miss?

Theorem 24.4 (Chernoff-Stein’s Lemma) Assume D(P0||P1) <∞. For 0 < ε < 1/2, define

βεn = min
A⊆Xn,α<ε

β

Then

lim
ε→0

lim
n→∞

1

n
log βεn = −D(P0||P1).

Inuitively, if we allow α to be fixed, then P ∗λ = P0 (exponent does not decay) and hence β ≈ 2−nD(P0||P1),
i.e. we can achieve a faster error exponent on one type of error probability if we allow the other type of error
probability to be fixed or decay arbitrarily slowly. For a rigorous proof, see Thomas-Cover Section 11.8.
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24.4 Some results using method of types

We establish some results using the method of types that will be useful for proving Sanov’s theorem and
also provide insights into the power of method of types.

The first results just bounds the cardinality of set of types.

Theorem 24.5
|Pn| ≤ (n+ 1)|X |

Proof: There are | X | components in the vector that specifies Pxn . The numerator in each component can
take on only n+1 values. So there are at most (n+1)|X | choices for the type vector. Of course, these choices
are not independent, but this is sufficient good upper bound.

The second result tells us that the probability of a sequence depends only on its type.

Theorem 24.6 If xn = (x1, x2, ..., xn) are drawn i.i.d according to Q(x), the probability of xn depends only
on its type and is given by

Qn(xn) = 2−n(H(Pxn )+D(Pxn ||Q))

Proof:

Qn(xn) =

n∏
i=1

Q(xi) =
∏
a∈χ

Q(a)N(a,xn)

=
∏
a∈χ

Q(a)nPxn (a) =
∏
a∈χ

2nPxn (a) logQ(a)

=
∏
a∈χ

2n(Pxn (a) logQ(a)−Pxn (a) logPxn (a)+Pxn (a) logPxn (a))

= 2n
∑
a∈χ(−Pxn (a) log

Pxn (a)

Q(a)
)+Pxn (a) logPxn (a))

= 2−n(D(Pxn ||Q)+H(Pxn ))

Based on the above theorem, we can easily get the following results. If xn is in the type class of Q, that is
xn ∈ T (Q) then

Qn(xn) = 2−nH(Q).

The third result bounds the number of sequences of a given type.

Theorem 24.7 (Size of a type class T(P)) For any type P ∈ Pn,

1

(n+ 1)|χ|
2nH(P ) ≤ |T (P )| ≤ 2nH(P )

This theorem gives an estimate of the size of a type class T(P).

The upper bound follows by considering Pn(T (P )) ≤ 1 and lower bounding this by the size of the type class
and lower bound on the probability of sequences in the type class. The lower bound is a bit more involved,
see Cover-Thomas proof of Thm 11.1.3.

The final result characterizes the probability of all sequences of a given type.
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Theorem 24.8 (Probability of type class) For any P ∈ Pn and any distribution Q, the probability of the
type class T(P) under Qn is 2−nD(P ||Q) for first order in the exponent. More precisely,

1

(n+ 1)|χ|
2−nD(P ||Q) ≤ Qn(T (P )) ≤ 2−nD(P ||Q)

Proof:

Qn(T (P )) =
∑

xn∈T (P )

Qn(xn)

=
∑

xn∈T (P )

2−n(D(P ||Q)+H(P ))

= |T (P )|2−n(D(P ||Q)+H(P ))

Using the bounds on |T (P )| derived in theorem 21.4, we have the following results

1

(n+ 1)|χ|
2−nD(P ||Q) ≤ Qn(T (P )) ≤ 2−nD(P ||Q)

Equipped with these tools, we can now prove Sanov’s theorem.

24.5 Proof of Sanov’s Theorem

Recall that the type class of P is the set of all sequences with type P , i.e. T (P ) = {xn : Pxn = P} and the
probability of a type class T (P ) under Q, Qn(T (P )) ≤ 2−nD(P ||Q) and Qn(T (P )) ≥ 1

(n+1)|X|
2−nD(Pn||Q).

We use these results to establish Sanov’s theorem.

Upper bound:

Qn(E) =
∑

P∈E∩Pn

Qn(T (P )) ≤
∑

P∈E∩Pn

2−nD(P ||Q) ≤
∑

P∈E∩Pn

max
P∈E∩Pn

2−nD(P ||Q)

≤
∑

P∈E∩Pn

2−nminP∈E D(P ||Q) ≤ (n+ 1)|X | 2−nD(P∗||Q)

The last step follows since the total number of types |Pn| ≤ (n+ 1)|X |. This also implies that

lim sup
1

n
logQn(E)→ −D(P ∗||Q)

Lower Bound:

If E is the closure of its interior, then it implies that E is non-empty. Also observe that ∪nPn, the set of all
types for all n, is dense in all distributions. These two facts imply that E ∩ Pn is also non-empty for large
enough n and that we can find a type Pn ∈ E ∩ Pn s.t. D(Pn||Q)→ D(P ∗||Q). Now

Qn(E) ≥ Qn(T (Pn)) ≥ 1

(n+ 1)|X |
2−nD(Pn||Q)

This implies that

lim inf
1

n
logQn(E)→ −D(P ∗||Q)

which completes the proof.


