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20.1 Review

20.1.1 Minimax Risk

The minimax risk for class Θ and loss ` is

R̂(Θ) = inf
T

sup
θ∈Θ

Ex∼Pθ [` (T (x), θ)] ,

where T is any estimator. The upper bound of the minimax risk is given by designing algorithm and the
lower bound of the minimax risk is given by information theoretical techniques.

Testing problems focus on specific loss function ` (T (x), θ) = 1{T (x) 6= θ}, so, the minimax risk is

R̂n(Θ) = inf
T

sup
θ∈Θ

Px∼θ [T (x) 6= θ] .

In the previous lecture, we saw that if there are two parameters θ0 and θ1, then the minimax task is lower
bounded by

R̂n({θ0, θ1})
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where (a) follows from Neyman-Pearson lemma. We saw lower bounds for a simple normal mean testing
problem.

20.1.2 Neyman-Pearson Lemma

For simple vs. simple tests, the optimal statistics is the likelihood ratio test

Λ(x) =
P0(x)

P1(x)
, T (x) = 1{Λ(x) ≤ x},

and

1

2
P0[T (x) 6= 0] +

1

2
P1[T (x) 6= 1] =

1

2
− 1

2
‖P0 − P1‖TV .

There are two important ways to use the Neyman-Pearson lemma, both of these are sometimes called
Le Cam’s method.
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1. We can always throw away parameters in the supremum and lower bound the risk:

inf
T

sup
Θ

Pθ [·] ≥ inf
T

sup
Θ′⊆Θ

Pθ [·] .

Any problem with 1{·} loss can be lower bounded by just choosing two parameters θ0, θ1 ∈ Θ and
computing their TV or KL.

2. We can also separate the parameter space into two regions and mix over these sets.

inf
T

sup
Θ

Pθ [T (x) 6= θ] ≥ inf
T

sup
j∈{0,1}

sup
θ∈Θj

Pθ [T (x) 6= j]

≥ inf
T
{1

2
Eθ∼π0,x∼Pθ [1{T (x) 6= 0}] +

1

2
Eθ∼π1,x∼Pθ [1{T (x) 6= 1}]}

≥ 1

2
− 1

2
‖Pπ0

− Pπ1
‖TV ,

where Pπ0(A) = Eθ∼π0 [Pθ(A)], π0 is a distribution on Θ0, and π1 is a distribution on Θ1.

This is important for some problems. By mixing you can make the distributions much closer together
to prove stronger lower bounds. But it is often challenging to compute the divergence to mixtures.

20.2 Information Theoretic Connections and Fano’s Method

One way to think about Le Cam’s method is as a channel decoding problem. Given a channel Θ → X, we
send Θ ∈ {0, 1}, and you see the samples X ∼ Pθ. If P0 is close to P1, then you will have a high decoding
error, because when P0 close to P , H(θ|X) is big. Earlier in the class we saw another result this form, which
is Fanno’s lemma.

Consider a Markov chain Θ→ X → T . Let Pe = P[T 6= Θ], for any test/decoder T:

h(Pe) + Pe log(|Θ| − 1) ≥ H(Θ|X),

or,

Pe ≥ H(Θ|X)− log 2

log(|Θ| − 1)
,

where Pe = Pθ∼unif,x∼Pθ [T (x) 6= θ]. Using the identities from earlier in the course, there are many equivalent
ways to state this inequality:

inf
T

sup
Θ
Pe ≥ 1− I(Θ;X) + log 2

log |Θ|
= 1− Eθ∼π[KL(Pθ||Pπ)]

log |Θ|
.

This is the global Fano’s method.

We can weaken the mixture representation of KL to obtain the local Fano method,

I(Θ;X) =

∫
π(θ)Pθ(X) log

(
π(θ)Pθ(X)

π(θ)
∫
π(θ)Pθ(X)

)
= Eθ∼π [KL(Pθ||Pπ)] ≤ Eθ,θ′∼π [KL(Pθ||Pθ′)] .

If we have M hypothesis θ1, · · · , θM , then we obtain

inf
T

sup
j∈[M ]

Pθj [T (x) 6= j] ≥ inf
T

1

M

M∑
j=1

Pθj [T (x) 6= j]

≥ 1−
1
M2

∑
i,j KL(Pθi ||Pθj ) + log 2

logM
.
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Example: testing for nonzero in a 1-sparse vector in Rd, k � d.

Hv : xn1 ∼ N (µv, 1), (20.1)

where v ∈ {0, 1}d, with only 1 nonzero component. There are d hypothesis and each one has KL(Pni ||Pnj ) =

2nµ2. The local Fano method then gives

Rn(Θ) ≥ 1− 2nµ2 + log 2

log d
,

which is bounded away from zero if

µ ≤
√

log d

n
.

Note that this rate is achieved for this problem by the test that takes the largest coordinate of X̄.

T (Xn) = arg max
j
X̄j .

By Gaussian tail bound and union bound, we know that

P[∀j, |X̄j − µj | ≥ ε] ≤ 2d exp{−2nε2},

or, with probability ≥ 1− ε:

∀j, |X̄j − µj | ≥
√

log(2d/ε)

2n
.

The estimated coordinate ĵ agrees with the true one j? if:

X̄j? ≥ X̄k, ∀ k
X̄j∗ − µj∗ + µj∗ − µk + µk ≥ X̄k

µj∗ − µk ≥ X̄k − µk + µj∗ − X̄j∗

µ ≥ 2

√
log(2d/ε)

2n
.

so that if µ = ω(
√

log(d)
n ), this estimator has success probability tending to 1.

Theorem 1 For the 1 sparse recovery problem, the minimax rate is:

µ �
√

log d

n
.

Actually the same rate holds for the k-sparse problem, but it is slightly less obvious.

Some takeaway messages are: by discretizing, we can look at a few close hypotheses, and this could lower the
KL much more than entropy. Also, there are many techniques, like Neyman-Pearson, local and global Fano
just for testing problems. It is important to know about all of these techniques because some are better for
some problems.
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20.3 Estimation Problem

Now let’s turn to estimation problems, or more general losses. We write:

Rn(Θ) = inf
T

sup
Θ

E [Φ ◦ ρ(T (X),Θ)]

where ρ : Θ×Θ→ R+ is a metric, Φ : R+ → R+ is a non-decreasing function with Φ(0) = 0.

Example: ρ(Θ,Θ′) = |Θ − Θ′| and Φ(t) = t2, so we are looking at mean square error. This can also cover
things like classification performance, excess risk, things we have seen before.

20.3.1 Proving lower bounds

Step 1: Discretization. Fix a δ > 0, and find a large set of parameters Θ′ = {θi}Mi=1 ⊆ Θ, such that

ρ(θi, θj) ≥ 2δ, ∀ i 6= j.

This set is called a 2δ packing in the ρ-metric.

Step 2: Reduce to Testing. Consider j ∼ uniform([M ]) and X ∼ Pθj . Now if you cannot differentiate
between θi and some other θ, you will certainly make error Φ(δ) in the estimation problem. More formally:

Proposition 1 Let {θj}Mj=1 be a 2δ-packing in the ρ metric. Then:

Rn(Θ,Φ ◦ ρ) ≥ Φ(δ) inf
Ψ

Pj∼unif([M ]),xn∼Pθj [Ψ(xn) 6= j] .

Proof: Fix an estimator T . For any fixed θ, we have

E[Ψ(ρ(T, θ))] ≥ E[Ψ(δ)1{ρ(T, θ) ≥ δ}] = Ψ(δ)P[ρ(T, θ) ≥ δ].

Now, let Ψ(T̂ ) = arg minj ρ(T, θj). If ρ(T, θj) < δ, then Ψ(T ) = j by 2δ separation triangle inequality,

ρ(T, θk) ≥ ρ(θj , θk)− ρ(T, θk) > 2δ − δ = δ.

The converse of this statement is that if Ψ(T ) 6= v, then ρ(T, θv) ≥ δ.

sup
θ∈Θ

P[ρ(T, θ) ≥ δ] ≥ 1

M

M∑
j=1

Pj [ρ(T, θj) ≥ δ] =
1

M

M∑
j=1

Pj [Ψ(T ) 6= j].

Now take an inf over all T,Ψ.

Step 3: Use Fano or Neyman Pearson to Lower Bound Pe in Testing Problems. We saw how to
do this earlier in this lecture and in the previous lecture.

Example 1 (Normal Means Estimation in `2) Let xn1 ∼ N (v, 1), v ∈ Rd. The goal is to have Exn1 ‖T (Xn
1 − v)‖22

small. Let U be a 1/2 packing of the unit ball in Rd. Note that the unit ball in d dimensions has a packing
of size at least 2d in the `2 metric. For each u ∈ U , let θu = δu ∈ Rd, so that

‖θu − θu′‖2 = δ ‖u− u′‖2 ≥
δ

2
. (20.2)
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Figure 20.1: If you get θk instead of θj∗ , then your estimate θ̂ must be far from θj∗ .

By triangle inequality, ‖θu − θu′‖ ≤ 2δ. so the KL between each pair of θu, θu′ is

KL{Pθu ||Pθu′} ≤ 2nδ2,

so the Fano’s Lemma gives

inf
T

1

M

M∑
j=1

Pθj [T (xn1 6= j)] 6= 1− 2nδ2 + log 2

d log 2
,

thus, lower bound is

Rn(Θ, ‖·‖22) ≥
(
δ

4

)2 [
inf
T

EjPθj [T (Xn) 6= j]
]

≥
(
δ2

16

)(
1− 2nδ2 + log 2

d log 2

)

Now we can choose δ, set it to δ2 = d log 2/(δn). Then, Rn ≥ cd/n. This is the right rate for this problem.

20.3.2 Metric Entropy

The size of the parameter space shows the difficulty of an estimation problem. This shows up in packing
and covering numbers which, as we saw, play a role in our minimax lower bounds.

Definition 1 A δ-covering of the set X with metric ρ is a set {x1, x2, · · · , xN} that satisfies, for any x ∈ X ,
there exists some i ∈ {1, 2, · · · , N}, such that d(x, xi) ≤ δ. The δ-covering number of X is

N(δ,X , d) = inf{ |X1| : there exists a δ − covering of X1 of X}.

Metric entropy of the set X is the logarithm of the covering number, logN(δ,X , d).
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Definition 2 A δ-packing of the set X with metric ρ is a set {x1, x2, · · · , xN}, such that d(xi, xj) ≥ δ, for
all i 6= j. The δ-packing number of X is

M(δ,X , d) = sup{ |X1| : there exists a δ − packing of X1 of X}.

The packing number and covering number satisfy the following relationships:

M(2δ,X , d) ≤ N(δ,X , d) ≤M(δ,X , d).


