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18.1 Review of Gaussian Channel

Suppose we have a single variable Gaussian channel with output Y , input X and noise Z. Also suppose X
is independent of Z, i.e. X ⊥ Z, and Z ∼ N(0, σ2).

Theorem 18.1 Suppose Y = X + Z, X,Y, Z ∈ R is a Gaussian channel and Z ∼ N(0, σ2). Given power
constraint P , i.e. E[X2] ≤ P , then

Capacity =
1

2
log(1 +

P

σ2
)

Now consider the multi-dimensional case. Suppose our input, output and noise now are in Rn space, and Z
to is draw from N(0, σ2In×n). We have independent power constraint for each sub channel as E[X2

i ] ≤ P
for i = 1, . . . , n. Then the capacity is directly n times the capacity of one channel.

Theorem 18.2 Suppose Y = X + Z, X,Y, Z ∈ Rn is a multivariate Gaussian channel and Z ∼ N(0, σ2I).
Given independent power constraint on each Xi, i.e. E[X2

i ] ≤ P . Then the capacity of this channel is given
by

Capacity =
n

2
log(1 +

P

σ2
)

Now consider the case if a global power constraint like E[||X||2] ≤ P is used. With same condition as above,
we can prove the capacity is maximized when we equally distribute the power constraint over all channels,
i.e. Pi = P

n and the capacity is given as follows.

Theorem 18.3 Suppose Y = X + Z, X,Y, Z ∈ Rn is a multivariate Gaussian channel and Z ∼ N(0, σ2I).
Given universal power constraint over X, i.e. E[||X||2] ≤ P . Then the capacity of this channel is given by

Capacity =
n

2
log(1 +

P

nσ2
)

18.2 Independent Gaussian Channel

In above examples, our input channels have independent noise with same variance. If our noise is still
independent on each channel, but with different variance, the maximum capacity is given through a “water
filling” way.

18-1



18-2 Lecture 18: March 26

Figure 18.1: Water filling, figure from [Cover2012]

Theorem 18.4 Suppose Y = X+Z, X,Y, Z ∈ Rn is a multivariate Gaussian channel, Z ∼ N(0, diag(σ2
1 , . . . , σ

2
n)).

Given universal power constraint, i.e. E[||X||2] ≤ P , then the capacity of this channel is given through a
“water-filling” way. That is, the power allocated for each channel Pi is (constant−σ2

i )+, where the constant
is chosen so that the total power

∑
i Pi is P .

Proof: We know capacity C is defined as

C = max
p(x)

I(Xn, Y n)

= max
p(x)

(H(Y n)−H(Y n|Xn))

= max
p(x)

(H(Y n))−H(Zn), Since Y = X + Z and X ⊥ Z

= max
p(x)

n∑
i=1

H(Yi)−H(Zi), since Yis are independent and so are Zis

We know Yi = Xi+Zi, so E[Y 2
i ] = E[(Xi+Zi)

2] = E[X2
i ]+E[Z2

i ] = Pi+σ2. We know for a given variance,
normal distribution maximize the entropy, thus H(Yi) ≤ 1

2 log 2πe(Pi + σi).

≤ max
{Pi}ni=1

1

2

n∑
i=1

log 2πe(Pi + σ2
i )− 1

2

n∑
i=1

log 2πeσ2
i

= max
{Pi}ni=1

1

2

n∑
i=1

log

(
1 +

Pi
σ2
i

)
Since the Pi ≥ 0 and

∑
i Pi ≤ P , the Lagrangian multiplier of the above optimization problem is

L =
1

2

n∑
i=1

log

(
1 +

Pi
σ2

)
+ λ(

∑
i

Pi − P ) + λiPi

∂L
∂Pi

=
1

2

1

1 + Pi

σ2
i

· 1

σ2
i

+ λ+ λi = 0

⇒ Pi + σ2
i =constant, ∀i s.t.λi = 0

Since complementary slackness implies that either Pi = 0 or λi = 0, the solution is either to put no power in
a channel or to put enough power so that the sum of power and noise variance is a constant for all channels
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with non-zero power. Thus, we are putting more power to less noisy channels through a water filling way,
where we first try to add power to least noisy channels until its “height” is same with the second least one,
and continue until all power is allocated.

18.3 Correlated Gaussian Channel

Now we consider the case where Z is no longer independent on each channel, which means ΣZ can be
arbitrary covariance matrix. Suppose we still have the universal power constraint E[||X||2] ≤ P .

Theorem 18.5 Suppose Y = X + Z, X,Y, Z ∈ Rn is a multivariate Gaussian channel, Z ∼ N(0,ΣZ) and
X ⊥ Z. Given universal power constraint i.e. E[||X||2] ≤ P , then the maximum capacity is achieved through
spectral water filling.

Proof: Consider the eigenvalue decomposition of ΣZ into UΛUT , where U is normalized orthogonal matrix
and Λ is a diagonal matrix. Then we can restate the problem in spectral domain as

Y =X + Z

UTY =UTX + UTZ

Ȳ =X̄ + Z̄, Z̄ ∼ N(0,Λ)

The original power constraint can be written as tr(ΣX) ≤ P and translating this to X̄ we have tr(ΣX̄) ≤ P .

We know for X ∈ Rn ∼ N(0,ΣX), H(X) = 1
2 log(2πe)n|ΣX |. Since X ⊥ Z, then ΣY = ΣX + ΣZ , so the

capacity is

C = max
p(x)

I(X,Y )

= max
tr(ΣX)≤P

1

2
log
|ΣX + ΣZ |
|ΣZ |

.

= max
tr(ΣX)≤P

1

2
log
|UTΣXU + Λ|

|Λ|
.

= max
tr(ΣX̄)≤P

1

2
log
|ΣX̄ + Λ|
|Λ|

.

This is maximized when ΣX̄ is diagonal matrix. Thus using the conclusion above, we see that the channels
are independent in the spectral domain and the problem is same as the last one but in the spectral domain.
Capacity is achieved when UTX ∼ N (0, diag(Pi)), or equivalently, X ∼ N (0, Udiag(Pi)U

T ). And the
capacity is maximized through spectral water filling, where the power constraint Pi for each X̄i is (constant−
Λii).

Channels with correlation between sub channels are similar to channels with feedback since n parallel channels
with correlation can be viewed as n sequential transmissions through a channel with memory. Thus, the
above expression also characterizes the capacity of channels with memory (but without feedback).

It can be shown that feedback (knowledge of past Yis at the sender) does not help increase the capacity
of memoryless channel, but for channels with memory, the capacity of channel with feedback can be larger
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than the capacity of channel without feedback. For channels with memory, with feedback we have:

CFB = max
tr(ΣX)≤P

1

2
log
|ΣX+Z |
|ΣZ |

which can be larger than the expression for channels with memory without feedback - the difference being
|ΣX+Z | instead of |ΣX + ΣZ | in the numerator. However, the capacity increase can be bounded as

CFB ≤ min(2C,C +
1

2
)

where C is the capacity without feedback. For details, see [Cover2012] Sec 9.6.

18.4 Multi-Antenna Gaussian Channels

Now suppose the channel performs a linear transformation or projection A ∈ Rm×n on X, which means the
channel now is

Y = AX + Z,X ⊥ Z,Z ∼ N(0, σ2I)

A real world case of these kind of channels is the multiple antennas channel in wireless communication where
the receiver has m antennas and the sender has n antennas. The projection A, known as the channel matrix,
may be deterministic or random. Another case is random projections used in CS and machine learning.

We first analyze the deterministic case, where A is fixed and known. Suppose the SVD decomposition of A
is UΣV T , and the power constraint for X is still E[||X||2] ≤ P .

Y =AX + Z

UTY =ΣV TX + UTZ

Ȳ =ΣX̄ + Z̄

Since U and V are orthonormal matrices, thus E[||X||2] = E[||X̄||2] ≤ P and ΣZ̄ = σ2I. Now we get
multiple independent sub channels where instead of different noise variance, the sub-channels have different
signal gains. Thus we still choose variance through water filling in the spectral domain, which means now we
require the power constraint Pi for X̄i to follow Pi + 1

λi
σ2 = constant, where λi is the square of the singular

value of A. The maximum capacity is given by

C = max
tr(ΣX̄)≤P

1

2
log
|ΣX̄ + ΣZ̄ |
|ΣZ̄ |

Since ΣX̄ = Udiag(λjPj)U
T and ΣZ̄ = σ2I

=
1

2
log |I + Udiag(

λjPj
σ2

)UT |

=
1

2
log |I + diag(

λjPj
σ2

)|

=
1

2

n∑
j=1

log

(
1 +

λjPj
σ2

)
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Now we consider the case when A is a random matrix independent of X and Z. We will derive an upper
bound on the capacity. The maximum capacity is given by

C = sup
p(X)

I(X;Y )

≤ sup
p(X)

I(X;Y,A)

= sup
p(X)

E[log
P (X,Y,A)

P (X)P (Y,A)
]

= sup
p(X)

E[log
P (Y,A|X)

P (Y,A)
]

= sup
p(X)

E[log
P (Y |A,X)P (A|X)

P (Y |A)P (A)
]

Since A ⊥ X, P (A|X) = P (A)

= sup
p(X)

E
[
log

P (X,Y |A)

P (X|A)P (Y |A)

]
= sup
p(X)

EA[I(X;Y |A)]

For a fixed A, we use the previous result and upper bound it using the trivial bound Pj ≤ P - this is pretty
loose, but will suffice for our purposes.

≤1

2
EA[log |Udiag(I +

λjP

σ2
)UT |]

Using Jensen’s inequality and concavity of log det

≤1

2
log |EA[Udiag(I +

λjP

σ2
)UT ]|

≤1

2
log |I +

P

σ2
E[UΣ2UT ]|

=
1

2
log |I +

P

σ2
E[AAT ]|

Suppose Aij is drawn from N (0, 1
n ) i.i.d., which is often the case in random projections, then E[AAT ] = I.

We get

C ≤1

2
log |(1 +

P

σ2
)I|

=
m

2
log(1 +

P

σ2
)

Thus we have supp(X) I(X,Y ) ∼ O(m), which means the maximum average information between X and Y ,

supp(X)
I(X,Y )
n = O(mn ). Basically it means the average leakage of information from X to Y is limited by

m/n which is typically decaying as n increases since in many applications the number of random projections
needed m � n. This can be viewed as an average privacy guarantee via random projections. We
will talk more about this in next class.
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