

Spectral Clustering

Aarti Singh

Machine Learning 10-701/15-781
Nov 22, 2010

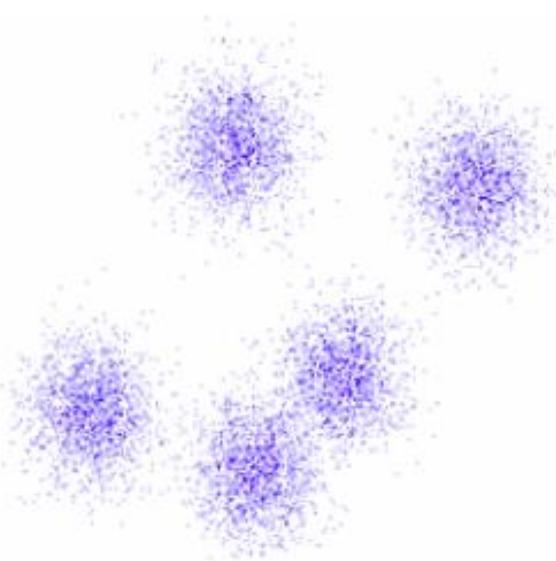
Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg

MACHINE LEARNING DEPARTMENT

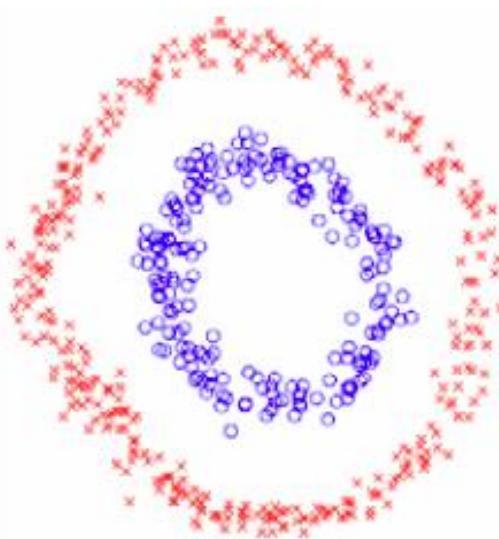
Carnegie Mellon.
School of Computer Science

Data Clustering

- Two different criteria
 - Compactness, e.g., k-means, mixture models
 - Connectivity, e.g., spectral clustering



Compactness



Connectivity

Graph Clustering

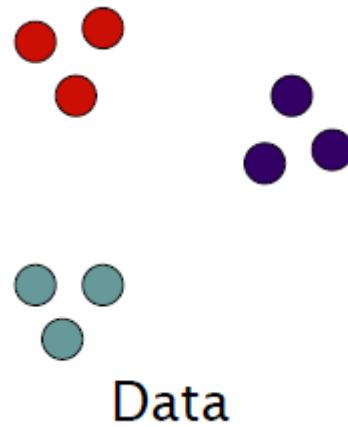
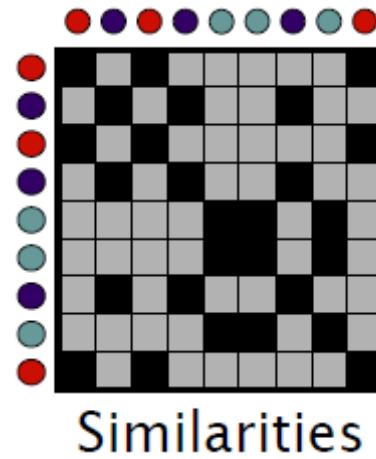
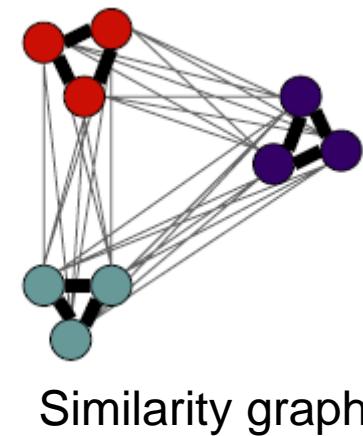
Goal: Given data points X_1, \dots, X_n and similarities $w(X_i, X_j)$, partition the data into groups so that points in a group are similar and points in different groups are dissimilar.

Similarity Graph: $G(V, E, W)$

V – Vertices (Data points)

E – Edge if similarity > 0

W - Edge weights (similarities)



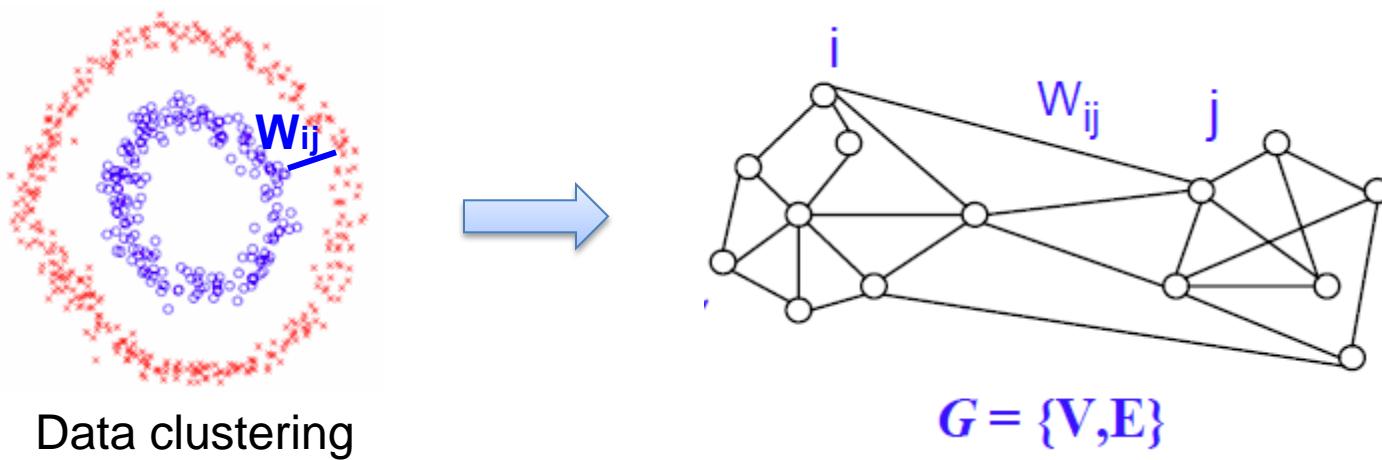
Partition the graph so that edges within a group have large weights and edges across groups have small weights.

Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points

E.g. Gaussian kernel similarity function

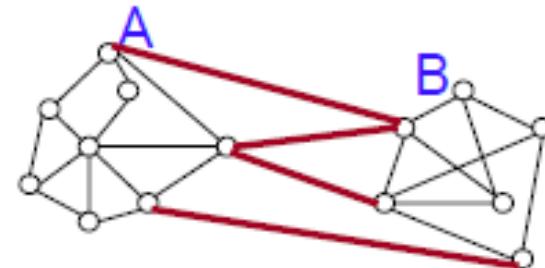
$$W_{ij} = e^{-\frac{\|x_i - x_j\|^2}{2\sigma^2}} \longrightarrow \text{Controls size of neighborhood}$$



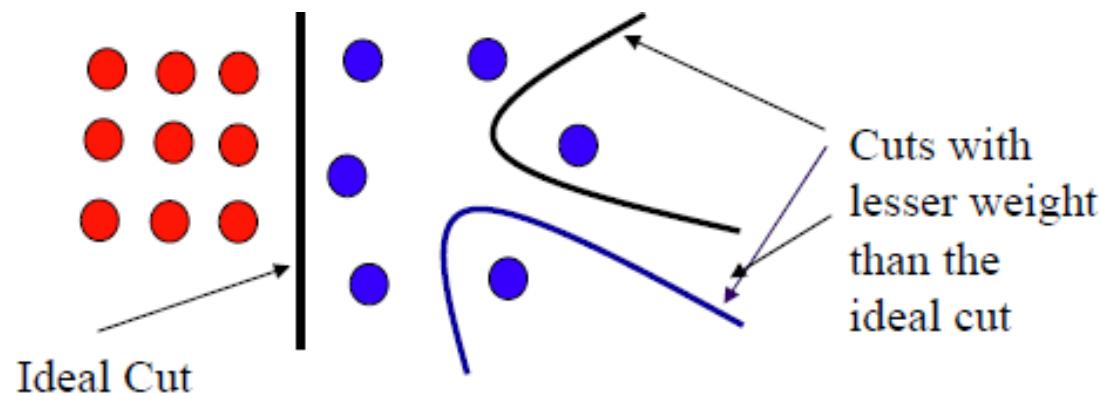
Partitioning a graph into two clusters

Min-cut: Partition graph into two sets A and B such that weight of edges connecting vertices in A to vertices in B is minimum.

$$\text{cut}(A, B) := \sum_{i \in A, j \in B} w_{ij}$$



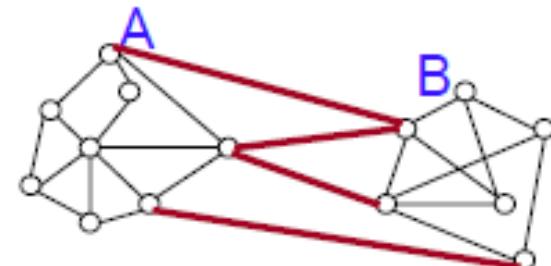
- Easy to solve $O(VE)$ algorithm
- Not satisfactory partition – often isolates vertices



Partitioning a graph into two clusters

Partition graph into two sets A and B such that weight of edges connecting vertices in A to vertices in B is minimum & size of A and B are very similar.

$$\text{cut}(A, B) := \sum_{i \in A, j \in B} w_{ij}$$



Normalized cut:

$$\text{Ncut}(A, B) := \text{cut}(A, B) \left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right)$$

$$\text{vol}(A) = \sum_{i \in A} d_i$$

But NP-hard to solve!!

Spectral clustering is a relaxation of these.

Normalized Cut and Graph Laplacian

$$\text{Ncut}(A, B) := \text{cut}(A, B) \left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right)$$

Let $\mathbf{f} = [f_1 \ f_2 \ \dots \ f_n]^T$ with $f_i = \begin{cases} \frac{1}{\text{vol}(A)} & \text{if } i \in A \\ -\frac{1}{\text{vol}(B)} & \text{if } i \in B \end{cases}$

$$\mathbf{f}^T \mathbf{L} \mathbf{f} = \sum_{ij} w_{ij} (f_i - f_j)^2 = \sum_{i \in A, j \in B} w_{ij} \left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right)^2$$

$$\mathbf{f}^T \mathbf{D} \mathbf{f} = \sum_j d_j f_j^2 = \sum_{i \in A} \frac{d_i}{\text{vol}(A)^2} + \sum_{j \in B} \frac{d_j}{\text{vol}(B)^2} = \frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)}$$

$$\text{Ncut}(A, B) = \frac{\mathbf{f}^T \mathbf{L} \mathbf{f}}{\mathbf{f}^T \mathbf{D} \mathbf{f}}$$

Normalized Cut and Graph Laplacian

$$\min \text{Ncut}(A, B) = \min \frac{\mathbf{f}^T \mathbf{L} \mathbf{f}}{\mathbf{f}^T \mathbf{D} \mathbf{f}}$$

where $\mathbf{f} = [f_1 \ f_2 \ \dots \ f_n]^T$ with $f_i = \begin{cases} \frac{1}{\text{vol}(A)} & \text{if } i \in A \\ -\frac{1}{\text{vol}(B)} & \text{if } i \in B \end{cases}$

Relaxation: $\min \frac{\mathbf{f}^T \mathbf{L} \mathbf{f}}{\mathbf{f}^T \mathbf{D} \mathbf{f}}$ s.t. $\mathbf{f}^T \mathbf{D} \mathbf{1} = 0$

Solution: \mathbf{f} – second eigenvector of generalized eval problem

$$\mathbf{L} \mathbf{f} = \lambda \mathbf{D} \mathbf{f}$$

Obtain cluster assignments by thresholding \mathbf{f} at 0

Approximation of Normalized cut

$$\text{Ncut}(A, B) := \text{cut}(A, B) \left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right)$$

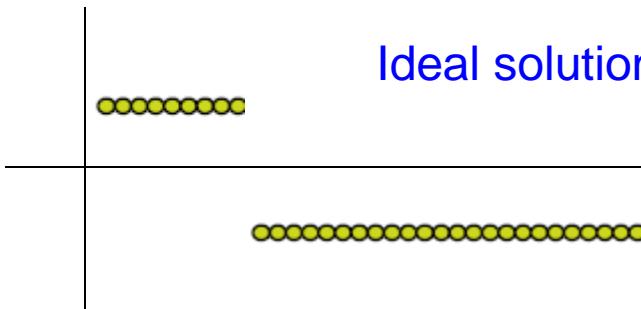
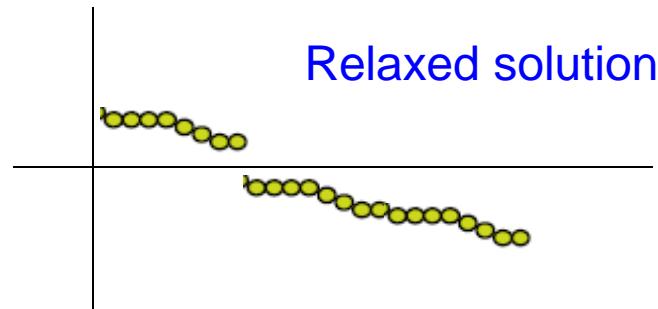
Let f be the eigenvector corresponding to the second smallest eval of the generalized eval problem.

$$Lf = \lambda Df$$

Equivalent to eigenvector corresponding to the second smallest eval of the normalized Laplacian $L' = D^{-1}L = I - D^{-1}W$

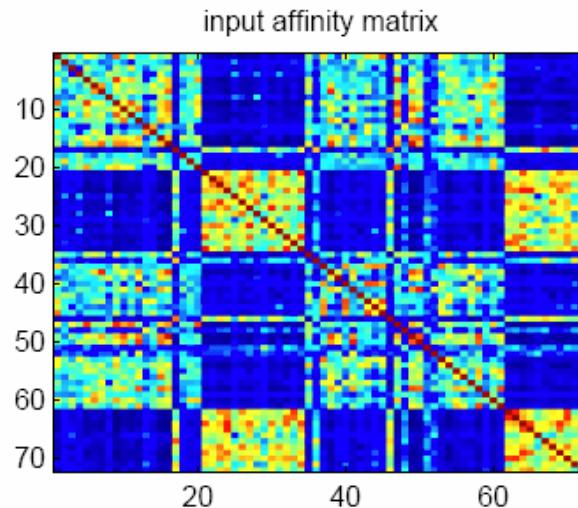
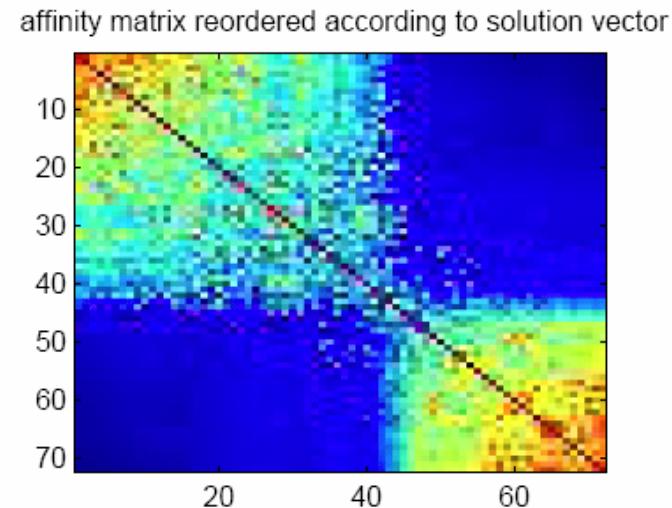
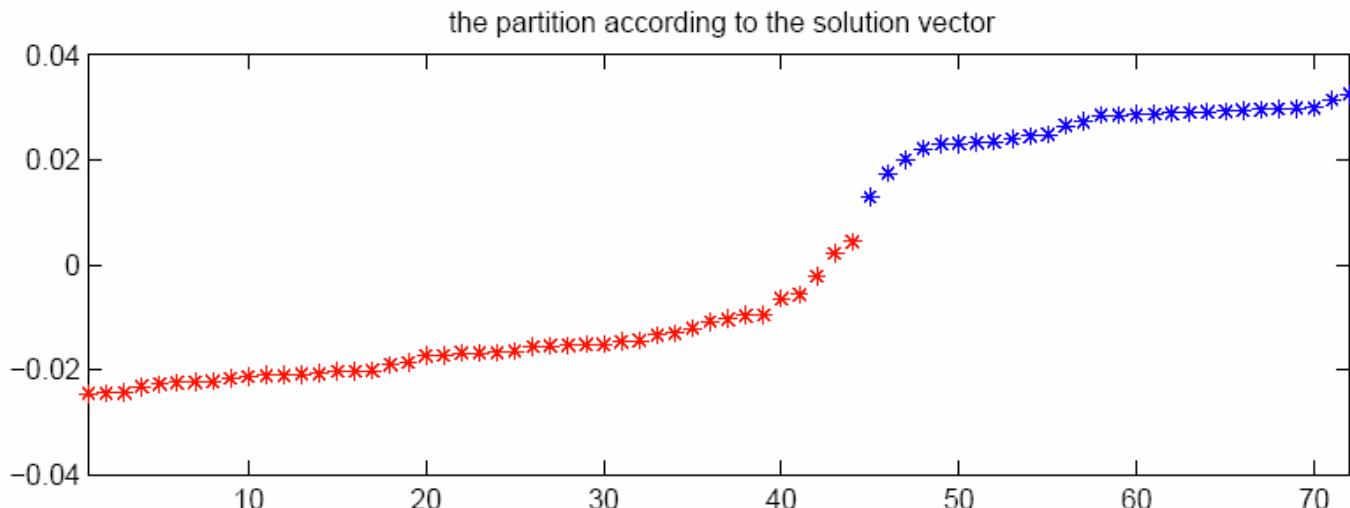
Recover binary partition as follows:

$$\begin{array}{lll} i \in A & \text{if} & f_i \geq 0 \\ i \in B & \text{if} & f_i < 0 \end{array}$$



Example

Xing et al 2001



How to partition a graph into k clusters?

Spectral Clustering Algorithm

Input: Similarity matrix W , number k of clusters to construct

- Build similarity graph
- Compute the first k eigenvectors v_1, \dots, v_k of the matrix

$$\begin{cases} L & \text{for unnormalized spectral clustering} \\ L' & \text{for normalized spectral clustering} \end{cases}$$

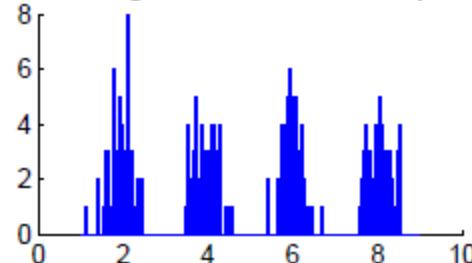
- Build the matrix $V \in \mathbb{R}^{n \times k}$ with the eigenvectors as columns
- Interpret the rows of V as new data points $Z_i \in \mathbb{R}^k$

	v_1	v_2	v_3		
Z_1	v_{11}	v_{12}	v_{13}	Dimensionality Reduction	
\vdots	\vdots	\vdots	\vdots	$n \times n \rightarrow n \times k$	
Z_n	v_{n1}	v_{n2}	v_{n3}		

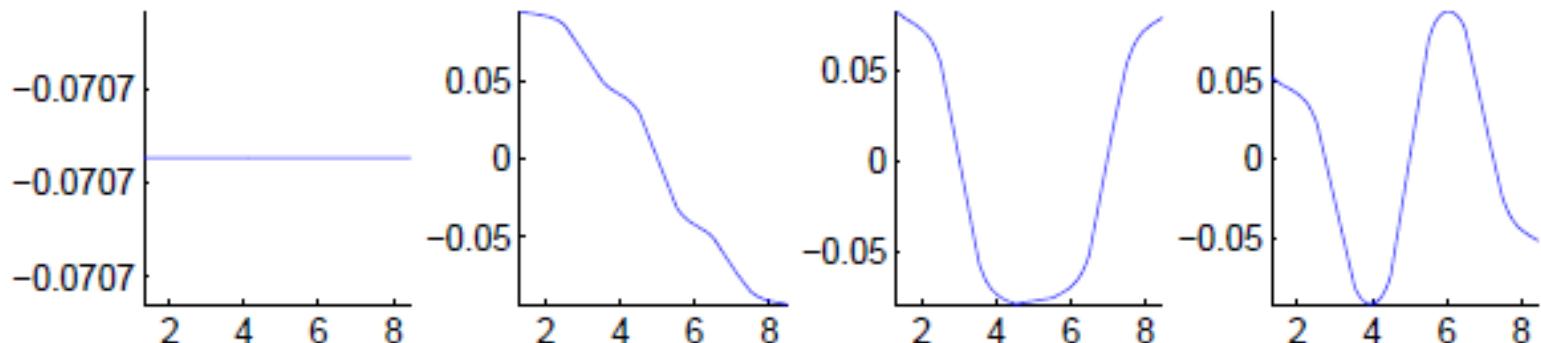
- Cluster the points Z_i with the k -means algorithm in \mathbb{R}^k .

Eigenvalues and Eigenvectors of Graph Laplacian

Histogram of the sample



Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4

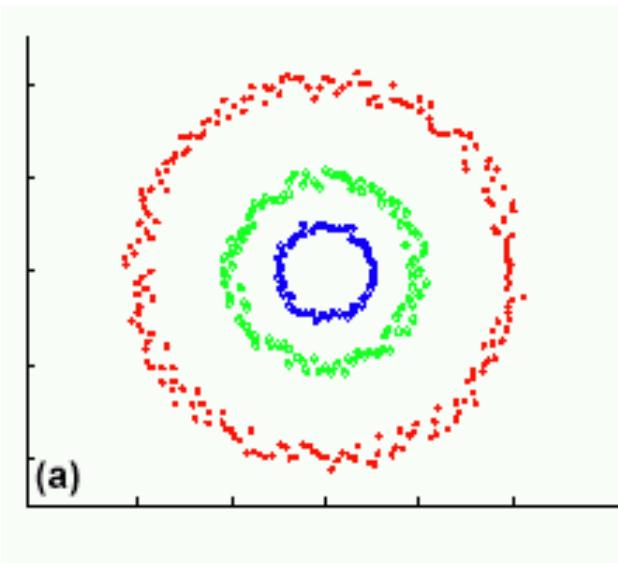


- 1st Eigenvector is the all ones vector **1** (if graph is connected)
- 2nd Eigenvector thresholded at 0 separates first two clusters from last two
- k-means clustering of the 4 eigenvectors identifies all clusters

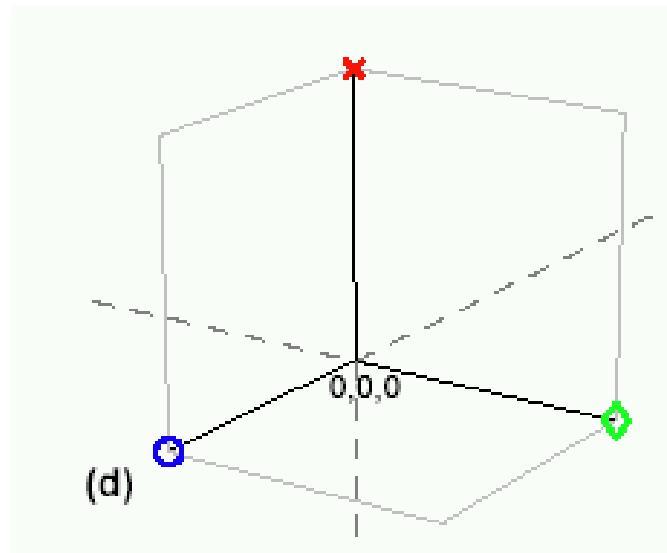
Why does it work?

Data are projected into a lower-dimensional space (the spectral/eigenvector domain) where they are easily separable, say using k-means.

Original data



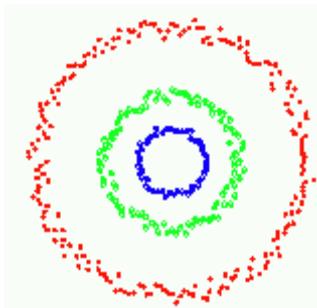
Projected data



Graph has 3 connected components – first three eigenvectors are constant (all ones) on each component.

Understanding Spectral Clustering

- If graph is connected, first Laplacian evec is constant (all 1s)
- If graph is disconnected (k connected components), Laplacian is block diagonal and first k Laplacian evecs are:



OR

$$L = \begin{bmatrix} L_1 & & & & \\ & \ddots & & & 0 \\ & & L_2 & & \\ & \ddots & & L_3 & \\ 0 & & & & \ddots \end{bmatrix}$$

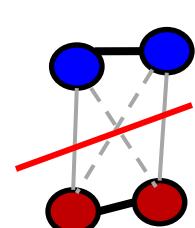
$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

First three eigenvectors

Understanding Spectral Clustering

- Is all hope lost if clusters don't correspond to connected components of graph? No!
- If clusters are connected loosely (small off-block diagonal entries), then 1st Laplacian eigenvalue is all 1s, but second eigenvector gets first cut (min normalized cut)

$$\text{Ncut}(A, B) := \text{cut}(A, B) \left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right)$$



1	1	.2	0
1	1	0	.1
.2	0	1	1
0	.1	1	1

1st eigenvector is constant
since graph is connected

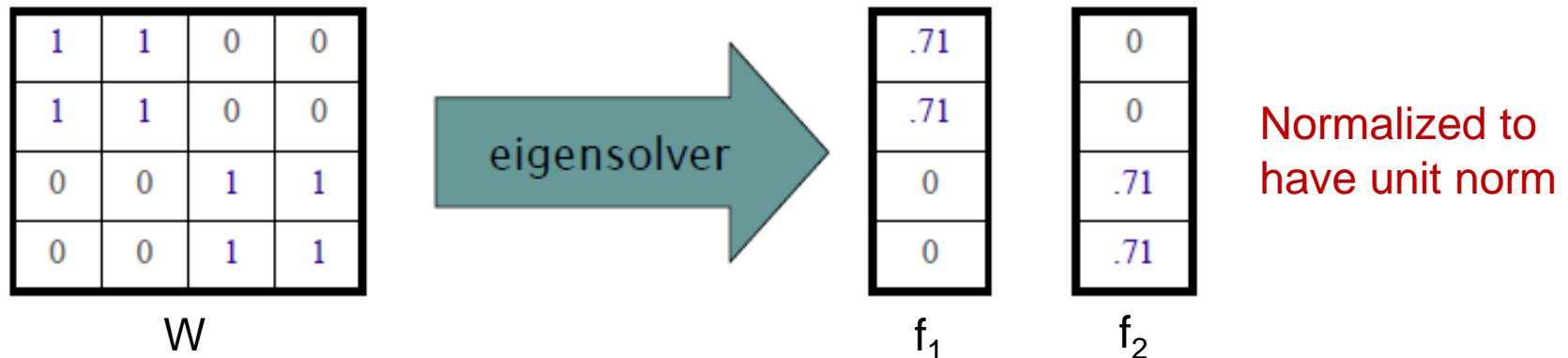
.50
.50
.50
.50

.47
.52
-.47
.50
-.52

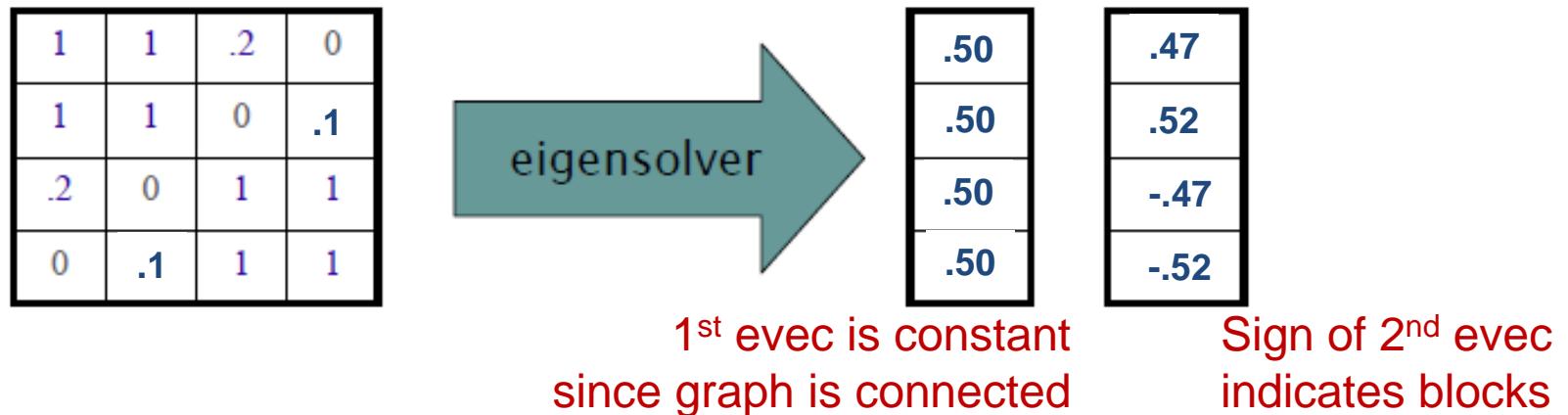
Sign of 2nd eigenvector
indicates blocks

Why does it work?

Block weight matrix (disconnected graph) results in block eigenvectors:



Slight perturbation does not change span of eigenvectors significantly:

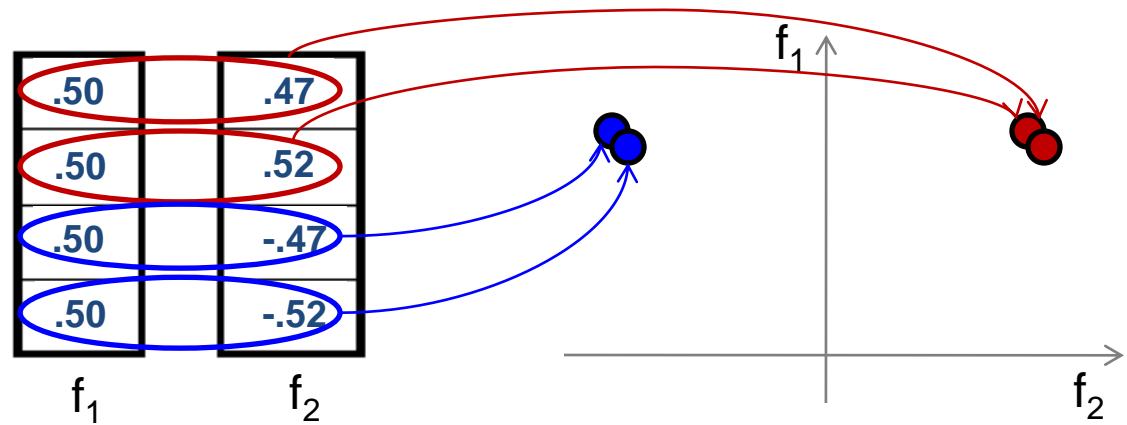


Why does it work?

Can put data points into blocks using eigenvectors:

1	1	.2	0
1	1	0	.1
.2	0	1	1
0	.1	1	1

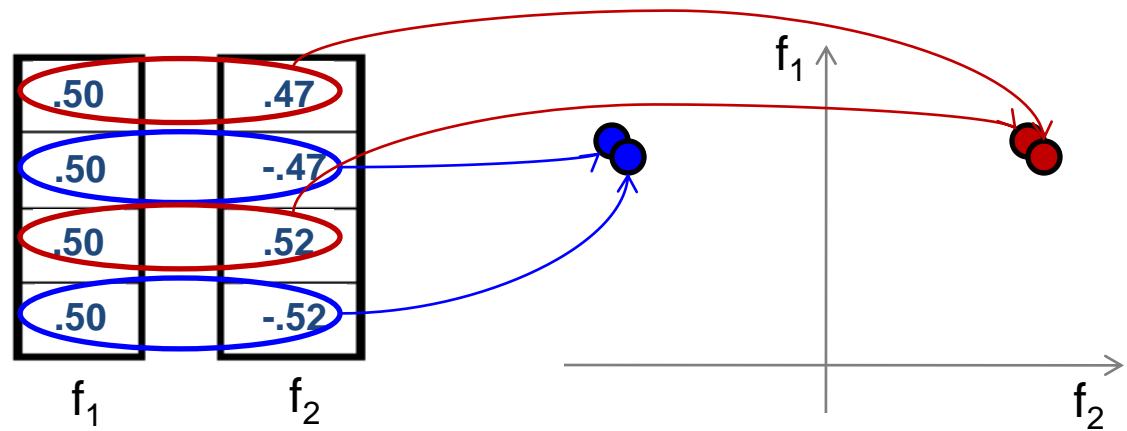
W



Embedding is same regardless of data ordering:

1	.2	1	0
.2	0	1	1
1	1	0	.1
0	1	.1	1

W



Understanding Spectral Clustering

- Is all hope lost if clusters don't correspond to connected components of graph? No!
- If clusters are connected loosely (small off-block diagonal entries), then 1st Laplacian eigenvalue is all 1s, but second eigenvector gets first cut (min normalized cut)

$$\text{Ncut}(A, B) := \text{cut}(A, B) \left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right)$$

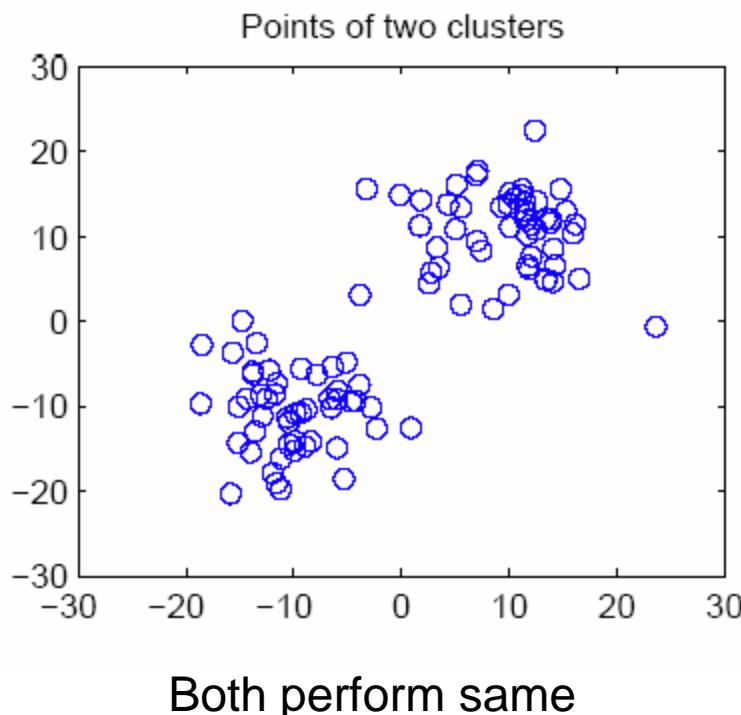
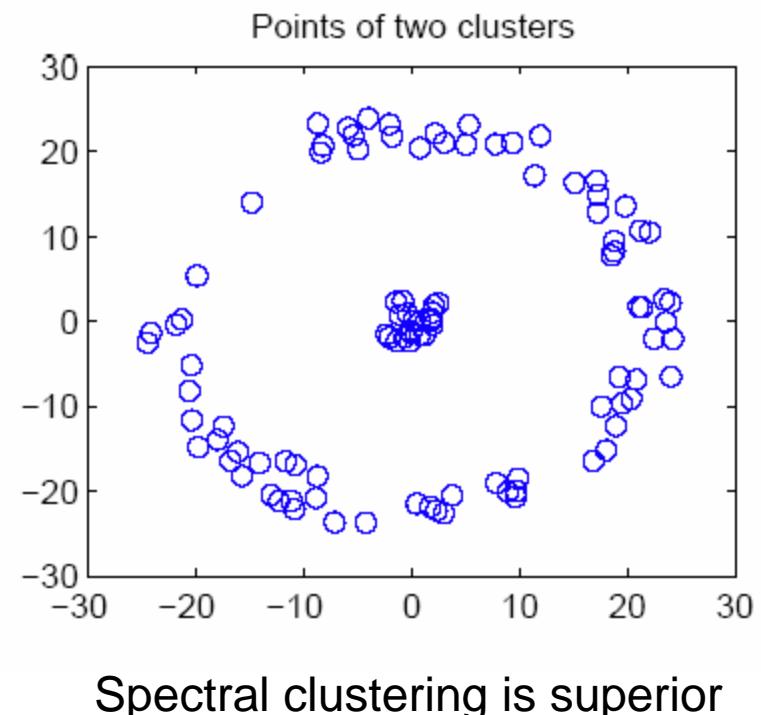
- What about more than two clusters?
eigenvectors f_2, \dots, f_{k+1} are solutions of following normalized cut:

$$\text{Ncut}(A_1, \dots, A_k) = \sum_{i=1}^k \frac{\text{cut}(A_i, \overline{A}_i)}{\text{vol}(A_i)}$$

Demo: <http://www.ml.uni-saarland.de/GraphDemo/DemoSpectralClustering.html>

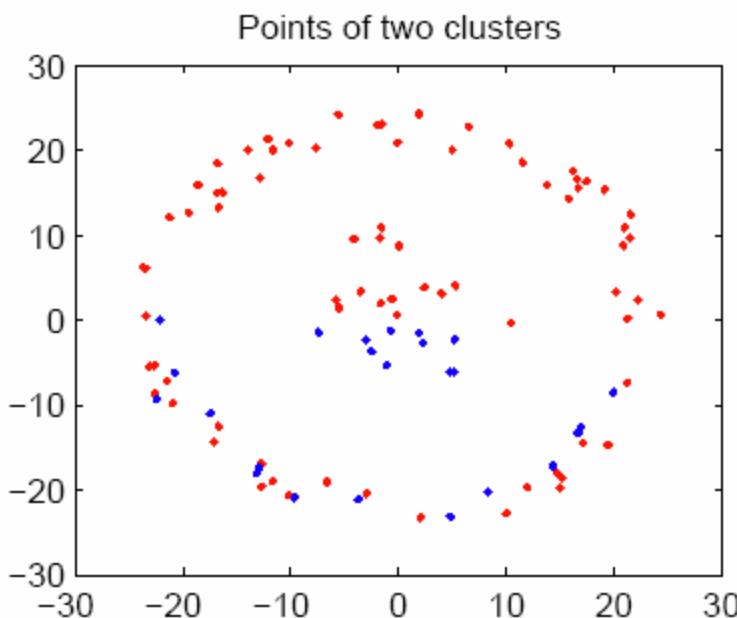
k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to **find cluster with non-convex boundaries**.

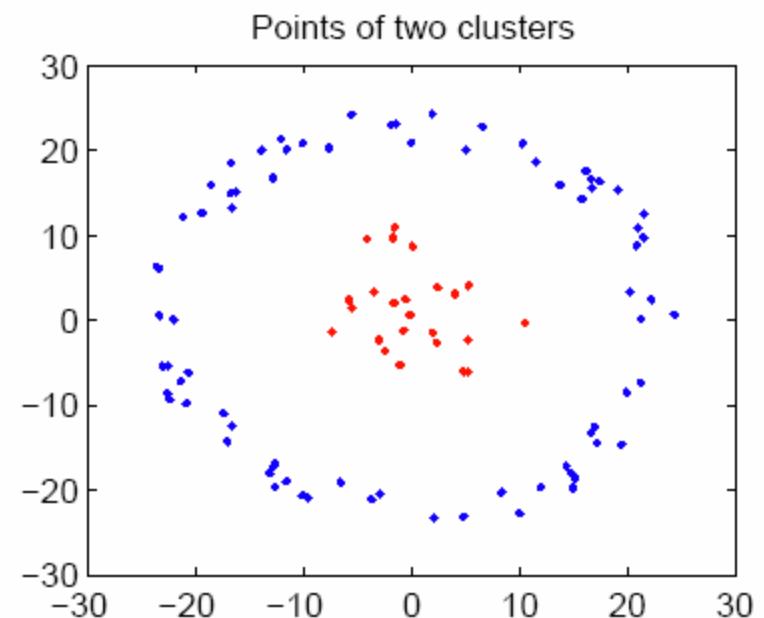


k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to **find cluster with non-convex boundaries**.



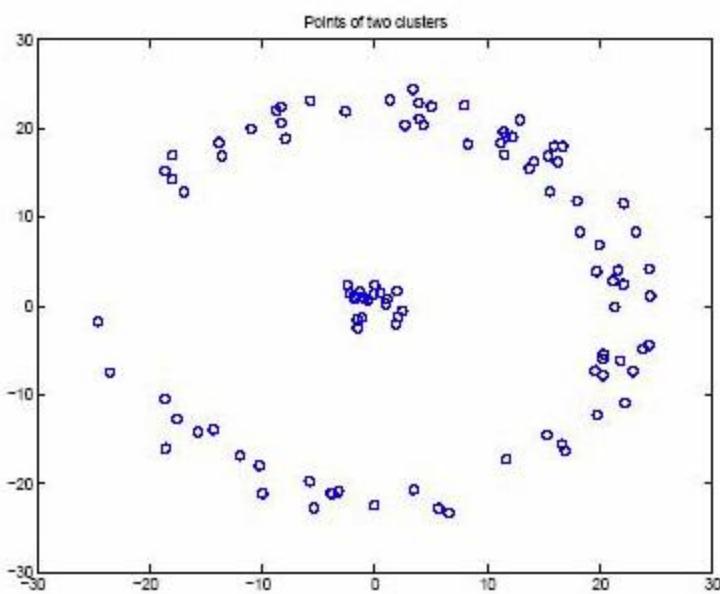
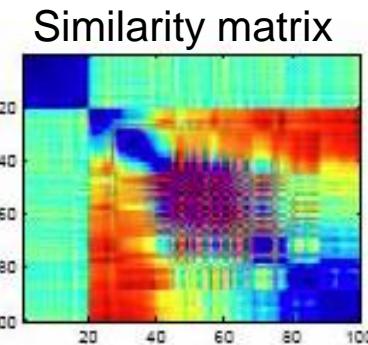
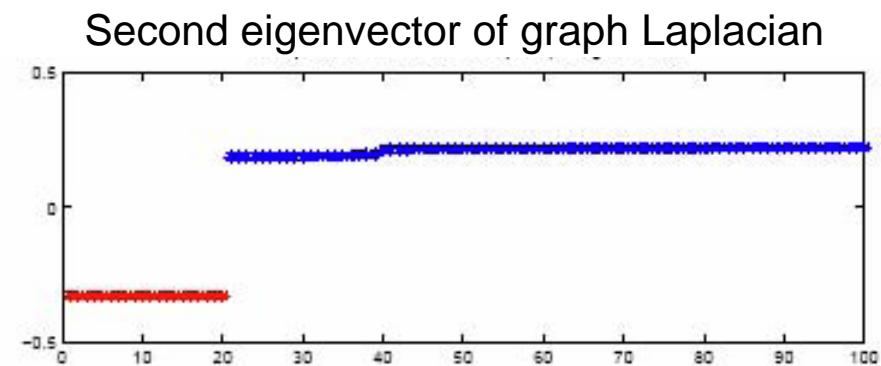
k-means output



Spectral clustering output

k-means vs Spectral clustering

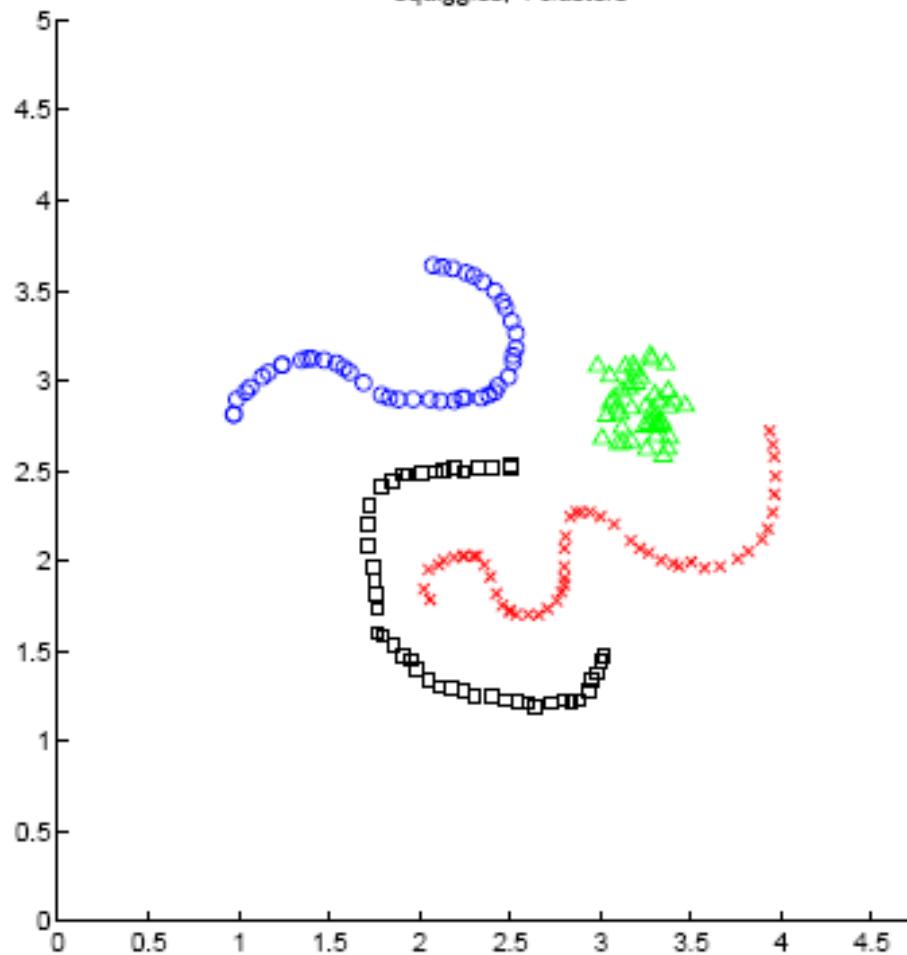
Applying k-means to laplacian eigenvectors allows us to **find cluster with non-convex boundaries**.



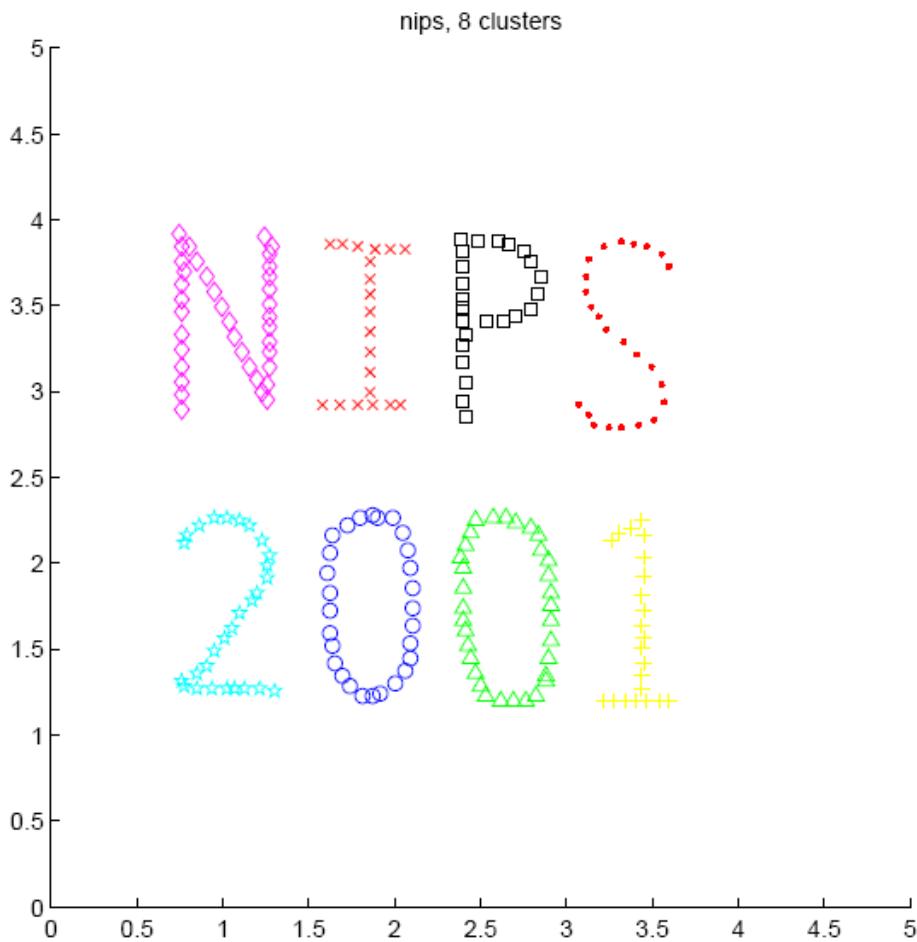
Examples

Ng et al 2001

squiggles, 4 clusters

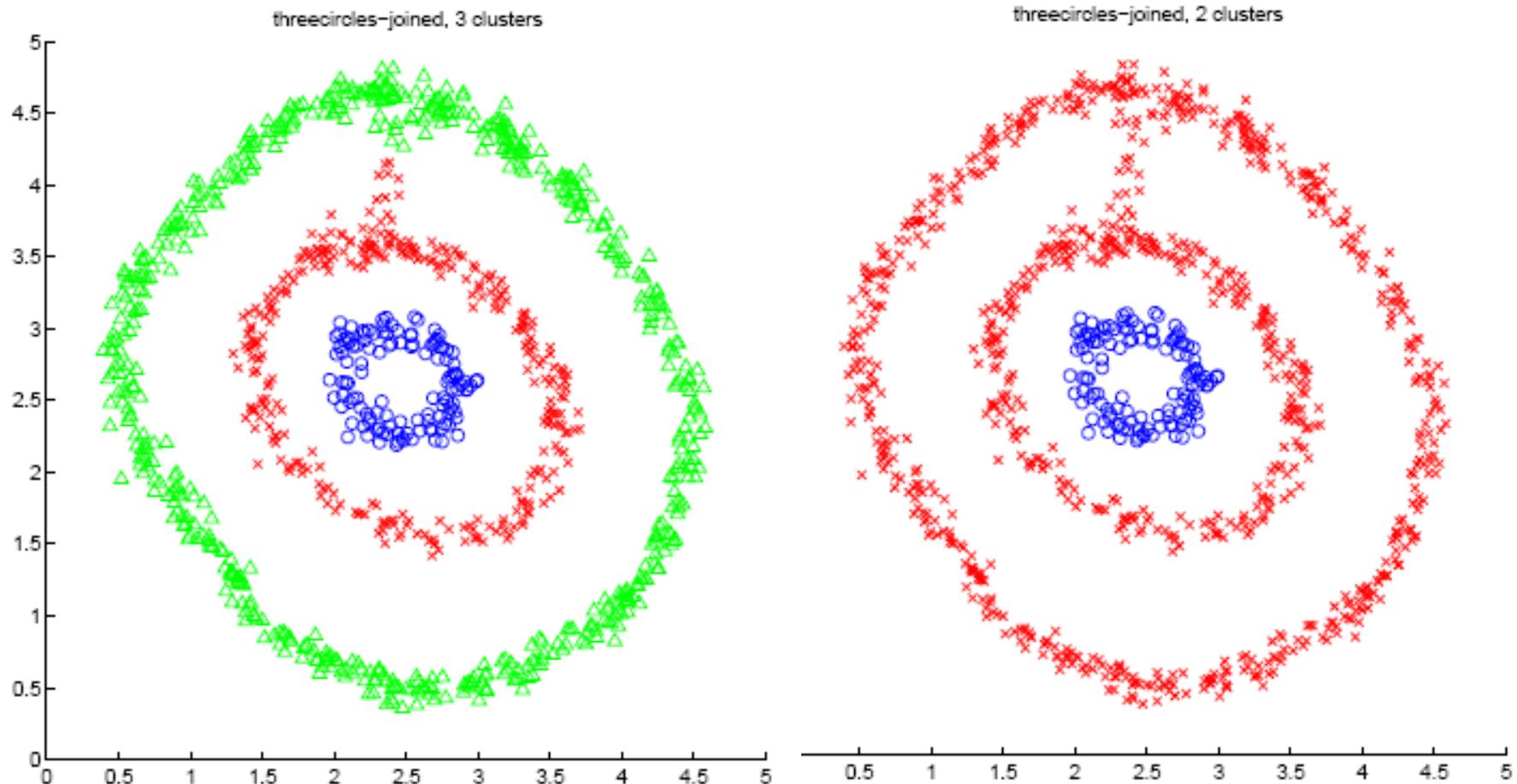


nips, 8 clusters



Examples (Choice of k)

Ng et al 2001

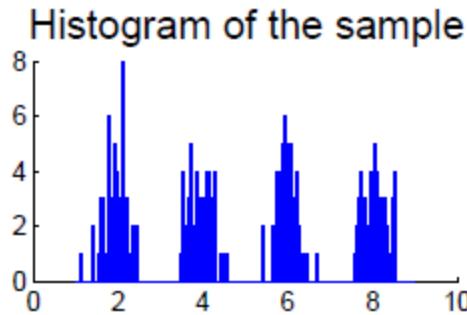
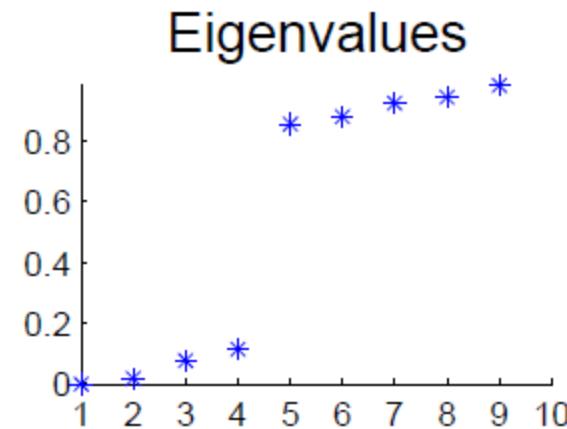


Some Issues

- Choice of number of clusters k

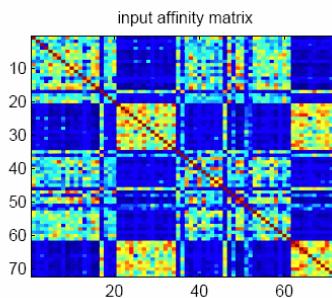
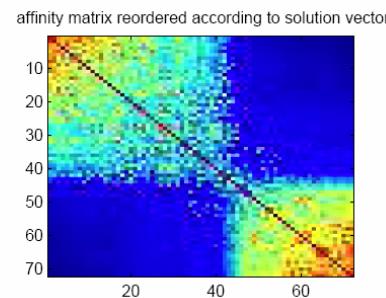
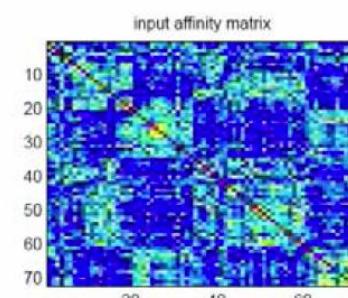
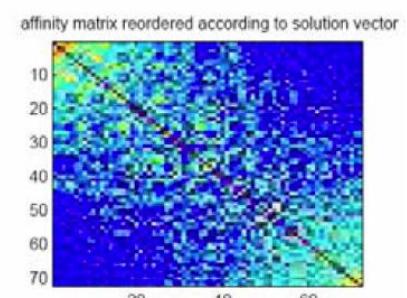
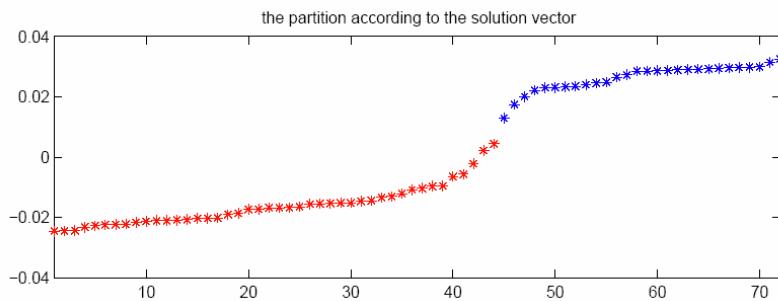
Most stable clustering is usually given by the value of k that maximizes the eigengap (difference between consecutive eigenvalues)

$$\Delta_k = |\lambda_k - \lambda_{k-1}|$$

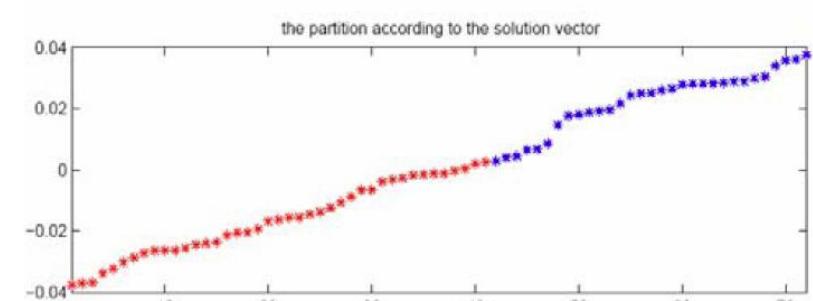


Some Issues

- Choice of number of clusters k
- Choice of similarity
 - choice of kernel
 - for Gaussian kernels, choice of σ



Good similarity measure



Poor similarity measure

Some Issues

- Choice of number of clusters k
- Choice of similarity
 - choice of kernel
 - for Gaussian kernels, choice of σ
- Choice of clustering method – k -way vs. recursive bipartite

Spectral clustering summary

- ❑ Algorithms that cluster points using eigenvectors of matrices derived from the data
- ❑ Useful in hard non-convex clustering problems
- ❑ Obtain data representation in the low-dimensional space that can be easily clustered
- ❑ Variety of methods that use eigenvectors of unnormalized or normalized Laplacian, differ in how to derive clusters from eigenvectors, k-way vs repeated 2-way
- ❑ Empirically very successful