Spectral Clustering

Aarti Singh

Machine Learning 10-701/15-781
Nov 22, 2010

Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg

ACHI




Data Clustering

e [wo different criteria

o Compactness, e.g., k-means, mixture models
e Connectivity, e.g., spectral clustering

2 .
H"b lb o
T o =
'.":“ (}: 0 J‘
j‘- Y ~ L)
O "'4‘ :;\v‘: . ()‘ { 0?
B~ N e Ro ﬁuk
..("v’ < o o ( ¢
[ I:V{'?‘ "' (&)
» 5

Compactness Connectivity



Graph Clustering

Goal: Given data points X1, ..., Xn and similarities w(Xi,X;), partition the data into
groups so that points in a group are similar and points in different groups are
dissimilar.

Similarity Graph: G(V,E,W) V — Vertices (Data points)
E — Edge if similarity > 0
W - Edge weights (similarities)
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Data Similarities Similarity graph

Partition the graph so that edges within a group have large weights and
edges across groups have small weights.




Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points
E.g. Gaussian kernel similarity function
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Data clustering G ={V,E}



Partitioning a graph into two clusters

Min-cut: Partition graph into two sets A and B such that weight of edges
connecting vertices in A to vertices in B is minimum.

cut(A, B) := ZieAdeB w;;

» Easy to solve O(VE) algorithm
» Not satisfactory partition — often isolates vertices
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Partitioning a graph into two clusters

Partition graph into two sets A and B such that weight of edges connecting
vertices in A to vertices in B is minimum & size of A and B are very similar.

cut(A, B) :== > icaicn Wi

Normalized cut;

Ncut(A, B) := cut(A, B)(VO&A) T voltB))
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But NP-hard to solve!!
Spectral clustering is a relaxation of these.



Normalized Cut and Graph Laplacian

Ncut(A, B) := cut(A, B)(—=+5 + —v=)
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Normalized Cut and Graph Laplacian

: . fTLf
min . = min
Ncut(A, B) TDF
] —Voll(A) ific A
where f=[f f,... f]T with f = N .
\_—VOI(B) ife€ B
T
Relaxation: min i Lt s.t. fiD1=0
fIDf

Solution: f—second eigenvector of generalized eval problem

Lf = \Df

Obtain cluster assignments by thresholding f at O



Approximation of Normalized cut

Ncut(A, B) = cut(A, B)(VO&A) =+ voItB))

Let f be the eigenvector corresponding to the second smallest eval of the
generalized eval problem.

Lf = \Df

Equivalent to eigenvector corresponding to the second smallest eval of the
normalized Laplacian L’=DL =1- D1W

Recover binary partition as follows: i€eA if fiz0
ieB if fi<O
Ideal solution Relaxed solution
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Example

Xing et al 2001

input affinity matrix affinity matrix reordered according to solution vector
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How to partition a graph into k
clusters?



Spectral Clustering Algorithm

Input: Similarity matrix W, number k of clusters to construct
e Build similarity graph

e Compute the first k eigenvectors vy, ..., v, of the matrix
L for unnormalized spectral clustering
L’ for normalized spectral clustering

e Build the matrix V € R™* with the eigenvectors as columns
e Interpret the rows of V as new data points Z; € R
Vi Vo V3

Zy | vii vi2 w3 Dimensionality Reduction
: : ; ; nxn —-nxk

Z n Vi1 V2 Vn3

e Cluster the points Z; with the k-means algorithm in RX.



Eigenvectors of Graph Laplacian

Eigenvector 1 Eig
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» 1St Eigenvector is the all ones vector 1 (if graph is connected)
« 2" Eigenvector thresholded at O separates first two clusters from last two
» k-means clustering of the 4 eigenvectors identifies all clusters



Why does it work?

Data are projected into a lower-dimensional space (the spectral/eigenvector
domain) where they are easily separable, say using k-means.

Original data Projected data

Graph has 3 connected components — first three eigenvectors are constant
(all ones) on each component.



Understanding Spectral Clustering

» |f graph is connected, first Laplacian evec is constant (all 1s)

» |f graph is disconnected (k connected components), Laplacian
is block diagonal and first k Laplacian evecs are:
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Understanding Spectral Clustering

* Isall hope lost if clusters don’t correspond to connected
components of graph? No!

* |f clusters are connected loosely (small off-block diagonal
enteries), then 15t Laplacian even is all 1s, but second evec
gets first cut (min normalized cut)

Ncut(A, B) := cut(A, B) (=5 + —r=7)

vol(A) vol(B)
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since graph is connected indicates blocks



Why does it work?

Block weight matrix (disconnected graph) results in block eigenvectors:
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Normalized to
have unit norm

Slight perturbation does not change span of eigenvectors significantly:
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1st evec is constant
since graph is connected

Sign of 2nd evec
indicates blocks



Why does it work?

Can put data points into blocks using eigenvectors:
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Understanding Spectral Clustering

* Isall hope lost if clusters don’t correspond to connected
components of graph? No!

* |f clusters are connected loosely (small off-block diagonal
enteries), then 15t Laplacian even is all 1s, but second evec
gets first cut (min normalized cut)

Neut(A, B) := cut(A, B) (siz + wg))

e What about more than two clusters?

eigenvectors f,, ..., f,,; are solutions of following normalized
cut:

Neut(Aq, ..., Z cut(4;, 4:)
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Demo: http://www.ml.uni-saarland.de/GraphDemo/DemoSpectralClustering.html



k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with
non-convex boundaries.
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k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with
non-convex boundaries.

Points of two clusters Points of two clusters
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k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with
non-convex boundaries.
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Examples

Ng et al 2001

B nips, 8 clusters
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Examples (Choice of k)

Ng et al 2001

threscircles—joined, 2 clusters threscircles—joined, 2 clusters




Some Issues

» Choice of number of clusters k
Most stable clustering is usually given by the value of k that
maximizes the eigengap (difference between consecutive
eigenvalues)
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input affinity matrix
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Some Issues

Choice of number of clusters k

Choice of similarity
choice of kernel

for Gaussian kernels, choice of o

affinity matrix reordered according to solution vector
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Some Issues

» Choice of number of clusters k
» Choice of similarity
choice of kernel
for Gaussian kernels, choice of o

» Choice of clustering method — k-way vs. recursive bipartite



Spectral clustering summary

Algorithms that cluster points using eigenvectors of matrices derived from
the data

Useful in hard non-convex clustering problems

Obtain data representation in the low-dimensional space that can be
easily clustered

Variety of methods that use eigenvectors of unnormalized or normalized
Laplacian, differ in how to derive clusters from eigenvectors, k-way vs
repeated 2-way

Empirically very successful



