
Software Risk Management and Insurance

Orna Raz
Institute for Software Research,

International
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213 USA

+1 412 268 1120
orna.raz@cs.cmu.edu

Mary Shaw
Institute for Software Research,

International
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213 USA

+1 412 268 2589
mary.shaw@cs.cmu.edu

ABSTRACT
How can we promote reuse of code, data and services? How
can we make it easier to combine on-line resources to per-
form specific tasks? One serious impediment is the risk of
relying on software that you do not control, especially the
difficulty of determining whether the software is dependable
enough for the specific task at hand. We concentrate on one
form of economic risk mitigation, insurance, and explore its
suitability for the software domain we are interested in. After
reviewing the basic principles of insurance we present some
feasible directions for dealing with software related issues
and raise some software engineering research challenges.

1 INTRODUCTION
Software reuse has many potential benefits, yet people often
prefer to develop their own solutions. When the reuse com-
munity discusses impediments to reuse (e.g. [18], [20]) one
of the underlying themes is various vulnerabilities to soft-
ware that is not completely under your control.

“Reuse” usually refers to reuse of code, where the main risks
are related to interfaces, side-effects and implicit assump-
tions. But you can also reuse data and services. We con-
centrate on an instance of this more general form of reuse:
on-line resources combined for a user-specific task, which
we call open resource coalitions [17]. Risks related to reuse
here are even more severe than in regular code reuse. The
resources remain under control of their proprietors, who are
often not aware that you are using their resources, let alone
aware of the specific ways you do so. As a result, the re-
sources may change or cease to exist at any time. How much
should you trust such software? How can you determine its
fitness for your task? A mismatch between your trip destina-
tion and your hotel reservations will cost you money, time
and inconvenience. However, if you make strategic busi-
ness decisions based on erroneous information you might
lose your business. If we could find ways to estimate and
manage such risks, this development model would be more

attractive to more people, especially non-sophisticated users
who would otherwise be unable to create such software.

Risk management consists of risk assessment and risk con-
trol [7]. Risk assessment addresses whether the software you
intend to use is good enough for the task at hand. We con-
centrate on risk control since we are interested in evaluating
the usefulness of the insurance model. In risk control a major
distinction can be made between prevention and mitigation.
The common practice in computer science is to make sure
the software works properly by performing some combina-
tion of verification and validation. This is an example of
prevention or reduction of risk. We believe this can rarely
be done cost-effectively for the everyday software we are in-
terested in. We discussed some of the problems involved in
[17]. Here we investigate mitigation. Mitigation has both
technical and economic aspects. Fault tolerance is a form
of technical mitigation. Its main concern is technical recov-
ery — trying to bring the system back to service by con-
taining the damage done. But what about compensation for
damages? Insurance is a form of economic mitigation. It
provides a way to manage risk by sharing and accepting the
transfer of risks.

Can insurance provide techniques for managing software
risks? To examine this question we first review the basic
principles of insurance. Then we look at what is needed to
enable insuring software and suggest ways to advance in this
direction. Finally, we indicate some related software engi-
neering research possibilities.

2 INSURANCE
Despite all precautions, we cannot completely avoid risks.
Insurance provides a means of reducing financial loss due to
the consequences of risks, by spreading or pooling the risks
over a large number of people. Insurers offer their prod-
uct (the insurance policy) to buyers (policy-holders) for a
price [13]. Actuarial science consists of building and ana-
lyzing mathematical models to describe the process by which
money flows into and out of an insurance system [12]. Risk
theory provides effective tools for doing so. Following [12],
we concentrate on cash outflow due to claims payments.

To understand whether insurance can be applied to software
we first need to understand the basic principles of insurance,

Position paper for EDSER-3 at the
23rd ICSE-2001.

the risk models used and the data these models require. We
begin by reviewing risk principles, following [13]. We then
follow [9] and distinguish long-term vs. short-term insur-
ance. What matters most in short-term insurance is whether
claims occur — the number of claims and their magnitude.
In long-term insurance, such as life insurance, the dominant
concern is the time lapse until a claim. The main issues are
therefore related to the way the economy will behave during
this time (e.g. interest rate and inflation). We concentrate on
short-term insurance since its time frame is the more appro-
priate model for software.

Risk Theory
An actuarial risk is a phenomenon with economic conse-
quences that is subject to uncertainty with respect to one or
more actuarial risk variables: occurrence, timing and sever-
ity. An insurer views risk as the probable amount of loss
resulting from claims. A loss event or a claim is an accident
in which an insured suffers damages which are potentially
covered by their insurance contract. The loss is the dollar
amount of damage suffered by a policy-holder as a result of
a loss event (may be zero). The amount paid is the actual
dollar amount paid to the policy-holder as a result of a loss
event (may be zero). The severity can be either the loss or
amount paid random variable. (The above are from [12]).

Risk management is targeted at coping with risks. Possible
strategies are:

� Avoidance (do not go bungee jumping any more)
� Prevention/reduction (exercise).
� Personal assumption (pay health related costs yourself)
� Sharing (join a group health plan)
� Transfer (retired persons — transfer some health care

costs to government programs)

Sharing and transfer can be accomplished through insur-
ance. In addition, insurance companies often work with their
clients to promote avoidance and prevention or reduction of
risk. Insurance aims to reduce financial loss by spreading
the risk over a group of people. The group needs to be as
homogeneous as possible regarding risk characteristics, yet
large enough to share the risk. This way people who did not
experience a loss help to repay the losses of the few who did.
The process of finding these risk groups is called risk clas-
sification. It enables determination of coverage and its price
for each group. Coverage describes both the specific pro-
tection (bounded car repair) and the kind of insurance held
(automobile). By defining the specific protection an insurer
tries to minimize the degree of insurable risk.

Not all risks are insurable. For a risk to be insurable the loss
event related to it must have the following characteristics:

� The event is accidental or unintentional
� The event can only result in financial loss, never in gain
� The loss is significant
� The amount of loss can be determined

� The insurer is capable of assuming the risk (there can
be loss events, such as war, that comply with all the
previous conditions but are uninsurable because of the
huge loss)

To distinguish insurable from non-insurable risks it helps to
categorize risks into pure risks and speculative risks. Pure
risks are accidental and unintentional events that have a prob-
ability of resulting in financial loss but never in financial
gain. Pure risks are generally considered insurable. They
include three main categories: personal, property and liabil-
ity risks. In speculative risks, such as gambling, there exists
a probability for both financial loss and gain. This proba-
bility is highly unpredictable, therefore it is not possible to
insure against such risks.

To be able to purchase insurance a person must have an in-
surable interest in the person or object to be insured, mean-
ing they would suffer a genuine loss should the event occur.

The compensation in case of a loss is set according to the
indemnity principle: the policy-holder should be fairly com-
pensated for the loss but should not profit it.

Short-Term Insurance Risk Models
A term of up to one year is considered short. Examples in-
clude most health, property and liability insurance systems.
Claims payment plays a dominant role in the risk assumed in
a short-term insurance contract. To construct a risk model we
need distributions for two basic random variables: the num-
ber of insurance claims in one period and the loss amount,
given that a loss event has occurred [13].

� The frequency distribution is the distribution of the
number of claims in one period. When the portfolio
of risks is considered as a whole this process is usu-
ally modeled as a Poisson process [5]. A short review
of short-term insurance models with emphasis on fre-
quency of claims distributions can be found in [15].

� The loss distribution is the probability distribution as-
sociated with either the loss or the amount paid [12].
Often highly skewed, heavy tailed distributions are used
to model loss represented as average payment per claim
(heavier tail: more probability is pushed into higher val-
ues). [11] presents a short review of loss distributions.

Modeling the frequency and loss distributions enables de-
termination of the minimal amount that must be charged to
policy-holders in a risk group in order to cover claims gen-
erated by this risk group. This amount is called pure or net
premium and is defined as the rate of claims times the loss
[4]. The actual premium charges are determined based on
the pure premium of each risk group along with factors re-
lated to the business environment, such as the cost structure
of the insurance company and marketing [4]. We concentrate
on pure premium.

The estimate for the pure premium is based on data which

2

is inherently incomplete and may also come from different
sources. We follow [12] in the presentation of this issue.
Risk classes are not completely homogeneous. For exam-
ple, part of the difference is due to random variations in the
underlying claim experience and part is due to the policy-
holder being indeed a better or worse risk than the class at
large. Two main sources of data are available: internal and
external. Internal data is historical data of a particular group
or individual. External data is historical data from similar
policies. Credibility is a procedure by which external and in-
ternal data are combined to better estimate the expected loss
(or any other statistical quantity) for each policy-holder. Of-
ten this is simply a weighted average of external and internal
data. [10] presents an introduction to credibility theory.

3 APPLYING INSURANCE TO SOFTWARE
Our interest is in software reuse risks. These are risks that
arise when the online code, data or services you are using
misbehave and as a result cause you an insurable loss. We are
interested in using insurance to alleviate the consequences of
such failures, thus enabling broader reuse. The risks we are
interested in arise due to the characteristics of software.There
are existing forms of insurance for risks related to the busi-
ness setting, mainly risks related to a traditional business go-
ing on-line. These include insurance against potential law-
suits involving fraud, libel or invasion of privacy and against
risks related to external attacks such as theft, tampering and
destruction of information resources [19] (also includes a list
of companies offering such insurance). For example, PayPal
[2] offers automatic free insurance (by Travelers) for up to
$100,000 against unauthorized withdrawals from your on-
line account or any of your checking accounts accessible
from it. Insurance, such as “errors & omissions” insurance,
is also available for IT solution providers [16].

It seems attractive to apply insurance to the software eco-
nomic risk mitigation problem. This long-existing solution
is well understood, and there is a large body of theory and
experience we can build on. But can the theory be mapped
to our domain? We begin by considering how insurance ap-
plies to the software domain. We suggest a plausible model
for software insurance and concentrate on anomaly detec-
tion, which we view as a first step towards such insurance.

Mapping Insurance Models to Software
Fundamental principles of insurance models need to be re-
examined for software. We want to provide solutions for the
realistic situation in which rather than having a fully vali-
dated and verified resource we have a resource that will fail
in certain ways and people that rely on the resource in differ-
ent ways. When a resource fails, different people will incur
different consequences, ranging from no loss to high loss.
We begin by examining some possibly problematic issues,
where our domain seems to differ from traditional insurance.
These are related to the data needed to construct predictive
models, the kind of models appropriate to this data, and what
is an insurable risk. We suggest plausible approaches to han-

dle each, in our domain of open resource coalitions.

Data
Risk modeling requires data on risks. The data needs to be
both of sufficient quality and quantity, to provide a sound sta-
tistical basis for predictions. Quality is related to the source
of the data. Sufficient quantity depends on the methods used.

Traditional insurance uses historical claims data to model the
probability density function (pdf) of the frequency of claims
and of loss. These models are then used as a basis for pre-
dictions. Usually a large body of external data (from similar
policies) is available, but the internal data (from a specific
policy in question) is more sparse. Credibility theory is then
used to merge the two sources. Since actuaries use paramet-
ric models they only need moderate amounts of data.

For software, even if historical data of claims were avail-
able, it would become obsolete due to the rapid software
turnaround. Instead of historical claim data we suggest col-
lecting current usage results and concentrating on failures.
We assume failure data is a sufficient surrogate for claim
data. This needs to be verified. Using failure data, risk mod-
els for a given enumeration of resources can be based on:

� Failure frequency distribution. This is analogous to the
claims frequency distribution.

� Failure consequences distribution. This is analogous to
the loss distribution.

To enable risk modeling we need to address two major is-
sues. One is figuring out the general form of these distri-
butions. This is the topic of the next section (risk models).
The other is getting data for a specific resource version. We
discuss this topic here.

Data needs to be collected and analyzed fast enough to en-
able tracking versions. Due to the demand for rapid data col-
lection we may need to simulate actual usage. A challenge
here is to find appropriate simulation models and use cases.

Data can be collected by “black-box” or “white-box” ap-
proaches. In a black-box approach the data is collected by
a neutral third party, using publicly available versions of the
resources. In a white-box approach, the third party is a part-
ner of the producer. The third party has an opportunity to
collect data in advance (before a release) and to take advan-
tage of additional kinds of data (e.g. the source code, devel-
opment process). Underwriters Laboratories, for example,
provides product certification using a white-box approach,
including certification of software components as part of an
end-product and a software component recognition program
(standards and conformance testing) [3].

Setting a premium involves extrapolating from the actual or
simulated failure information. However, there are limits to
extrapolation. The time frame for which extrapolation can
produce good results greatly depends on the characteristics
of the underlying process producing the data. A periodic

3

process enables reasonable predictions for any future period
based on data of a single period. For example, web page
accesses of most weeks can be predicted based on data of one
week. If no periodicity is identified, reasonable extrapolation
will probably (at best) be relevant for future time units that
are somehow proportional to the time units in which the data
was collected. Technically, we can collect data as frequently
as communication allows, so we can have as much data as
we need. Depending on the underlying process, however,
we may be limited by the need to collect data over a large
enough period of time (which may be dynamically refined).

Risk models
Two major classes of estimators are parametric and non-
parametric. In parametric estimation you assume the dis-
tribution belongs to a known parametric family (e.g. Nor-
mal) and use the data to guide the selection of the form of
the distribution and to calibrate its parameters (e.g. �; �)
In non-parametric estimation the true distribution of the ob-
servations is not assumed to belong to a known parametric
family, and the distribution is represented solely by the em-
pirical distribution. There are costs and benefits to each. If
the underlying distribution is known, parametric estimators
are best. Relatively little data can provide good estimations.
Most importantly, inferences can be made beyond the popu-
lation that supported the model. In case of doubt regarding
the form of the distribution, it is better (from the standpoint
of accuracy) to use non-parametric methods. Such methods
require large amounts of data for good results.

Actuaries use parametric estimators to predict short-term in-
surance costs [12], with a large collection of distributions to
choose from.

What estimators are appropriate for our domain? We have
little if any prior knowledge about the underlying distribu-
tions. We do not know whether the kind of models actuaries
use are appropriate for our data. We hope to find a subset of
actuarial parametric models that is appropriate, and to benefit
from the strict statistical rigor of traditional actuarial estima-
tions. If we cannot do that, we intend to use non-parametric
estimators. We expect the statistical rigor of such estima-
tions to suffice for providing a better alternative to the current
personal assumption of risks, as we hope to enable pooling
risks. In either case, we expect the precision of our estimates
to improve as we get more experience and data. COCOMO
[6] provides examples of empirical estimators related to soft-
ware. Software reliability engineering [14] provides exam-
ples of parametric estimators. It seems feasible to use the
latter as guidance for distributions that may be appropriate
for software failure data.

Insurable risks
As we have seen in section 2, a loss event must have certain
characteristics for the risk related to it to be insurable.

First, we need to scope the coverage provided by the insur-
ance. We need ways to define which risks are potentially

covered by our insurance, as well as ways to assign respon-
sibility for failures. Both of these are currently open research
problems. Ideally, we want to insure only against those risks
that can be connected to what is specified about the software.
Unfortunately, such specifications rarely exist. Examples of
the kinds of risks we want to consider include software prob-
lems resulting in: failure to supply any data, failure to update
the daily forecast of a weather resource. An example of a risk
beyond the scope of our insurance is problems in the weather
model itself.

Candidate loss events need to be clearly defined and then
examined against the following characteristics.

� The event is accidental or unintentional.
The event can only result in financial loss.
Assuming the resources are provided in good faith and
given that you use then for your own ends, risks seem
to have the characteristics of pure risks.

� The loss is significant. Our domain seems appropriate.
We want to make open resource coalitions appropriate
for more demanding use, through insurance. If we can
put instruments in place for risk management, we hope
the boundaries of appropriate usage will expand and so
will the opportunities of reuse (even though it will re-
main inappropriate when catastrophic consequences are
possible). For example, we can imagine the combina-
tion of fault tolerance and insurance for risk control. As
your coalition becomes more dependable, you trust it to
perform tasks requiring higher assurance. This means it
is now more usable to you, but if an unexpected failure
occurs the consequences are likely to be more severe.
Proper insurance can alleviate such risks.

� The amount of loss can be determined. In our domain,
loss is due to the consequences of software failures of
online resources. We need means for analyzing such
consequences. Determining loss is related to coverage.
The coverage has to be related to the anticipated loss
and provide an upper bound on the amount paid due to a
loss event. To determine loss it may be useful to look at
two levels of coverage. The first is limited coverage for
direct costs of using the resource. The second is higher
coverage for consequential damages of relying on the
resource. It might be prudent to begin with smaller,
direct damages coverage and extend to higher, conse-
quential damages coverage as we gain more experience
and more data. Examples of direct damages include
the cost of: using the resource, using an alternative re-
source, recovering from backup and user time. To de-
termine consequential damages we need to look at each
case separately. Imagine a couple, from different con-
tinents, planning their wedding, using online resources.
They inspect, for each of their home towns, costs and
possibilities related to organizing a party and airfare.
They notice airfare is extremely cheap for flights origi-
nating at the bride’s-to-be home town. Only after mak-
ing commitments based on this fact do they discover

4

the airfare resource they were using was producing er-
roneous data due to some internal problems. The con-
sequences for the young couple are quite severe: in or-
der for their families to be able to attend the wedding
they now have to change their plans and break previous
commitments. Apart from time and hardship, this costs
them a lot of money. Now imagine a small pesticide
business. They apply pesticide based on online weather
conditions posted the same day. If no rain is expected,
they rent a plane and apply the pesticide. If it rains af-
ter they apply the pesticide, they need to do it again.
The profitability of the business relies heavily on the
weather resource. Any problems at the resource that go
unnoticed, such as not updating the weather conditions
posted or updating for the wrong location, might result
in financial loss and in customer dissatisfaction. Look-
ing at these examples, it seems we can provide general
guidance regarding how to turn user-specific loss de-
termination into a problem that is more similar to the
traditional insurance situation. For example: look at
decisions based on a resource and quantify the cost of a
decision due to misleading information.

� The insurer is capable of assuming the risk. Open re-
source coalitions should not be used when the conse-
quences of a failure can be catastrophic. This limits the
possible loss. The loss is also limited by the scope of
our suggested insurance, by what we consider as rele-
vant loss events. In addition, in traditional insurance,
the insurer expects to get an improved estimation of ex-
pected total losses by pooling risks [12]. In our domain,
pooling seems possible. For resources provided over
the Internet there is a large enough community using
then to share the risk. Recall that our setting involves
widely used resources, not unique software (such as
spacecraft software). Insurance of unique risks is also
possible, as done by Lloyd’s [1], for example, but it
presents different problems. Once we have some data
we can begin to address the issue of whether such pool-
ing can improve the estimate for expected total losses.

Form of Software Insurance
To summarize, we see many similarities between traditional
insurance and insurance against software reuse risks, as well
as potential and promise for the latter. The key issue for soft-
ware insurance seems to be the data — the need to replace
historical claims data. Other differences follow from that.
We need to find appropriate models for the distributions of
failure frequency and consequences. Statistical analysis of
software risk modeling may be less tight, therefore the fis-
cal control lower. Yet, we believe it will enable to provide
an enhanced ability to manage reuse related risks. This will
achieve our goal of qualitatively improving users sense of
control and lowering their perceived risk.

Anomaly Detection
So far we have discussed what the form of software insur-

ance would be, how to get from data to numbers that enable
decision making. But how do we get the data in the first
place? We need both to recognize loss events and to deter-
mine loss. We concentrate here on recognizing loss events.
Consequences of loss event are beyond the scope of our work
here. In most traditional insurance settings, humans rec-
ognize loss events and file claims. Relying on humans in
our setting is not feasible. Automation changes the problem
of noticing loss events and allocating responsibility. It may
also change the way claims are filed to automatic (or semi-
automatic) filing that is coupled with loss event detection.

Loss events in our domain are software failures. We classify
such failures into communication failures (cannot get data),
syntax and format failures (cannot parse the data) and se-
mantic failures (data doesn’t make sense). Failure detection
techniques exist mainly for the first kind and for some parts
of the second. We therefore concentrate on detection of se-
mantic failures. These are failures to supply the intended se-
mantic due to software failures. Examples include failure to
provide timely updates of near real-time data, such as current
weather conditions, changing data that should be static, and
neglecting to provide complete information, such as missing
an important news item about a requested topic.

To model the frequency of failures you can look at the fre-
quency of anomalies after determining which indicate fail-
ure with high probability. A first step is to be able to detect
anomalies.

We are studying semantic anomaly detection. Our raw data
consists of HTML or XML pages from resources. Each page
is the result of a specific operation on the resource, such as
querying a weather resource for Pittsburgh’s forecast. The
data may contain any available combination of results of op-
erations (identical operations or not) on resources (a single
resource, multiple similar resources such as weather servers
or multiple distinct resources that are combined in a coali-
tion). We deal with real-world resources so our data is noisy.
To avoid the need for excessive user and domain specific in-
formation and to tolerate noisy data, statistical techniques are
appropriate. It seems feasible we can collect enough data to
enable statistical inference. This is especially attractive as a
way to enable anomaly detection while avoiding the thorny
issue of precise specifications.

We anticipate, for example, detecting problems related to
timeliness, consistency or completeness of near real-time
data resources using existing techniques such as linear com-
binations of values from multiple resources using a moving
window [21] and dynamic de-facto invariant detection [8]
(again using a moving window). The details are beyond the
scope of this paper, but preliminary experiments, using in-
variant detection on stock quote data, look promising. After
making a lot of simplifying assumptions we were able to de-
tect inconsistencies and missing data.

Data mining techniques are designed to deal with large quan-

5

tities of noisy data. These characteristics are excellent match
for our data. There may, however, be some mismatches, as
suggested by work done at IBM [4], which used data mining
for discovering insurance risks in traditional property and ca-
sualty insurance.

4 RESEARCH QUESTIONS
We have presented issues related to applying insurance to
software risk mitigation and suggested plausible directions
for dealing with some of them. Here we list some related
software engineering research questions.

� Defining risks and failures. What are the types of insur-
able risks related to an open resource coalition (ORC)?
How do we define and identify failures?

� Assigning responsibility for failures.
� Refining the ORC model with real data.
� Distributions for failure frequency and consequences.
� Semantic anomaly detection. What does semantic

anomaly mean for different types of resources? Can we
generalize beyond a specific domain and user?

� Data mining and semantic anomaly detection. Are data
mining techniques applicable? What techniques are ap-
propriate for different types of anomalies?

� Combining insurance and fault tolerance as risk miti-
gation techniques. What is the relationship between
fault tolerance and loss? (e.g. adding fault tolerance
makes severe failures less frequent but also makes peo-
ple trust the system more, resulting in higher conse-
quences of failures). Can insurance estimates of failures
guide cost-effective fault-tolerance?

� Generalizing software insurance to more settings. We
examined what is needed to enable insurance for ORCs.
We suspect this can be generalized to other software
classes as well. What are these classes? What changes
to the data and models will be needed?

� Simulation models. Can we find representative use
cases to enable both fast data collection and good pre-
dictions?

� Loss estimation. How can we get from software failures
to their effect the user?

5 ACKNOWLEDGMENTS
This research was supported by the National Science Foun-
dation under Grant CCR-0086003.

The authors thank Philip Koopman and his students for their
helpful comments and suggestions.

REFERENCES

[1] Lloyd’s home page. http://www.lloyds.com.

[2] Paypal home page. http://www.paypal.com.

[3] Underwriters laboratories. http://www.ul.com/pscs.

[4] C. Apte, E. Grossman, E. Pednault, B. Rosen, F. Tipu, and
B. White. Probabilistic estimation based data mining for dis-
covering insurance risks. Research report, IBM T. J. Watson
Research Center, 1999.

[5] R. E. Beard, T. Pentikainen, and E. Pesonen. Risk Theory:
The Stochastic Basis of Insurance. Chapman and Hall, third
edition, 1984.

[6] B. W. Boehm. Software Engineering Economics. Prentice
Hall PTR, 1981.

[7] B. W. Boehm. Software risk management: Principles and
practices. IEEE Software, pages 32–41, January 1991.

[8] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution. ICSE 99, pages 213–224, 1999.

[9] J. C. Hickman. Introduction to actuarial mathematics. In Ac-
tuarial Mathematics, volume 35 of Proceedings of Symposia
in Applied Mathematics, pages 1–3. 1986.

[10] P. M. Kahn. Overview of credibility theory. In Actuarial
Mathematics, volume 35 of Proceedings of Symposia in Ap-
plied Mathematics, pages 57–66. 1986.

[11] S. A. Klugman. Loss distributions. In Actuarial Mathematics,
volume 35 of Proceedings of Symposia in Applied Mathemat-
ics, pages 31–55. 1986.

[12] S. A. Klugman, H. H. Panjer, and G. E. Willmot. Loss Models:
From Data to Decisions. John Wiley & Sons, 1998.

[13] T. Lowe. The Business of Insurance: A Comprehensive Intro-
duction to Insurance. Health Insurance Association of Amer-
ica, 1998. (Primary author).

[14] M. R. Lyu. Software Reliability Engineering. IEEE Computer
Society Press, 1995. (Editor).

[15] H. H. Panjer. Models in risk theory. In Actuarial Mathematics,
volume 35 of Proceedings of Symposia in Applied Mathemat-
ics, pages 17–30. 1986.

[16] D. Raikow, M. Mehler, and B. Napach. Watch your step.
SmartPartner, February 2001.

[17] O. Raz and M. Shaw. An approach to preserving sufficient
correctness in open resource coalitions. Tenth International
Workshop on Software Specification and Design (IWSSD-
10). IEEE Computer Society, November 2000.

[18] B. Stroustrup. Language-technical aspects of reuse. Forth
International Conference on Software Reuse. IEEE Computer
Society, April 1996.

[19] J. Voas. The cold realities of software insurance. IT Pro,
January — February 1999.

[20] J. Waldo. Code reuse, distributed systems, and language cen-
tric design. Fifth International Conference on Software Reuse.
IEEE Computer Society, June 1998.

[21] B.-K. Yi, N. D. Sidiropoulos, T. Johnson, H. Jagadish,
C. Faloutsos, and A. Biliris. Online data mining for co-
evolving time sequences. ICDE 2000, San Diego, CA, Feb
2000.

6

