Specification and Verification in Introductory Computer Science

Frank Pfenning

Research Proposal

MSR-~-CMU Center for Computational Thinking
October 2010

Project Description

One of the fundamental concepts in computational thinking is the separation of what from how and
the relationship between them. Yet today’s introductory education in computer science concentrates
almost exclusively on how. Even when specifications are mentioned, they remain informal and are
rarely actively practiced by the students.

We contend that introductory computer science education can be dramatically improved
through the introduction of explicit specifications into the programming process. This
includes pre- and post-conditions for functions, loop invariants, and data structure
invariants.

In an on-going freshmen-level pilot course on Principles of Imperative Computation at Carnegie
Mellon University, we have successfully introduced a number of computational thinking concepts,
including the use of specifications. At present, these specifications are used only for dynamic
checking, and only when the code is compiled with a particular flag. While this has already helped
the students significantly in designing and debugging their code, we believe it falls far short of
what could be accomplished with tools for static checking, giving the students immediate feedback
during the programming process.

We propose to investigate a number of questions surrounding the use of specifications in intro-
ductory computer science education. While we can rely on and exploit recent progress in the field
of formal verification, its use in introductory computer science courses creates a number of new
research questions and opportunities.

e Can we use specifications to ensure correctness for portions of the program, thereby guiding
the development and debugging process at the introductory level?

e Can we provide students with meaningful counterexamples to specifications that are not
satisfied?

e Can we devise a practical system of blame assignment when a combination of static and
dynamic checking indicates errors in the program?

e Can we exploit specifications to guide generation of test cases?

We envision that this research will be carried out with the CO subset of the C language that
we have specifically designed for the purpose of teaching introductory imperative programming
and computational thinking! and which is currently in use in the pilot course mentioned above. In
order to reduce the number of concepts that students need to learn, specifications do not use general
logical constructs such as quantifiers, but are expressed as ordinary, boolean functions without side
effects. This creates some additional research questions.

Thanks to a 2009-10 grant from the CMU-MSR Center for Computational Thinking

e Can we accomplish our educational goals without introducing any explicit logical language
or formal rules for reasoning?

e Can we design and build effective tools as sketched above using only functions definable within
a simple imperative language?

Finally, there are some considerations particularly pertinent to the educational context in which this
research takes place. On the positive side, a large number of programs from novice programmers
with varying backgrounds and skill levels will be available for calibration and experimental evaluat.
On the negative side, students have limited experience which puts strict usability requirements on
any tools we develop. We also propose to consider the following educational research questions:

e Can we statistically demonstrate the effectiveness of our course, language, and tool design?

e Do the lessons and techniques learned transfer to later courses within an undergraduate com-
puter science curriculum? What specific measures can we take to ensure students’ preparation
for follow-on courses, specifically those traditionally using imperative or object-oriented pro-
gramming languages?

Project Context

How do we educate the next generation of scientists and engineers in computer science? We believe
that computational thinking must be a central part of such an education, going beyond “pro-
gramming” in itself. Only the combination and relationships between computational thinking,
programming, and algorithms gives students the breadth of techniques and depth of understanding
to solve the computational problems their disciplines will face in this century. Traditional introduc-
tory computer science education falls far short. We believe that deeper reasoning will be crucial,
as well as languages and tools that support the teaching of such reasoning. This is precisely what
the proposed project is aiming at. Besides its intrinsic value, we also believe that the increasing
use of specifications in the computer industry itself has created the need for our graduates to have
a strong working knowledge in this area.

Collaboration with MSR

I have been in touch with researchers in the MSR RiSE group, specifically Rustan Leino and Nikolaj
Bjgrner, who both are quite interested in a proposed collaboration. Some of the original inspiration
for the course and approach came from Manuvir Das, now at MSR India. Other researchers at
MSR India in the Rigorous Software Engineering group like Sriram Rajamani and Aditya Nori may
also be interested, as might Byron Cook from MSR Cambridge.

Budget Information

I am requesting $100K per year for two years, starting January 1, 2011. Under the assumption of no
overhead, this will cover one month of summer or academic year salary for me, one graduate student
(vet to be recruited), part-time programming support from an undergraduate, plus appropriate
computing and travel support, including visits to Microsoft and appropriate conferences. If I am
unable to recruit a graduate student for the spring semester, I propose to partially support William
Lovas, a teaching postdoc, so he can devote part of his time to tool design, implementation, and
evaluation.

