
15-411/15-611 Compiler Design

Seth Copen Goldstein

Register Allocation

15-411/611 © 2019-21 Goldstein 1

January 15, 2026

Cartoon Compiler

Lex Parse Semantics translation

instruction

selection

register

allocation

code

generation
optimization

15-411/611 © 2019-21 Goldstein 2

Unusual Order

• Standard is to start at the start and proceed
down the passes: lexing, parsing, …

• We start with Register Allocation, then do
Instruction Selection!

15-411/611 © 2019-21 Goldstein 3

Lex Parse Semantics translation

instruction

selection

register

allocation

code

generation
optimization

Today

• Intro to language of L1

• briefly: AST, Abstract assembly, Temps

• Register Allocation Overview

• Interference Graph

• Iterated Register Allocation

– Simplify/Select

– Coalescing

– Spilling

• Special Registers

15-411/611 © 2019-21 Goldstein 4

Simple Source Language

• A language of assignments, expressions,
and a return statement.

• Straight-line code

• Basically lab1 subset of C0

15-411/611 © 2019-21 Goldstein 5

Simple Source Language

program := s1 ; s2 ; … sn ; sequence of statements

s := v = e assignment

 | return e return

e := c constant

 | v variable

 | e1  e2 binary operation

 := + | - | * | / | %

15-411/611 © 2019-21 Goldstein 6

Ambiguity?
Semantics?

stmt

expr

Abstract Syntax Tree

15-411/611 © 2019-21 Goldstein 7

stmt-list

stmt stmt-list

stmt-list

stmt

=

var expr



expr expr

var const

return

expr

Example

z = x + 3 * y – 5;

return z;

15-411/611 © 2019-21 Goldstein 8

Possible parse tree

z = x + 3 * y – 5;

return z;

15-411/611 © 2019-21 Goldstein 9

stmt-list

=
stmt-list

return

z

+

x -

y3

* 5

z

Many other possibilites

Abstract Assembly as IR

• Lowering of AST

• Facilitate

– Analysis & optimizations

– Translation to actual assembly

• Features:

– Unlimited number of “temporaries”

– May (or may not) restrict how memory is used

– Simple operations

– May (or may not) restrict how constants are used

– May specify certain “special registers”

15-411/611 © 2019-21 Goldstein 10

In today’s world
aka registers

Abstract Assembly as IR

• Features:

– Unlimited number of “temporaries”

– May (or may not) restrict how memory is used

– Simple operations

– May (or may not) restrict how constants are used

– May specify certain “special registers”

dest  src1 operator src2

dest  operator src1

 operator

15-411/611 © 2019-21 Goldstein 11

src can be:
- constant
- temporary
- special register
- memory

Abstract Assembly Language

program := i1 i2 … in seq of instructions

i := d  s move

 | d  s1  s2 binop

 | return s1 return

s := c intermediate

 | t temporary

 | r register

d := t

 | r

 := + | - | * | / | %

15-411/611 © 2019-21 Goldstein 12

values

locations

• intermediate – constants of
some type

• temporary – a compiler
generated location which holds
a value. After compilation it will
be mapped to a register or a
memory location

• register – generally a real
register from the target
architecture

Abstract Assembly Language

program := i1 i2 … in seq of instructions

i := d  s move

 | d  s1  s2 binop

 | return s1 return

s := c intermediate

 | t temporary

 | r register

d := t

 | r

 := + | - | * | / | %

15-411/611 © 2019-21 Goldstein 13

values

locations

What is right “level”?

Closer to the machine

program := i1 i2 … in seq of instructions

i := d  s move

 | d  s1  s2 binop

 | return return what is in rax

s := c intermediate

 | t temporary

 | r register

d := t

 | r

 := + | - | * | / | %

15-411/611 © 2019-21 Goldstein 14

Deep Breath

• Defined source language using BNF

– Ambiguity

– Semantics

• AST

• Abstract assembly

– Operators

– L-values and R-values

– Temps, registers, constants

15-411/611 © 2019-21 Goldstein 15

15-411/611 © 2019-21 Goldstein 16

Register Allocation

• Until register allocation we assume an
unlimited set of registers (aka “temps” or
“pseudo-registers”).

• But real machines have a fixed set of
registers.

• The register allocator must assign each
temp to a machine register.

Register Allocation

• Map the variables & temps in the abstract
assembly to actual locations in the machine

• The locations are either

– physical registers

– slots in the activation frame

• Essential for modern architectures

– registers are much faster, consume less power, etc.

– Some operations require registers

– Goal: Try and allocate as many of the important
variables/temps to registers.

• However, there are only a few registers
15-411/611 © 2019-21 Goldstein 17

Locations

• Physical registers

• Slots in the activation frame

15-411/611 © 2019-21 Goldstein 18

Sub-tasks of Register Allocation

• Assignment: map temps to particular registers

• Spilling: If we can’t assign to a register, assign
to a slot in the stack frame and add code to
save and restore temp.

• Coalescing: If possible eliminate moves, ab,
and map both a & b to the same location.

• Ensure special cases are handled properly.

– instructions, e.g., imul, ret, …

– ABI, e.g., callee/caller save registers, function
arguments.

15-411/611 © 2019-21 Goldstein 19

Liveness

• A variable is “alive” if it is needed.

• It is needed if it is may be used on
the righthand side of an
instruction.

• Otherwise, it is dead.

• We might ask:

– What variables are live at some
point in the program?

– When is a variable live in the
program?

15-411/611 © 2019-21 Goldstein 22

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

15-411/611 © 2019-21 Goldstein 23

Interference

• Consider two temps, t0 and t1.

• If the live ranges for t0 and t1 overlap, we
say that they interfere.

• First rule of register allocation:

– Temps with interfering live ranges may not be
assigned to the same machine register.

Running Example

• Two variables, e.g., x & v,
need to be in different
registers if at some point in
the program they hold
different values.

15-411/611 © 2019-21 Goldstein 25

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

Running Example

• Two variables, e.g., x & v,
need to be in different
registers if at some point in
the program they hold
different values.

15-411/611 © 2019-21 Goldstein 26

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u What (if any) program points
require x & v to be in different
registers? (E.g., where do they
“interfere”?)

Running Example

• Two variables, e.g., x & v,
need to be in different
registers if at some point in
the program they hold
different values.

15-411/611 © 2019-21 Goldstein 27

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

Running Example

• Two variables, e.g., x & v, need
to be in different registers if at
some point in the program they
hold different values.

• Use liveness information

• A variable is live at a given point
in the program if it is defined
and can be used at some later
point in the program.

15-411/611 © 2019-21 Goldstein 28

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

Liveness in straight line code

• Work backwards and at each
instruction:

• If variable is used on right
hand side, it is live-in

• if variable was live before it is
still live-in (unless defined on
left-hand side)

15-411/611 © 2019-21 Goldstein 29

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

Liveness in straight line code

• Work backwards and at each instruction:

• If variable is used on right hand side, it is live-in

• if variable was live before it is still live-in (unless
defined on left-hand side)

15-411/611 © 2019-21 Goldstein 30

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

Liveness in straight line code

• Work backwards and at each instruction:

• If variable is used on right hand side, it is live-in

• if variable was live before it is still live-in (unless
defined on left-hand side)

15-411/611 © 2019-21 Goldstein 31

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

{ }

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

live-in sets

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

Live-out more useful

15-411/611 © 2019-21 Goldstein 32

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

Interference and Liveness

• Two variables that are live at the same point in the
program interfere with each other and need to be
assigned to different registers.

15-411/611 © 2019-21 Goldstein 33

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }

15-411/611 © 2019-21 Goldstein 34

General Plan

• Construct an interference graph

• Map temps to registers

• Deal with spills

• Generate code to save & restore

• Respect special registers

– avoid reserved registers

– Use registers properly

– respect distinction between callee/caller save
registers

Interference Graph

• Nodes are temps and registers

• Edge (a,b) indicates a and b “interfere”
In other words, a and b cannot be in the
same register.

15-411/611 © 2019-21 Goldstein 35

v

x w

u

t

15-411/611 © 2019-21 Goldstein 36

Optimistic Graph Coloring

• Construct Interference Graph
– Use liveness information

– Each node in the interference graph is a temp

– (u,v)  G iff u & v can’t be in the same hard register,
i.e., they interfere

• Color Graph
– Assign to each node a color from a set of k colors,

k = | register set |

• Spill
– If can’t color graph with k colors then spill some

temps into memory. Regenerate asm code and
start over.

15-411/611 © 2019-21 Goldstein 37

An Example, k=4

v

w x

u
t

Compute live ranges

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }

15-411/611 © 2019-21 Goldstein 38

An Example, k=4

Construct the interference graph

v

x w

u

t

v

w x

u
t

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

In Practice

• At point of definition of t, add edges
between t and all u  live-out, tu

15-411/611 © 2019-21 Goldstein 39

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }

v

x w

u

t

In Practice

• At point of definition of t, add edges
between t and all u  live-out, tu

15-411/611 © 2019-21 Goldstein 40

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }

v

x w

u

t

15-411/611 © 2019-21 Goldstein 41

An Example, k=4

A greedy Coloring

v

x w

u

t

v

x

t

u

w

Voila, registers are assigned!v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

15-411/611 © 2019-21 Goldstein 42

A Special Interference Edge

u & v are special. They interfere, but only through a move!

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

v

w x

u
t

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }

v

x w

u

t

v

x

t

u

w

Interference and Coalescing

• We would like to eliminate the move u  v by
having u and v share a register (i.e, coalescing)

15-411/611 © 2019-21 Goldstein 43

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }

15-411/611 © 2019-21 Goldstein 44

An Example, k=4

v

x w

u

t

v

x

t

u

w

Rewrite the code to coalesce u & v

uvuv

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

uv

w x

uv
t

15-411/611 © 2019-21 Goldstein 45

Another way to think about it

v

x w

u

t

v

x

t

u

wuvv

v  1

w  v + 3

x  w + v

u  v

t  v + v

  w + x

  t

  v

w x

v
t

15-411/611 © 2019-21 Goldstein 46

Is Coalescing always good?

y

u x

b

av

uv

Was 2-colorable,
now it needs 3 colors

So, we treat moves specially.

15-411/611 © 2019-21 Goldstein 47

An Example, k=4

v

x w

u

t

v

x

t

u

w

Interference from moves become “move edges.”

uvuv

v

w x

u
t

15-411/611 © 2019-21 Goldstein 48

An Example, k=3

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

15-411/611 © 2019-21 Goldstein 49

An Example, k=3

Compute live ranges

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

v

w x

u
t

15-411/611 © 2019-21 Goldstein 50

An Example, k=3

Construct the interference graph

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

v

w x

u
t

15-411/611 © 2019-21 Goldstein 51

An Example, k=3

v

x w

u

t

x

t

So, we need to spill

w

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

15-411/611 © 2019-21 Goldstein 52

An Example, k=3

v

x w

u

t

x

t

What to spill? Why?

w

v  1

w  v + 3

x  w + v

u  v

t  u + v

  w + x

  t

  u

v

w x

u
t

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

  w + x’

  t

  u

15-411/611 © 2019-21 Goldstein 53

An Example, k=3
Choose x and Rewrite program

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

  w + x’

  t

  u

15-411/611 © 2019-21 Goldstein 54

An Example, k=3
recalculate live ranges

{ v }

{ w, v }

{ w, v, x }

{ w, v }

{ w, u, v }

{ w, t, u }

{ w, t, u,

x’ }

{ u, t } }

{ }

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

  w + x’

  t

  u

15-411/611 © 2019-21 Goldstein 55

An Example, k=3
recalculate live ranges

{ v }

{ w, v }

{ w, v, x }

{ w, v }

{ w, u, v }

{ w, t, u }

{ w, t, u, x’ }

{ u, t }

{ u }

{ }

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

  w + x’

  t

  u

15-411/611 © 2019-21 Goldstein 56

An Example, k=3
recalculate live ranges

v

w x

u

t

v

w

x

u

t

x’

Spilling reduces live ranges, which
decreases register pressure.

15-411/611 © 2019-21 Goldstein 57

An Example, k=3

Recalculate interference graph

v

x

u

t

w

x’

v

w

x

u

t

x’

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

  w + x’

  t

  u

15-411/611 © 2019-21 Goldstein 58

An Example, k=3

Recalculate interference graph

v

x

u

t

w

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

  w + x’

  t

  u

x’

v

w

x

u

t

x’

15-411/611 © 2019-21 Goldstein 59

An Example, k=3

Recolor Graph

v

x

u

t

w

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

  w + x’

  t

  u

x’

v

w

x

u

t

x’

15-411/611 © 2019-21 Goldstein 60

An Example, k=3

Sigh

v

x

u

t

w

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

  w + x’

  t

  u

x’

v

w

x

u

t

x’

15-411/611 © 2019-21 Goldstein 61

An Example, k=3

respill

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

  w + x’

  t

u’ M[1]

  u

15-411/611 © 2019-21 Goldstein 62

An Example, k=3

construct new interference graph

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

  w + x’

  t

u’ M[1]

  u

v

w

x

u

t

u’

v

x

u

t

w

x’

u’

x’

15-411/611 © 2019-21 Goldstein 63

An Example, k=3

construct new interference graph

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

  w + x’

  t

u’ M[1]

  u

v

w

x

u

t

u’

v

x

u

t

w

x’

u’

x’

15-411/611 © 2019-21 Goldstein 64

An Example, k=3

color graph

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

  w + x’

  t

u’ M[1]

  u

v

w

x

u

t

u’

v

x

u

t

w

x’

u’

x’

wx

x’

t

u’

15-411/611 © 2019-21 Goldstein 65

An Example, k=3

color graph

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

  w + x’

  t

u’ M[1]

  u

v

w

x

u

t

u’

v

x

u

t

w

x’

u’

x’

15-411/611 © 2019-21 Goldstein 66

An Example, k=3

color graph

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

  w + x’

  t

u’ M[1]

  u

v

w

x

u

t

u’

v

x

u

t

w

x’

u’

x’

uv

Graph coloring

• Once we have an interference graph, we
can attempt register allocation by
searching for a K-coloring

• This is an NP-complete problem (for K>2)

• But a linear-time simplification algorithm
(by Kempe, 1879) tends to work well in
practice

15-411/611 © 2019-21 Goldstein 67

Kempe’s observation

• Given a graph G that contains a node n
with degree less than K, the graph is K-
colorable iff G with n removed is K-
colorable

– This is called the “degree<K” rule

• So, let’s try iteratively removing nodes
with degree<K

• If all nodes are removed, then G is
definitely K-colorable

15-411/611 © 2019-21 Goldstein 68

Kempe’s algorithm

• First, iteratively remove degree<K nodes,
pushing each onto a stack

• If all get removed, then pop each node
and rebuild the graph, coloring as we go

• If we get stuck (i.e., no degree<K nodes),
then remove any node and continue

15-411/611 © 2019-21 Goldstein 70

Example, k=3

15-411/611 © 2019-21 Goldstein 71

v

x

u

t

w

x’

u’

Example, k=3

15-411/611 © 2019-21 Goldstein 72

v

x

u

t

w

x’
u’

Example, k=3

15-411/611 © 2019-21 Goldstein 73

v

x

u

t

w

x’

u’

Example, k=3

15-411/611 © 2019-21 Goldstein 74

v

x

u

t

w

x’

u’

Example, k=3

15-411/611 © 2019-21 Goldstein 75

v

x

u

t

w

x’

u’

Example, k=3

15-411/611 © 2019-21 Goldstein 76

v
x

u

t

w

x’

u’

Example, k=3

15-411/611 © 2019-21 Goldstein 77

v
x

u

t

w

x’

u’

uvx

t

w

x’

u’

Example, k=3

15-411/611 © 2019-21 Goldstein 78

v

u

t

w

x’

u’

uvx

t

w

x’

u’

Example, k=3

15-411/611 © 2019-21 Goldstein 79

v

u

t

x’

u’

uvx

t

w

x’

u’

Example, k=3

15-411/611 © 2019-21 Goldstein 80

v

ux’

u’

uvx

t

w

x’

u’

Example, k=3

15-411/611 © 2019-21 Goldstein 81

v

u

u’

uvx

t

w

x’

u’

Example, k=3

15-411/611 © 2019-21 Goldstein 82

v

u

uvx

t

w

x’

u’

Voila!

15-411/611 © 2019-21 Goldstein 83

Alg not perfect

A B

D E

C

What should we do when there
is no node of degree < k?

Optimisitic Coloring

15-411/611 © 2019-21 Goldstein 84

A B

D E

C

Chaitin’s allocator

• Build: construct the interference graph

• Simplify: node removal, a la Kempe

• Spill: if necessary, remove a degree≥K
node, marking it as a potential spill

• Select: rebuild the graph, coloring as
we go

– if a potential spill can’t be colored, mark
it as an actual spill and continue

• Start over: if there are actual spills,
generate spill code and then start over

15-411/611 © 2019-21 Goldstein 85

Choosing potential spills

• When choosing a node to be a
potential spill, we want to minimize its
performance impact

• Can attempt to compute a spill cost
for each temp

– by estimating performance cost

– or by using actual profile information

• More on this later...

15-411/611 © 2019-21 Goldstein 86

15-411/611 © 2019-21 Goldstein 87

Choosing Potential Spills

• When choosing a node to be a potential
spill, we want to minimize its performance
impact

• What should we choose to spill?
– Something that will eliminate a lot of

interference edges

– Something that is used infrequently

– Something that is NOT used in loops

– Maybe something that is live across a lot of
calls?

15-411/611 © 2019-21 Goldstein 88

Setting Up For Better Spills

• We want temps not-live across procedures to be
allocated to caller-save registers. Why?

• We want temps live across many procs to be in
callee-save registers

• We prefer to use callee-save registers last.

• We want live ranges of precolored nodes to be
short!

15-411/611 © 2019-21 Goldstein 90

Where We Are

Build

Simplify

Potential Spill

Select

Actual Spill

15-411/611 © 2019-21 Goldstein 91

Coalescing

v

x w

u

t

w’ w’’

v  1

w  v + 3

M[]  w

w’  M[]

x  w’ + v

u  v

t  u + v

w”  M[]

  w” + x

  t

  u Removing unnecessary
moves.

Can u & v be coalesced?
Should u & v be coalesced?

15-411/611 © 2019-21 Goldstein 92

Where We Are

Build

Simplify

Potential Spill

Select

Actual Spill

Coalesce

Coalescing

• Conservative or Aggressive?

• Aggressive:

– coalesce even if potentially causes spill

– Then, potentially undo

• Conservative:

– coalesce if it won’t make graph uncolorable

– How to detect?

15-411/611 © 2019-21 Goldstein 93

15-411/611 © 2019-21 Goldstein 94

Briggs

• Can coalesce a and b if
 (# of neighbors of ab with degree  k) < k

• Why?

– Simplify removes all nodes with degree < k

– # of remaining nodes < k

– Thus, ab can be simplified
v

x w

u

t

w’ w’’

uv

15-411/611 © 2019-21 Goldstein 95

Briggs

v

x w

u

t

w’ w’’

uv

15-411/611 © 2019-21 Goldstein 96

Preston

• Can coalesce a and b if
 foreach neighbor t of a

– t interferes with b, or,

– degree of t < k

• Why?
– let S be set of neighbors of a with degree < k

– If no coalescing, simplify removes all nodes in S, call
that graph G1

– If we coalesce we can still remove all nodes in S, call
that graph G2

– G2 is a subgraph of G1

15-411/611 © 2019-21 Goldstein 97

Preston

a

b

S1

S2
S3

S4

x1

x2

a

b
x1

x2

No coalescing,
after

simplification

ab
x1

x2

After coalescing and
simplification

15-411/611 © 2019-21 Goldstein 98

Why Two Methods?

• With Briggs one needs to look at:
 neighbors of a & b

• With Preston, only need to look at
 neighbors of a.

• As we will see, we will need to insert “hard”
registers into graph and they have LOTS of
neighbors

– RAX, RCX, RDI, …

– Called hard registers

– aka precolored nodes

15-411/611 © 2019-21 Goldstein 99

Briggs and Preston

• With Briggs one needs to look at:
 neighbors of a & b

• With Preston, only need to look at
 neighbors of a.

• Briggs
 Used when a and b are both temps

• Preston
 Used when either a or b is precolored

What about special registers?

• Instructions with register requirements

• Callee-save registers
– x86-64: RDI, RSI, RDX, RCX, R8, R9 must be

saved by callee if callee wants to use them.

15-411/611 © 2019-21 Goldstein 100

d  a * b

ret x

What about special registers?

• Instructions with register requirements

15-411/611 © 2019-21 Goldstein 101

d  a * b

movl a, rax

 imul b ; rdx,rax

 movl rax, da

rax

d

b

What about special registers?

• Instructions with register requirements

15-411/611 © 2019-21 Goldstein 102

d  a * b

movl a, rax

 imul b ; rdx,rax

 movl rax, da

rax

d

b If all goes perfectly, then a & d will

end up being coalesced with rax

What about special registers?

• Instructions with register requirements

15-411/611 © 2019-21 Goldstein 103

d  a * b

ret x

movl a, rax

 imul b ; rdx,rax

 movl rax, d

movl x, rax

 ret

15-411/611 © 2019-21 Goldstein 104

Preserving Callee-registers

• Move callee-reg to temp at start of proc

• Move it back at end of proc.

• What happens if there is no register pressure?

• What happens if there is a lot of register pressure?

prologue: define r

 t1  r

 …

epilogue: r  t1

 use r

