

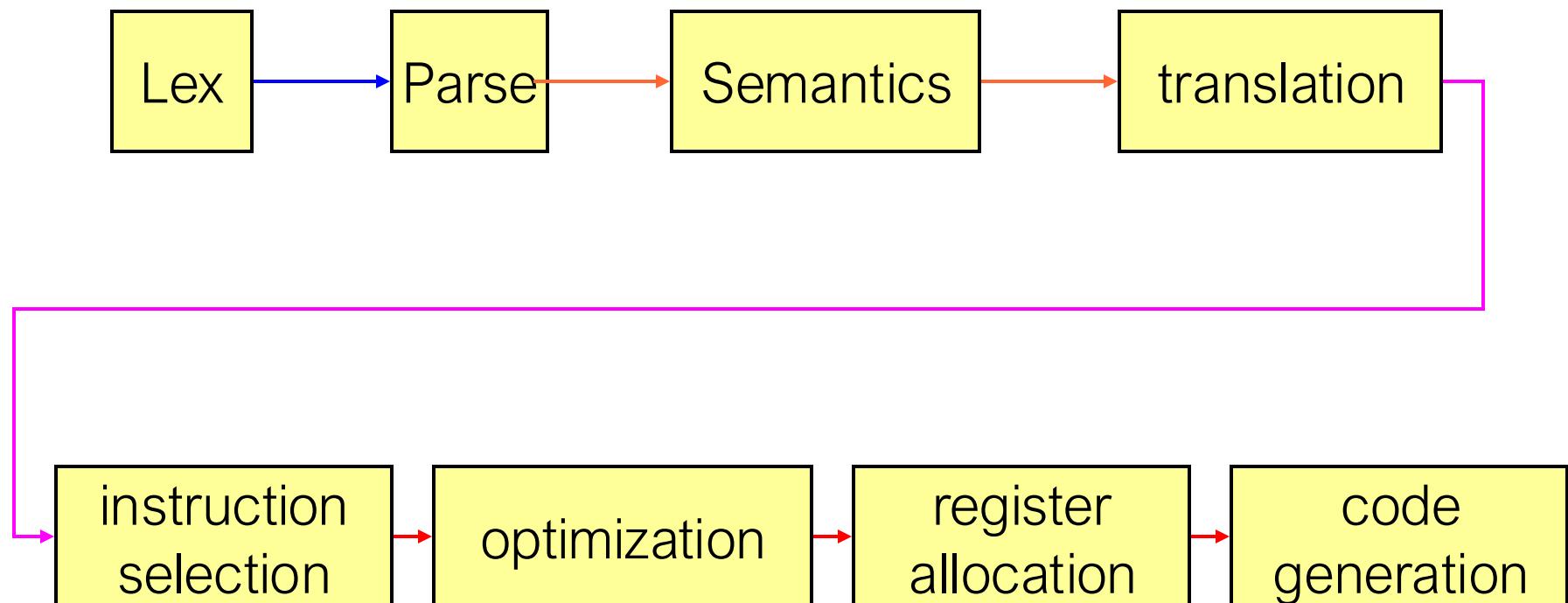
Register Allocation

15-411/15-611 Compiler Design

Seth Copen Goldstein

January 15, 2026

Cartoon Compiler



Unusual Order

- Standard is to start at the start and proceed down the passes: lexing, parsing, ...
- We start with Register Allocation, then do Instruction Selection!



Today

- Intro to language of L1
- briefly: AST, Abstract assembly, Temps
- Register Allocation Overview
- Interference Graph
- Iterated Register Allocation
 - Simplify/Select
 - Coalescing
 - Spilling
- Special Registers

Simple Source Language

- A language of assignments, expressions, and a return statement.
- Straight-line code
- Basically lab1 subset of C0

Simple Source Language

program := $s_1 ; s_2 ; \dots s_n ;$ sequence of statements

s := $v = e$ assignment

| return e return

e := c constant

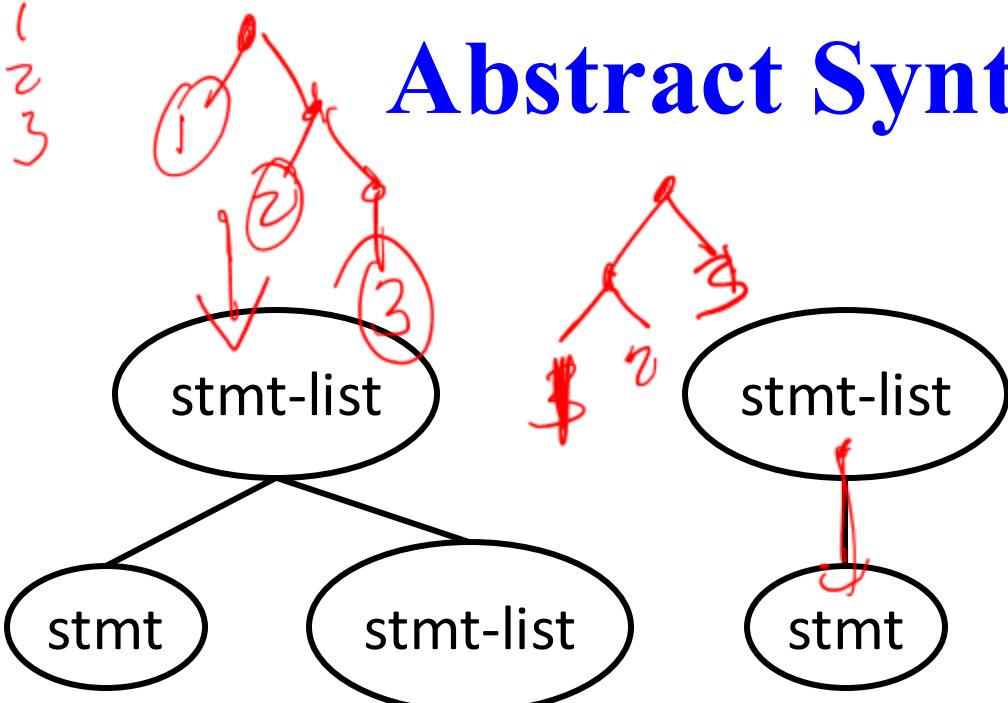
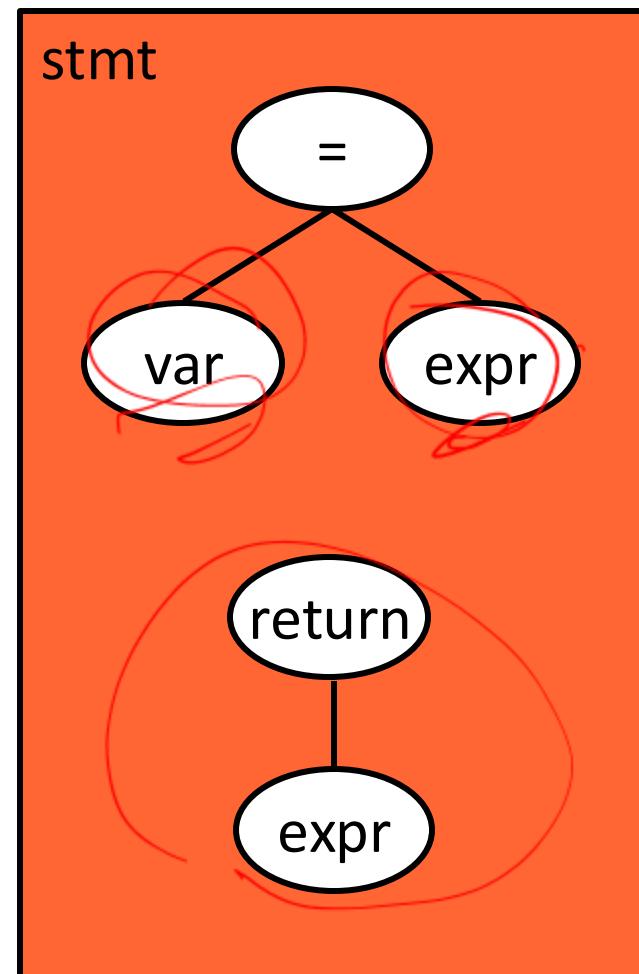
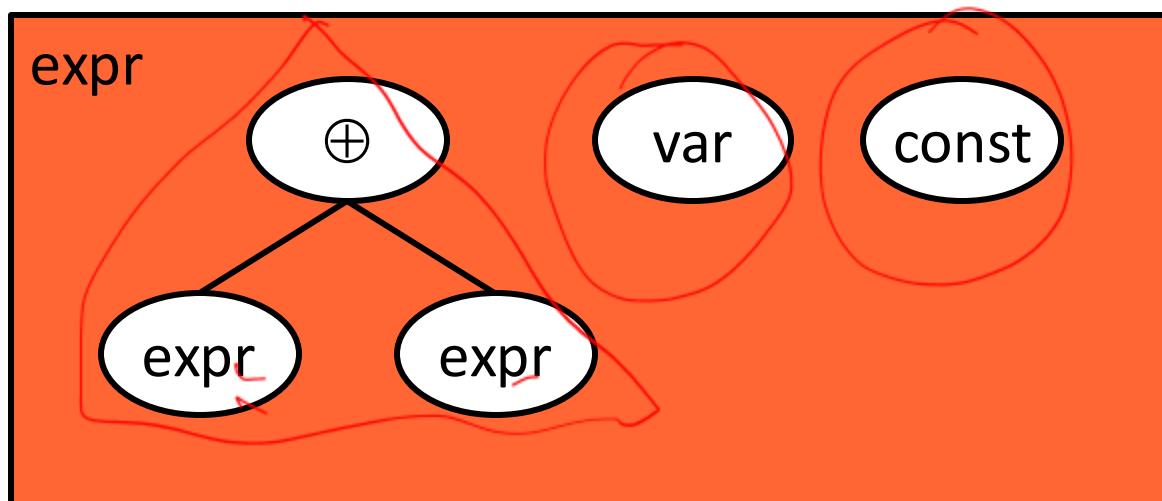
| v variable

| $e_1 \oplus e_2$ binary operation

\oplus := + | - | * | / | %

Ambiguity?
Semantics?

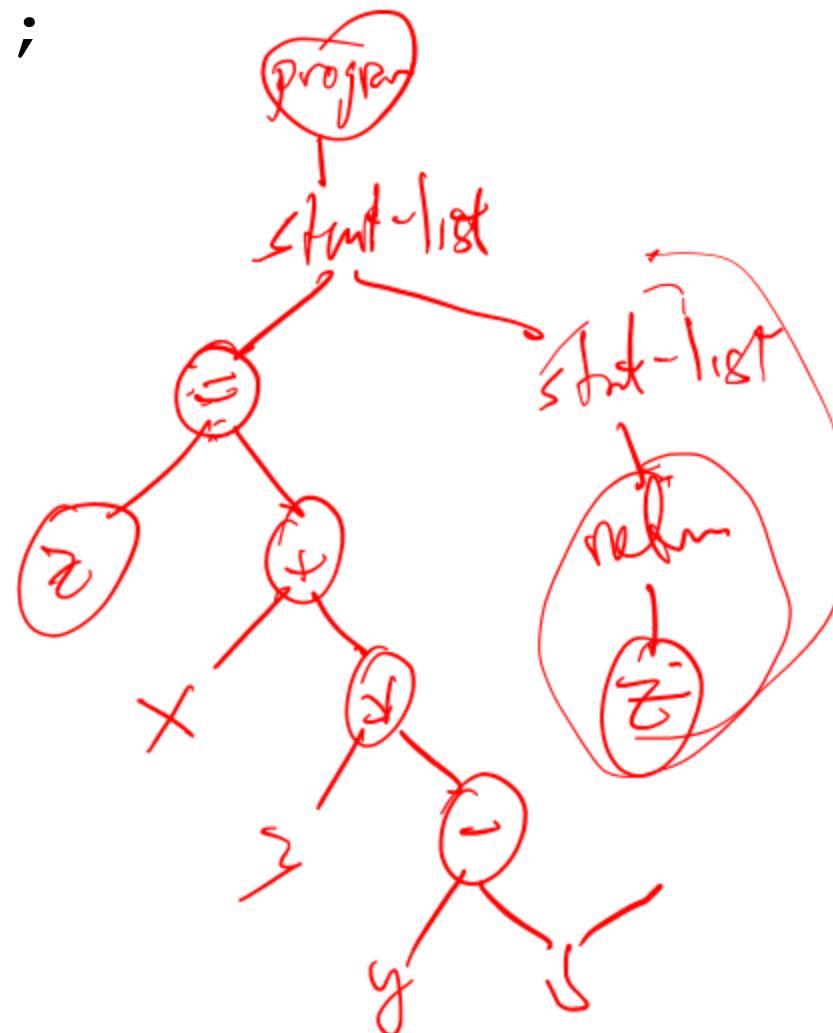
Abstract Syntax Tree



Example

```
z = x + 3 * y - 5;
```

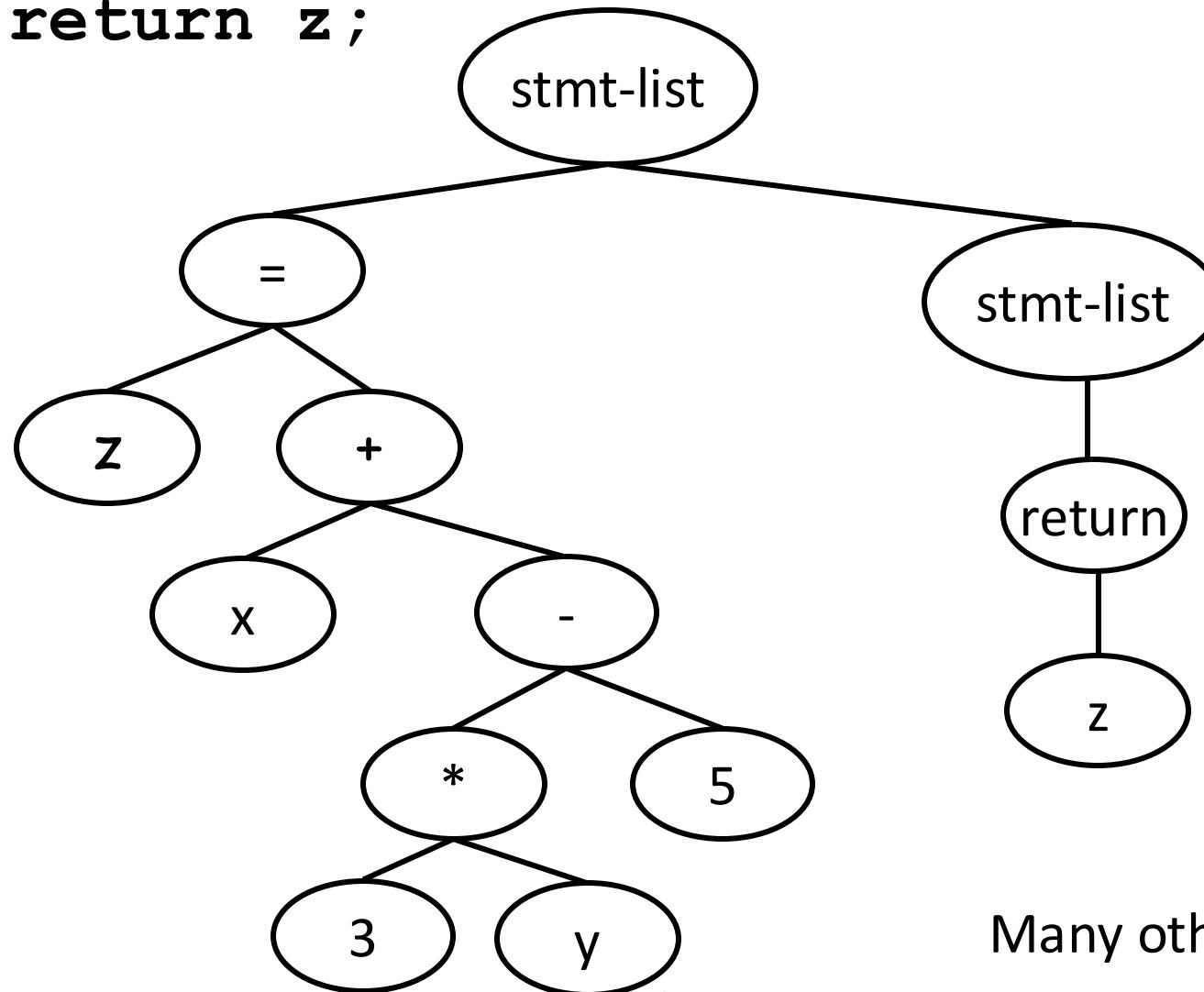
```
return z;
```



Possible parse tree

`z = x + 3 * y - 5;`

`return z;`



Many other possibilities

Abstract Assembly as IR

- Lowering of AST
- Facilitate
 - Analysis & optimizations
 - Translation to actual assembly
- Features:
 - Unlimited number of “temporaries”
 - ~~May (or may not) restrict how memory is used~~
 - Simple operations
 - May (or may not) restrict how constants are used
 - May specify certain “special registers”

In today's world
aka registers

Abstract Assembly as IR

- Features:
 - Unlimited number of “temporaries”
 - May (or may not) restrict how memory is used
 - Simple operations
 - May (or may not) restrict how constants are used
 - May specify certain “special registers”

$\{$ $dest \leftarrow src_1 \text{ operator } src_2$
 $dest \leftarrow \text{operator } src_1$
 operator
 $\}$

src can be:

- constant ✓
- temporary ✓
- special register ✓
- memory ✓

Abstract Assembly Language

program := $i_1 \ i_2 \ \dots \ i_n$ seq of instructions

- **intermediate** – constants of some type
- **temporary** – a compiler generated location which holds a value. After compilation it will be mapped to a register or a memory location
- **register** – generally a real register from the target architecture

move

binop

return

intermediate

temporary

register

values

locations

Abstract Assembly Language

program $\coloneqq i_1 i_2 \dots i_n$ seq of instructions

i $\coloneqq d \leftarrow s$ move

| $d \leftarrow s_1 \oplus s_2$ binop

| **return** s_1 return

s $\coloneqq c$ intermediate

| t temporary

| r register

d

$\coloneqq t$

| r

\oplus

$\coloneqq + | - | * | / | \%$

values

locations

What is right “level”?

Closer to the machine

program $\coloneqq i_1 i_2 \dots i_n$ seq of instructions

i $\coloneqq d \leftarrow s$ move

| $d \leftarrow s_1 \oplus s_2$ binop

| **return** return what is in **rax**

s $\coloneqq c$ intermediate

| t temporary

| r register

d $\coloneqq t$

| r

\oplus $\coloneqq + | - | * | / | \%$

Deep Breath

- Defined source language using BNF
 - Ambiguity
 - Semantics
- AST
- Abstract assembly
 - Operators
 - L-values and R-values
 - Temps, registers, constants

Register Allocation

- Until register allocation we assume an unlimited set of registers (aka “temps” or “pseudo-registers”).
- But real machines have a fixed set of registers.
- The register allocator must assign each temp to a machine register.

Register Allocation

- Map the variables & temps in the abstract assembly to actual locations in the machine
- The locations are either
 - physical registers
 - slots in the activation frame
- Essential for modern architectures
 - registers are much faster, consume less power, etc.
 - Some operations require registers
 - Goal: Try and allocate as many of the important variables/temps to registers.
- However, there are only a few registers

Locations

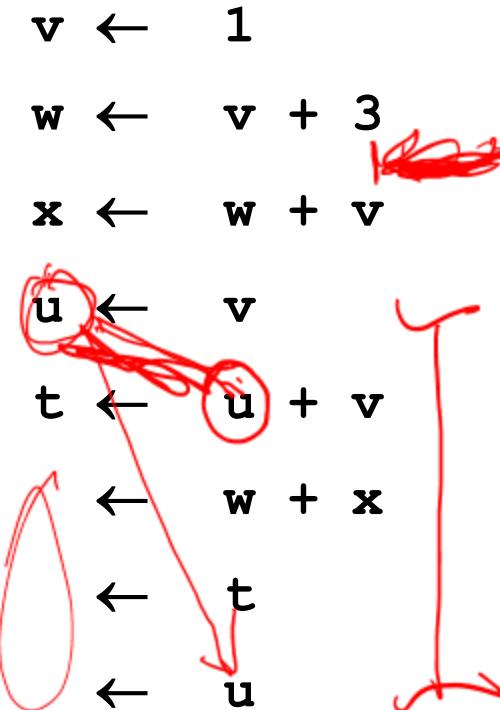
- Physical registers
- Slots in the activation frame

Sub-tasks of Register Allocation

- **Assignment:** map temps to particular registers
- **Spilling:** If we can't assign to a register, assign to a slot in the stack frame and add code to save and restore temp.
- **Coalescing:** If possible eliminate moves, $a \leftarrow b$, and map both a & b to the same location.
- Ensure special cases are handled properly.
 - instructions, e.g., `imul`, `ret`, ...
 - ABI, e.g., callee/caller save registers, function arguments.

Liveness

- A variable is “alive” if it is needed.



- It is needed if it is may be used on the righthand side of an instruction.

- Otherwise, it is dead.

- We might ask:

- What variables are live at some point in the program?
- When is a variable live in the program?

Interference

- Consider two temps, t_0 and t_1 .
- If the live ranges for t_0 and t_1 overlap, we say that they *interfere*.
- *First rule of register allocation:*
 - Temps with interfering live ranges may not be assigned to the same machine register.

Running Example

```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```

- Two variables, e.g., x & v , need to be in different registers if at some point in the program they hold different values.

Running Example

```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```


- Two variables, e.g., x & v , need to be in different registers if at some point in the program they hold different values.

What (if any) program points require x & v to be in different registers? (E.g., where do they “interfere”?)

Running Example

```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```

- Two variables, e.g., x & v , need to be in different registers if at some point in the program they hold different values.

Running Example

```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```

- Two variables, e.g., **x** & **v**, need to be in different registers if at some point in the program they hold different values.
- Use **liveness** information
- A variable is live at a given point in the program if it is defined and can be used at some later point in the program.

Liveness in straight line code

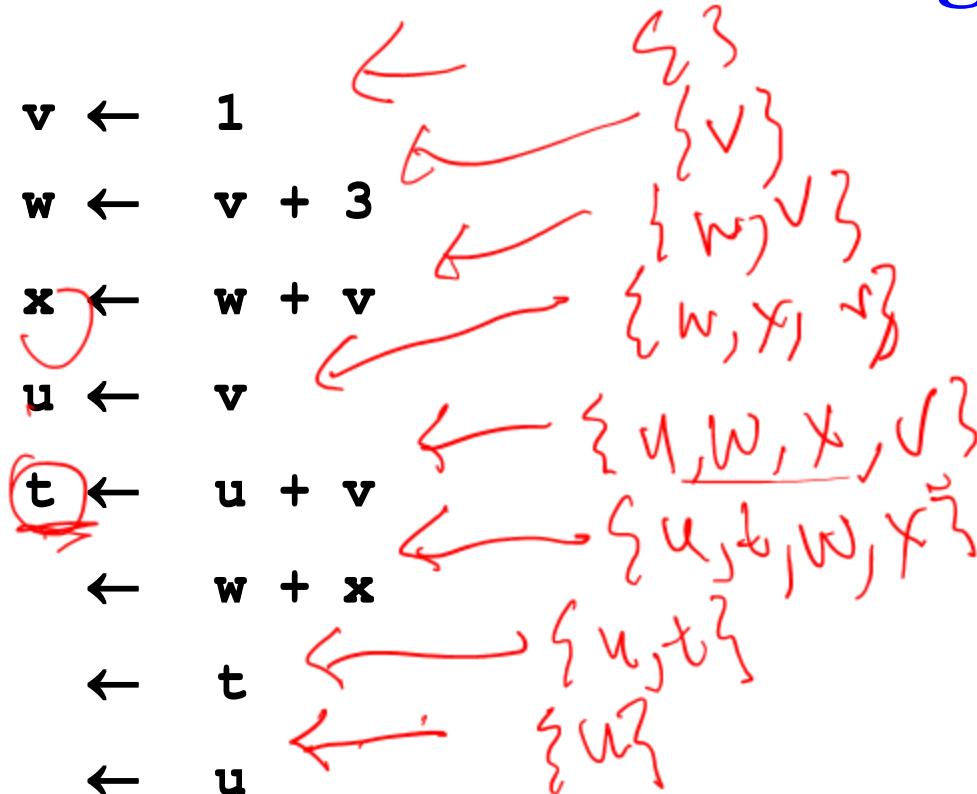
```
v ← 1  
w ← v + 3  
x ← w + v  
u ← v  
t ← u + v  
← w + x  
← t  
← u
```

Annotations in red:

- A red circle surrounds the variable **t**.
- A red arrow points from the **t** in the **w + x** line to the **t** in the **t** line.
- A red curly brace groups the **w + x** and **t** lines, with the text "live-in" written next to it.
- A red arrow points from the **u** in the **u** line to the **u** in the **u + v** line.
- A red curly brace groups the **u** and **u + v** lines, with the text "live-out" written next to it.

- Work backwards and at each instruction:
- If variable is used on right hand side, it is live-in
- if variable was live before it is still live-in (unless defined on left-hand side)

Liveness in straight line code



- Work backwards and at each instruction:
- If variable is used on right hand side, it is live-in
- if variable was live before it is still live-in (unless defined on left-hand side)

Liveness in straight line code

$v \leftarrow 1$	{ }	
$w \leftarrow v + 3$	{ v }	live-in sets
$x \leftarrow w + v$	{ w, v }	
$u \leftarrow v$	{ w, x, v }	
$t \leftarrow u + v$	{ w, u, x, v }	
$w + x$	{ w, t, u, x }	
t	{ u, t }	
u	{ u }	

- Work backwards and at each instruction:
- If variable is used on right hand side, it is live-in
- if variable was live before it is still live-in (unless defined on left-hand side)

Live-out more useful

$v \leftarrow 1$	$\{ v \}$
$w \leftarrow v + 3$	$\{ w, v \}$
$x \leftarrow w + v$	$\{ w, x, v \}$
$u \leftarrow v$	$\{ w, u, x, v \}$
$t \leftarrow u + v$	$\{ w, t, u, x \}$
$\leftarrow w + x$	$\{ u, t \}$
$\leftarrow t$	$\{ u \}$
$\leftarrow u$	$\{ \}$

Interference and Liveness

$v \leftarrow 1$	$\{ v \}$
$w \leftarrow v + 3$	$\{ w, v \}$
$x \leftarrow w + v$	$\{ w, x, v \}$
$u \leftarrow v$	$\{ w, u, x, v \}$
$t \leftarrow u + v$	$\{ w, t, u, x \}$
$\leftarrow w + x$	$\{ u, t \}$
$\leftarrow t$	$\{ u \}$
$\leftarrow u$	$\{ \}$

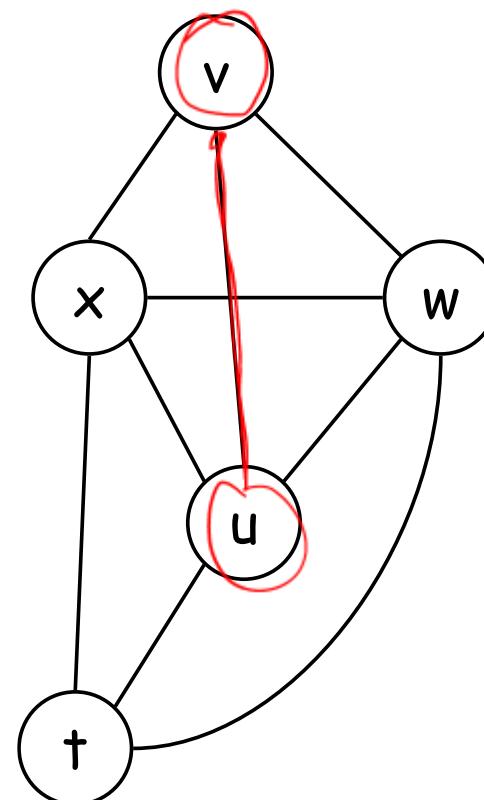
- Two variables that are live at the same point in the program interfere with each other and need to be assigned to different registers.

General Plan

- Construct an interference graph
- Map temps to registers
- Deal with spills
- Generate code to save & restore
- Respect special registers
 - avoid reserved registers
 - Use registers properly
 - respect distinction between callee/caller save registers

Interference Graph

- Nodes are temps and registers
- Edge (a,b) indicates a and b “interfere”
In other words, a and b cannot be in the same register.

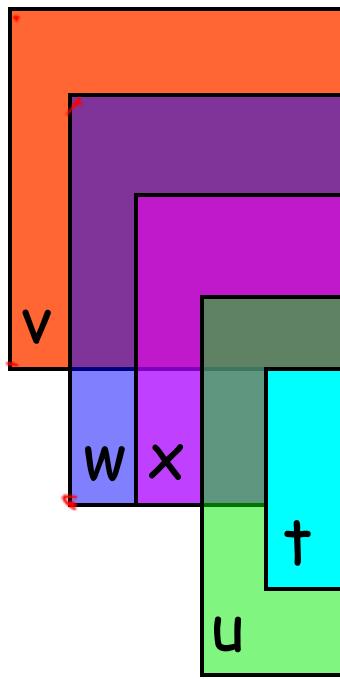


Optimistic Graph Coloring

- Construct Interference Graph
 - Use liveness information
 - Each node in the interference graph is a temp
 - $(u,v) \in G$ iff u & v can't be in the same hard register, i.e., they interfere
- Color Graph
 - Assign to each node a color from a set of k colors, $k = |\text{register set}|$
- Spill
 - If can't color graph with k colors then spill some temps into memory. Regenerate asm code and start over.

An Example, k=4

```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```

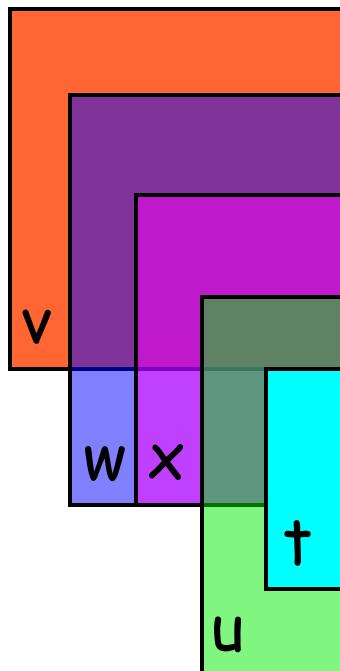
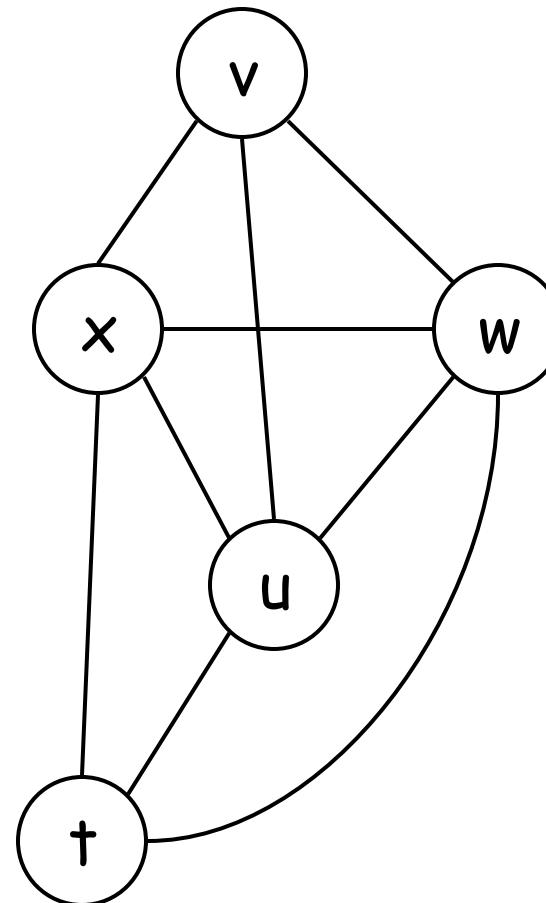


```
{ v }
{ w, v }
{ w, x, v }
{ w, u, x, v }
{ w, t, u, x }
{ u, t }
{ u }
{ }
```

Compute live ranges

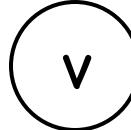
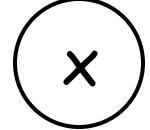
An Example, $k=4$

```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```



Construct the interference graph

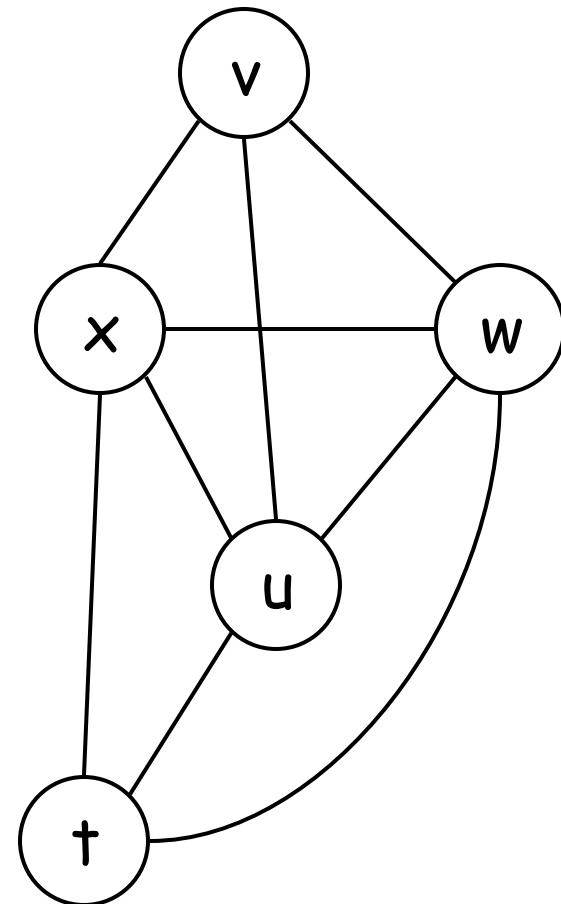
In Practice

$v \leftarrow 1$	$\{v\}$	
$w \leftarrow v + 3$	$\{w, v\}$	
$x \leftarrow w + v$	$\{w, x, v\}$	
$u \leftarrow v$	$\{w, u, x, v\}$	
$t \leftarrow u + v$	$\{w, t, u, x\}$	
$\leftarrow w + x$	$\{u, t\}$	
$\leftarrow t$	$\{u\}$	
$\leftarrow u$	$\{\}$	

- At point of definition of t , add edges between t and all $u \in \text{live-out}, t \neq u$

In Practice

$v \leftarrow 1$	$\{ v \}$
$w \leftarrow v + 3$	$\{ w, v \}$
$x \leftarrow w + v$	$\{ w, x, v \}$
$u \leftarrow v$	$\{ w, u, x, v \}$
$t \leftarrow u + v$	$\{ w, t, u, x \}$
$\leftarrow w + x$	$\{ u, t \}$
$\leftarrow t$	$\{ u \}$
$\leftarrow u$	$\{ \}$

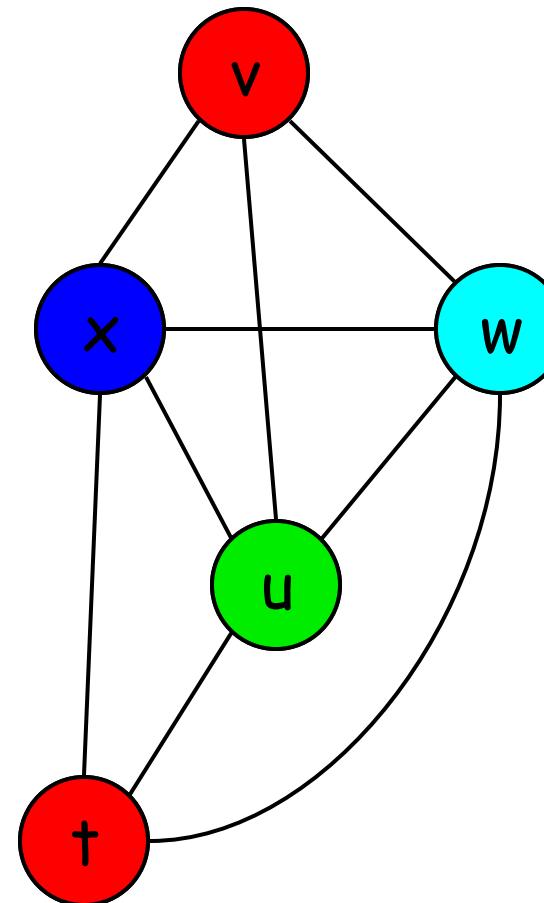


- At point of definition of t , add edges between t and all $u \in \text{live-out}, t \neq u$

An Example, $k=4$

```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```

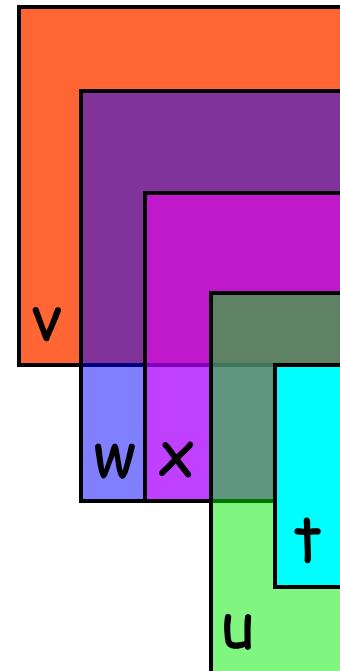
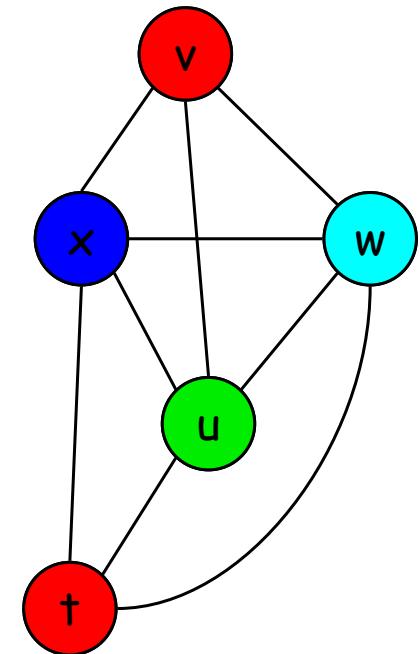
Voila, registers are assigned!



A greedy Coloring

A Special Interference Edge

```
v ← 1          { v }  
w ← v + 3      { w, v }  
x ← w + v      { w, x, v }  
u ← v          { w, u, x, v }  
t ← u + v      { w, t, u, x }  
← w + x  
← t  
← u  
{ }
```



u & v are special. They interfere, but **only** through a move!

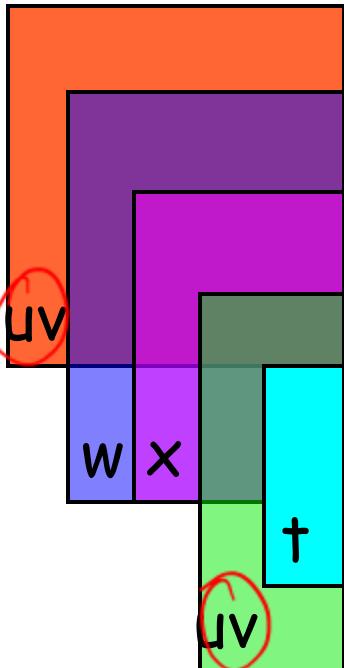
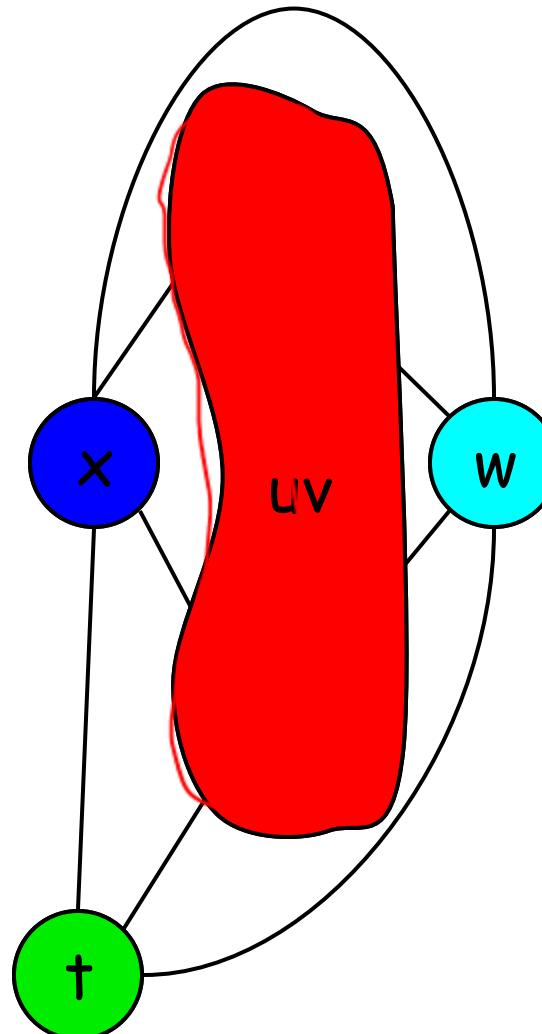
Interference and Coalescing

$v \leftarrow 1$	$\{ v \}$
$w \leftarrow v + 3$	$\{ w, v \}$
$x \leftarrow w + v$	$\{ w, x, v \}$
$u \leftarrow v$	$\{ w, u, x, v \}$
$t \leftarrow u + v$	$\{ w, t, u, x \}$
$\leftarrow w + x$	$\{ u, t \}$
$\leftarrow t$	$\{ u \}$
$\leftarrow u$	$\{ \}$

- We would like to eliminate the move $u \leftarrow v$ by having u and v share a register (i.e, coalescing)

An Example, $k=4$

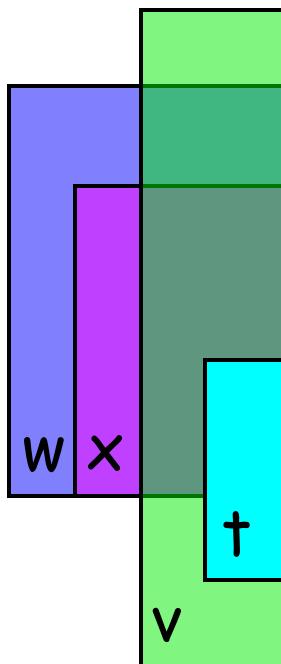
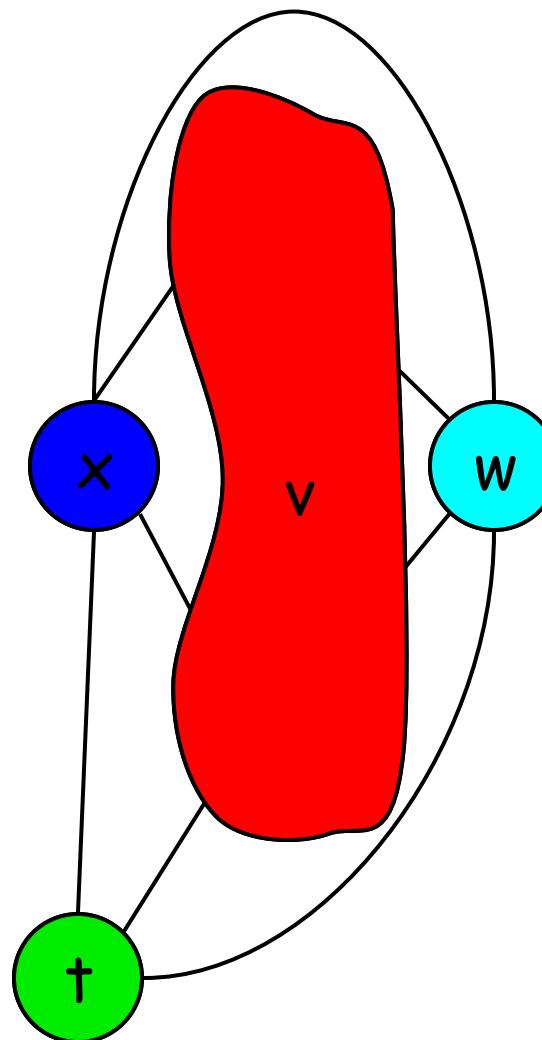
```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```



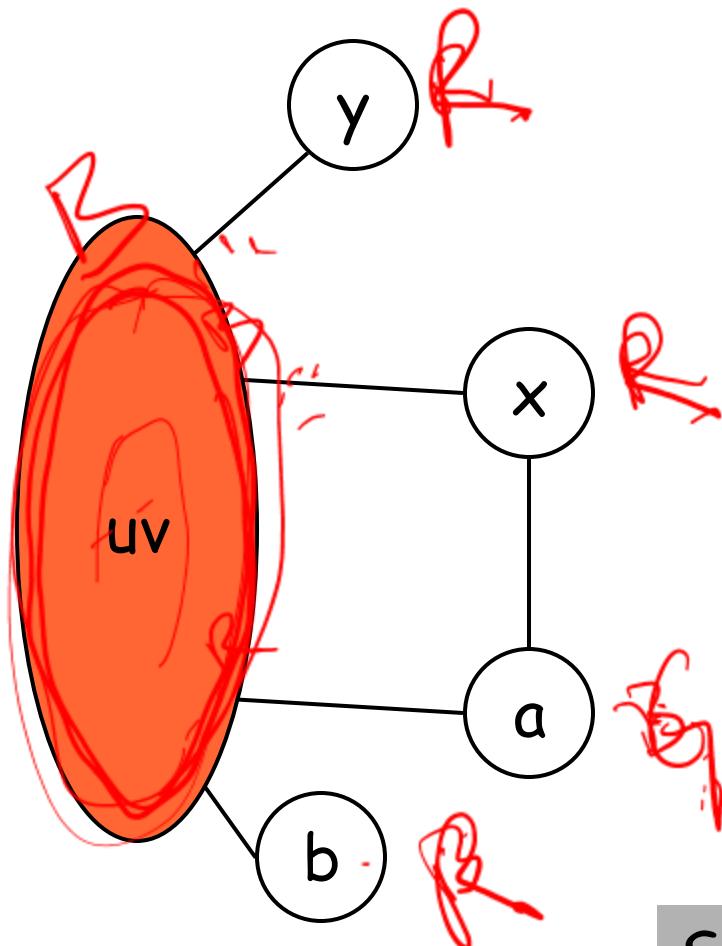
Rewrite the code to **coalesce** u & v

Another way to think about it

```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← v + v
← w + x
← t
← v
```



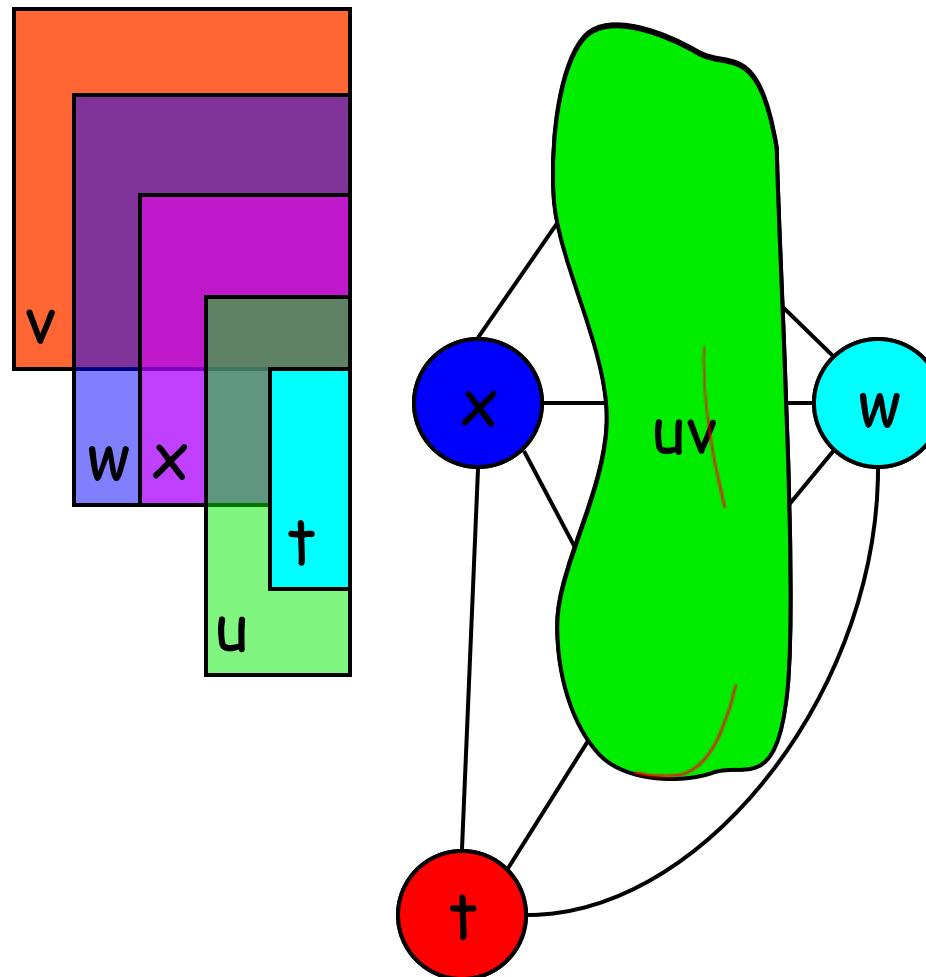
Is Coalescing always good?



Was 2-colorable,
now it needs 3 colors

So, we treat moves specially.

An Example, $k=4$



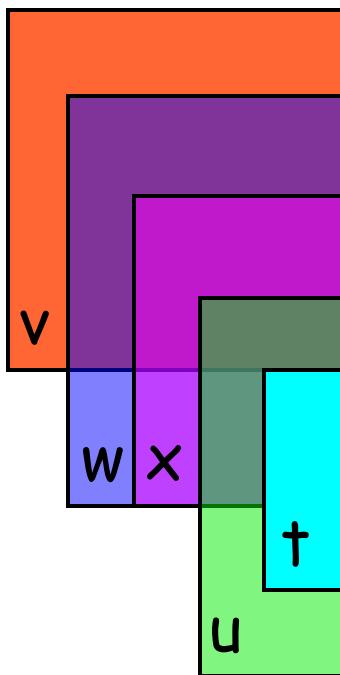
Interference from moves become "move edges."

An Example, k=3

```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```

An Example, k=3

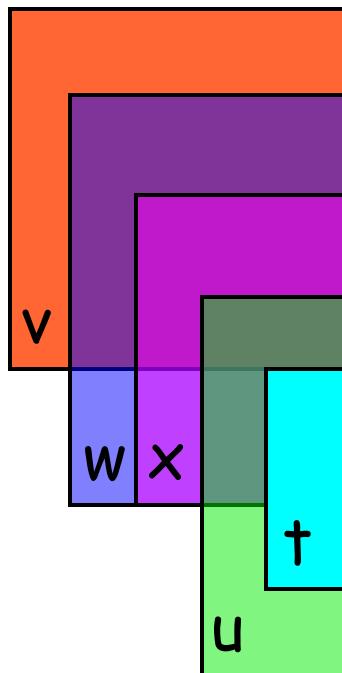
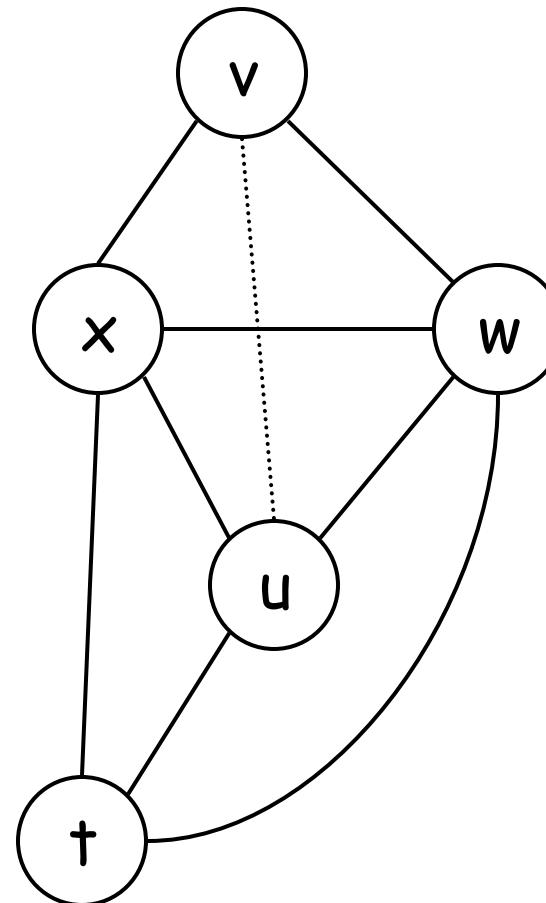
```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```



Compute live ranges

An Example, $k=3$

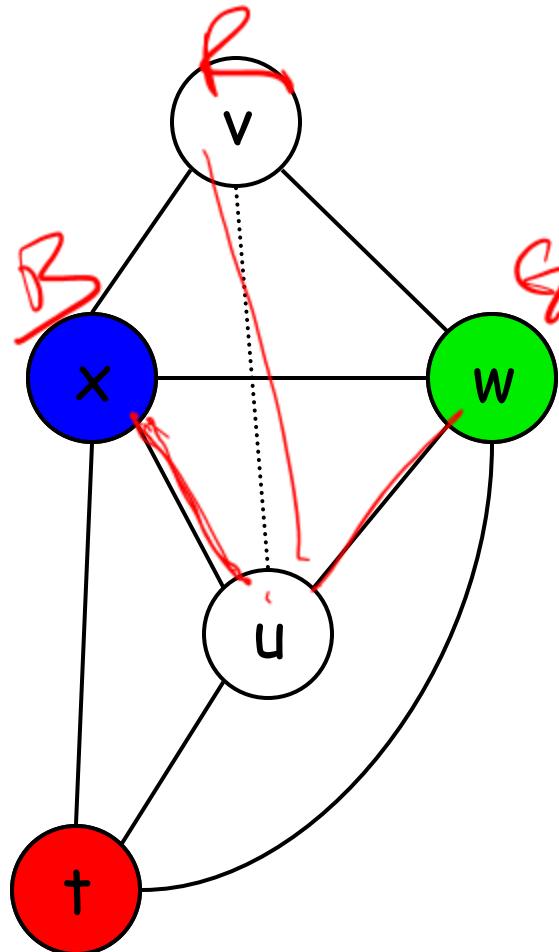
```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```



Construct the interference graph

An Example, $k=3$

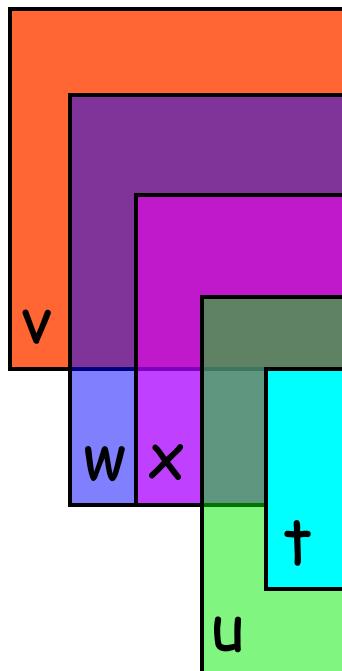
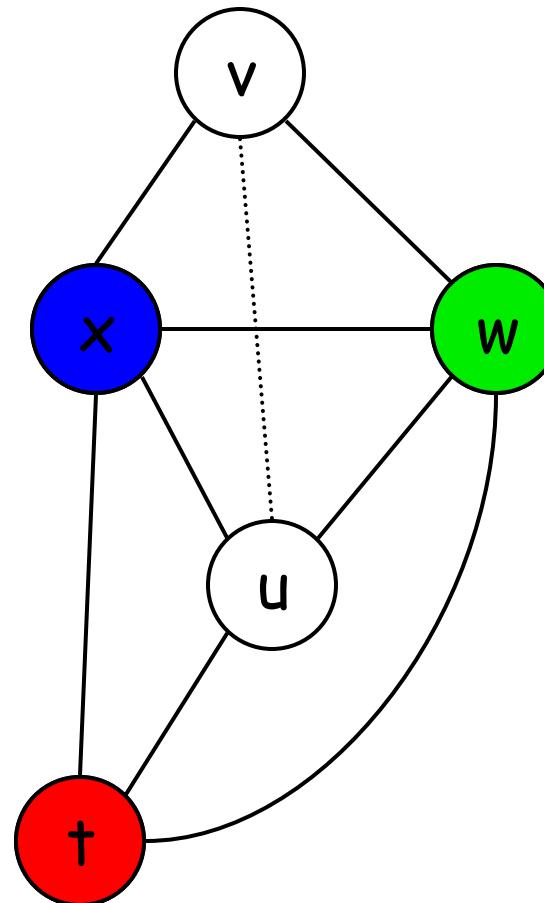
```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```



So, we need to spill

An Example, $k=3$

```
v ← 1
w ← v + 3
x ← w + v
u ← v
t ← u + v
← w + x
← t
← u
```



What to spill? Why?

An Example, k=3

Choose x and Rewrite program

$v \leftarrow 1$

$w \leftarrow v + 3$

$x \leftarrow w + v$

$M[] \leftarrow x$

$u \leftarrow v$

$t \leftarrow u + v$

$x' \leftarrow M[]$

$\leftarrow w + x'$

$\leftarrow t$

$\leftarrow u$

An Example, k=3

recalculate live ranges

$v \leftarrow 1$

$w \leftarrow v + 3$

$x \leftarrow w + v$

$M[] \leftarrow x$

$u \leftarrow v$

$t \leftarrow u + v$

$x' \leftarrow M[]$

$\leftarrow w + x'$

$\leftarrow t$

$\leftarrow u$

{ }

An Example, k=3

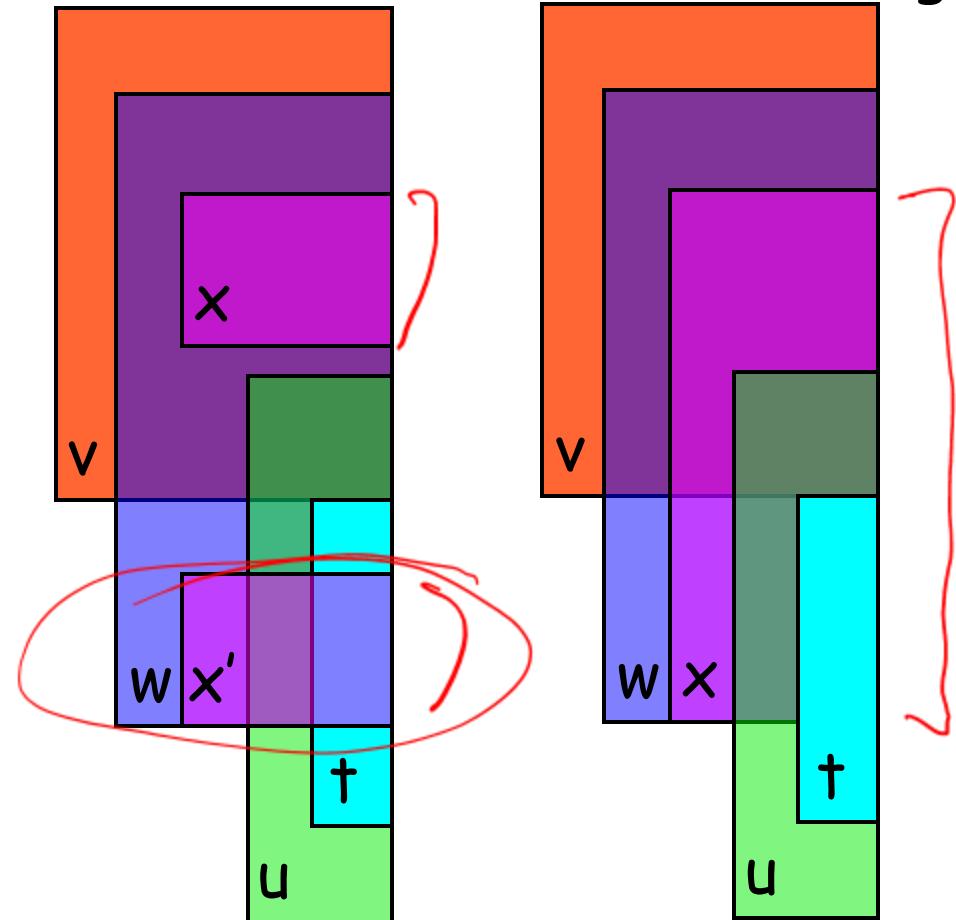
recalculate live ranges

$v \leftarrow 1$	$\{ v \}$
$w \leftarrow v + 3$	$\{ w, v \}$
$x \leftarrow w + v$	$\{ w, v, x \}$
$M[] \leftarrow x$	$\{ w, v \}$
$u \leftarrow v$	$\{ w, u, v \}$
$t \leftarrow u + v$	$\{ w, t, u \}$
$x' \leftarrow M[]$	$\{ w, t, u, x' \}$
$\leftarrow w + x'$	$\{ u, t \}$
$\leftarrow t$	$\{ u \}$
$\leftarrow u$	$\{ \}$

An Example, $k=3$

recalculate live ranges

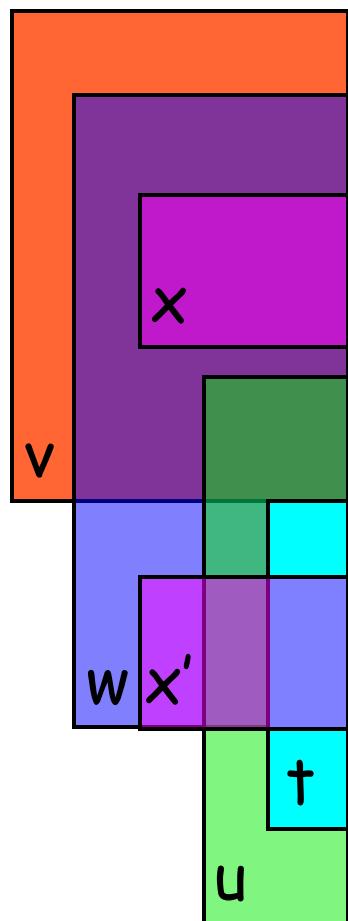
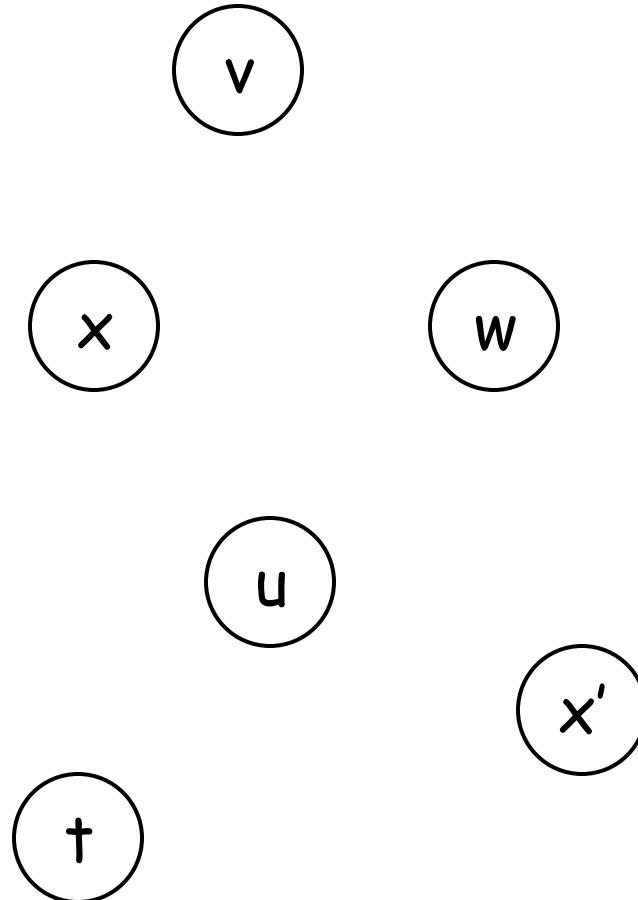
```
v ← 1
w ← v + 3
x ← w + v
M[] ← x
u ← v
t ← u + v
x' ← M[]
← w + x'
← t
← u
```



Spilling reduces live ranges, which decreases register pressure.

An Example, $k=3$

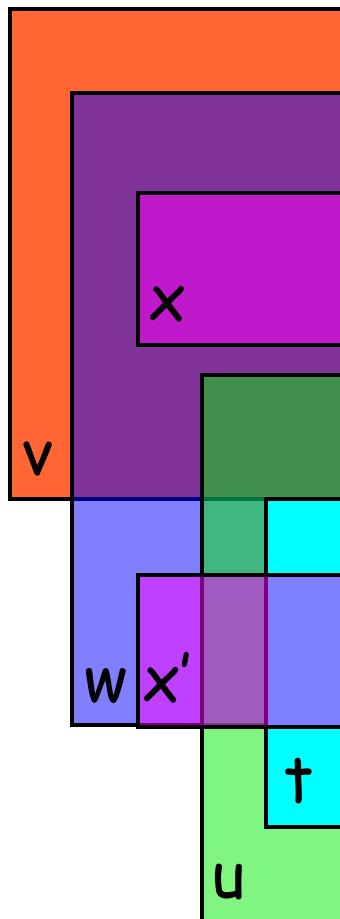
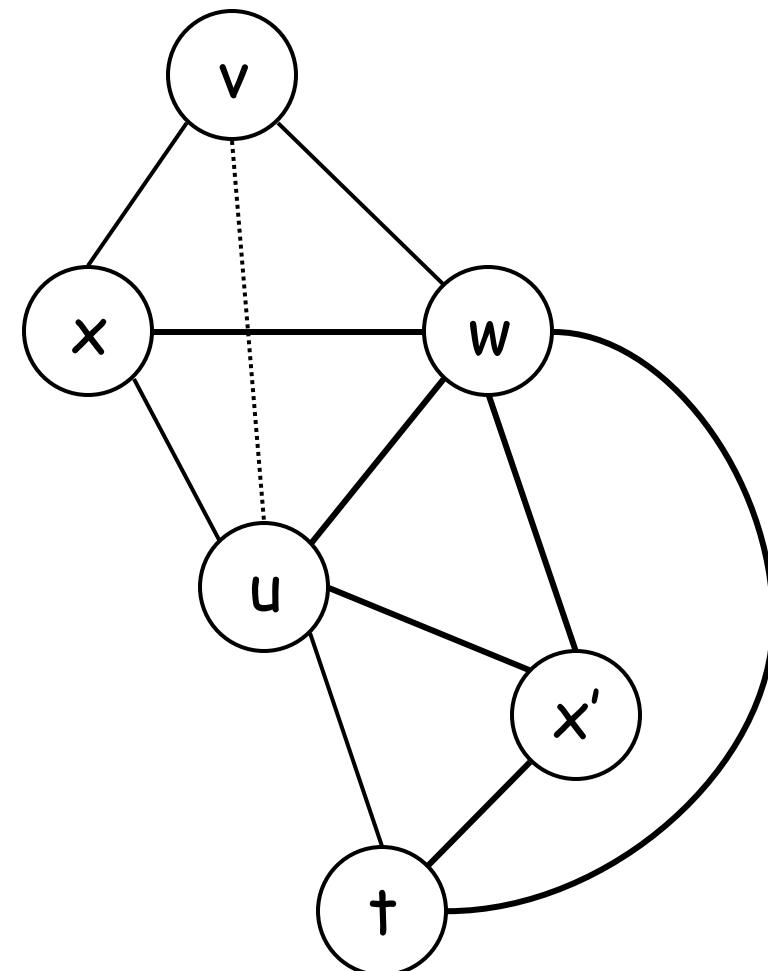
```
v ← 1
w ← v + 3
x ← w + v
M[] ← x
u ← v
t ← u + v
x' ← M[]
← w + x'
← t
← u
```



Recalculate interference graph

An Example, $k=3$

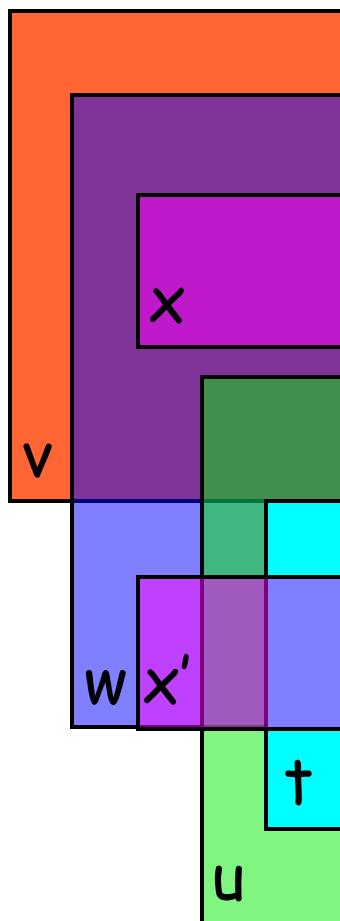
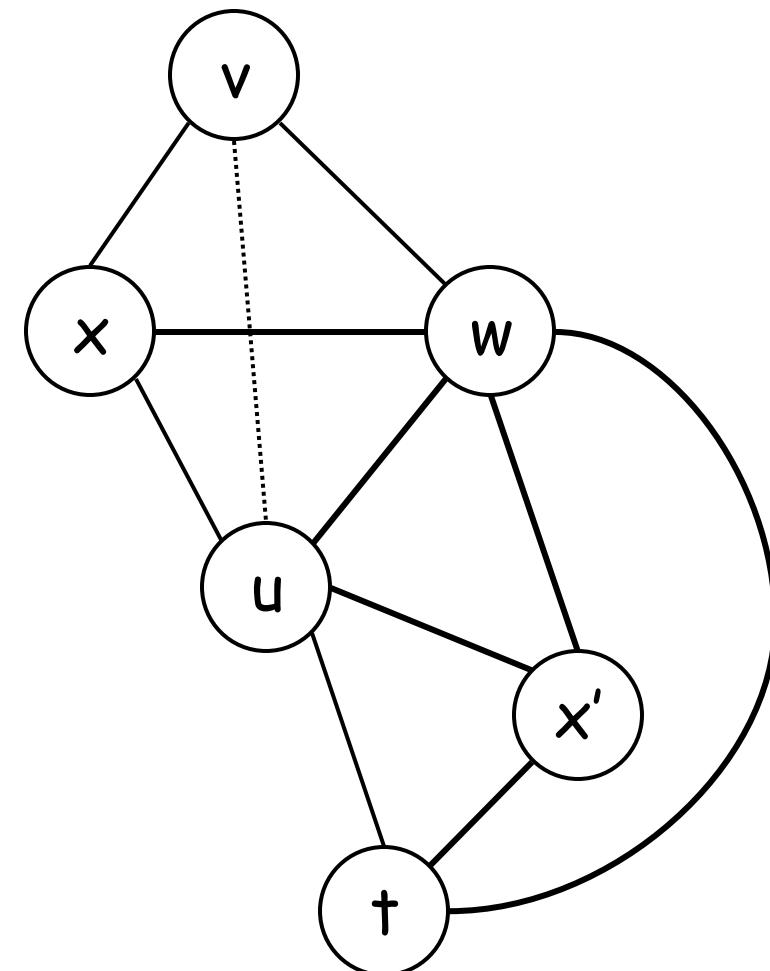
```
v ← 1
w ← v + 3
x ← w + v
M[] ← x
u ← v
t ← u + v
x' ← M[]
← w + x'
← t
← u
```



Recalculate interference graph

An Example, $k=3$

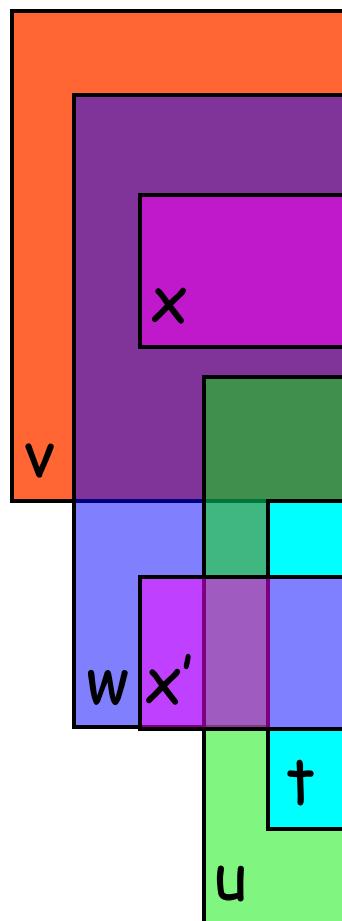
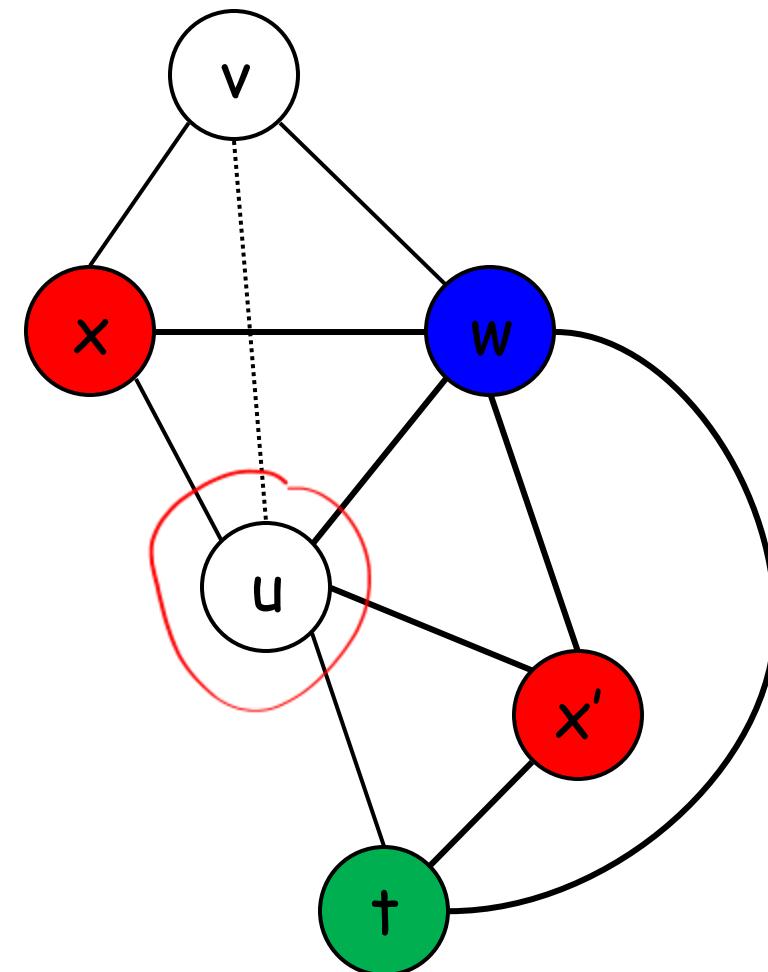
```
v ← 1
w ← v + 3
x ← w + v
M[] ← x
u ← v
t ← u + v
x' ← M[]
← w + x'
← t
← u
```



Recolor Graph

An Example, $k=3$

```
v ← 1
w ← v + 3
x ← w + v
M[] ← x
u ← v
t ← u + v
x' ← M[]
← w + x'
← t
← u
```



Sigh

An Example, k=3

$v \leftarrow 1$

$w \leftarrow v + 3$

$x \leftarrow w + v$

$M[0] \leftarrow x$

$\tilde{u} \leftarrow v$

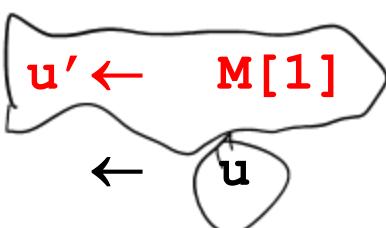
$t \leftarrow \tilde{u} + v$

$M[1] \leftarrow u$

$x' \leftarrow M[0]$

$\leftarrow w + x'$

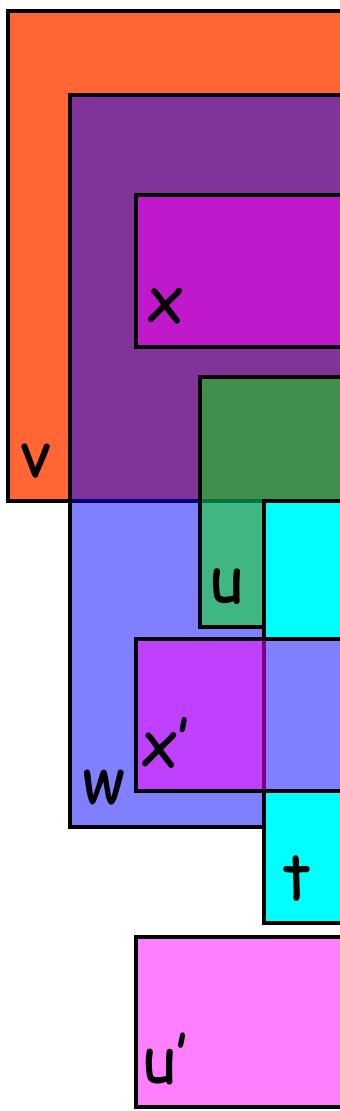
$\leftarrow t$



respill

An Example, $k=3$

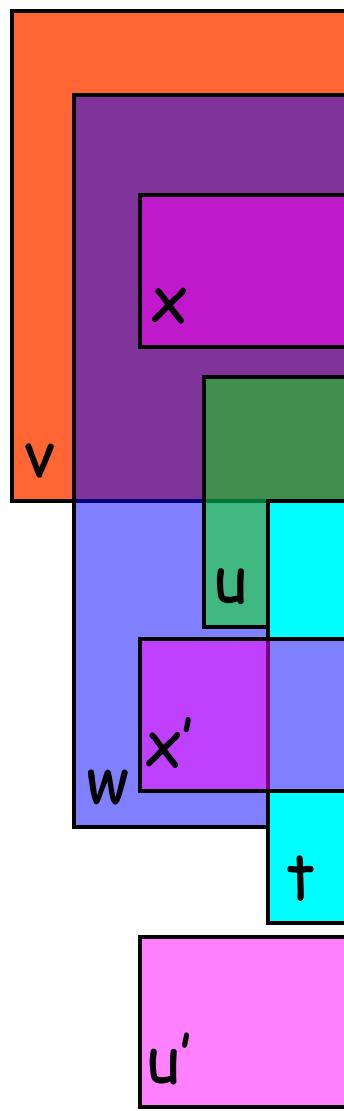
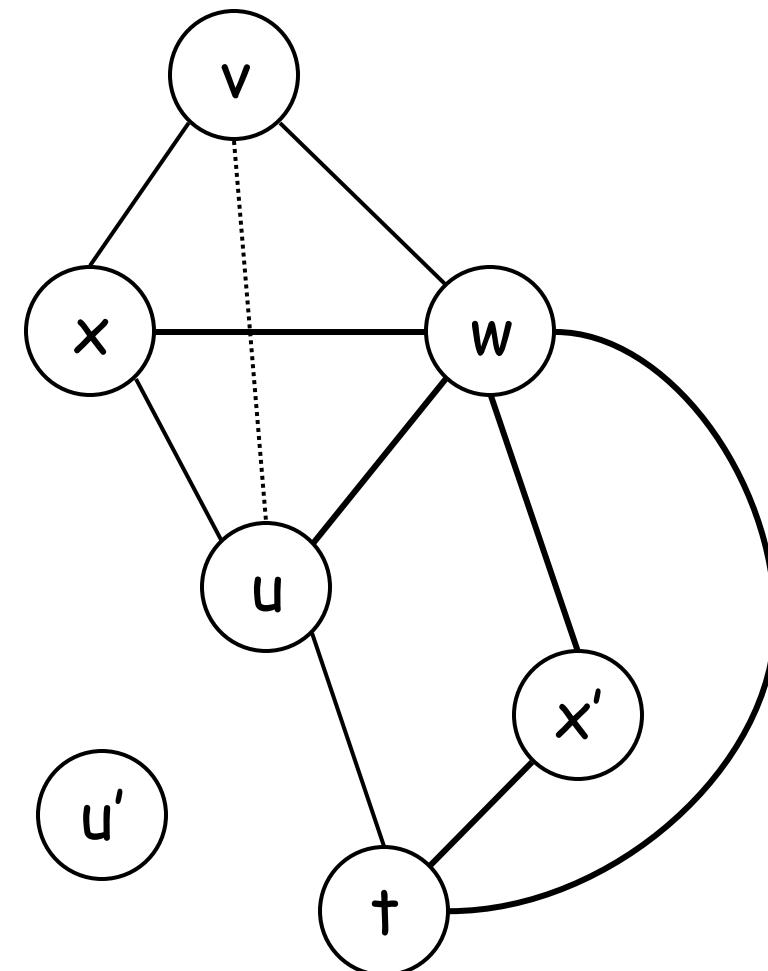
```
v ← 1
w ← v + 3
x ← w + v
M[0] ← x
u ← v
t ← u + v
M[1] ← u
x' ← M[0]
← w + x'
← t
u' ← M[1]
← u
```



construct new interference graph

An Example, $k=3$

```
v ← 1
w ← v + 3
x ← w + v
M[0] ← x
u ← v
t ← u + v
M[1] ← u
x' ← M[0]
← w + x'
← t
u' ← M[1]
← u
```



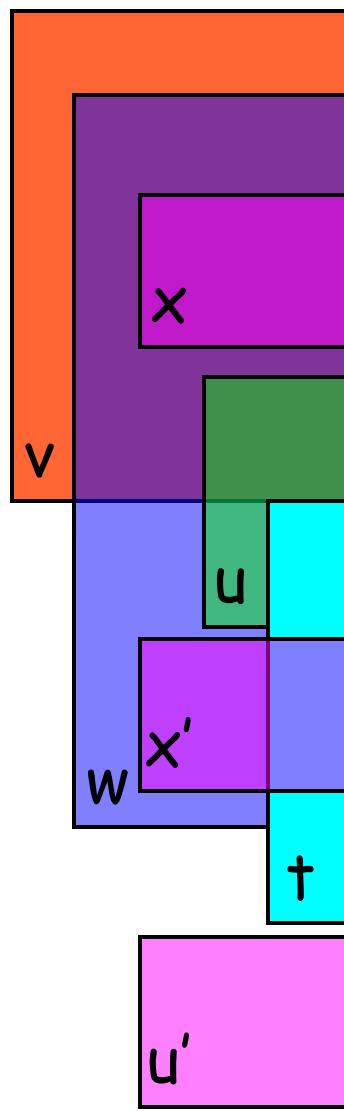
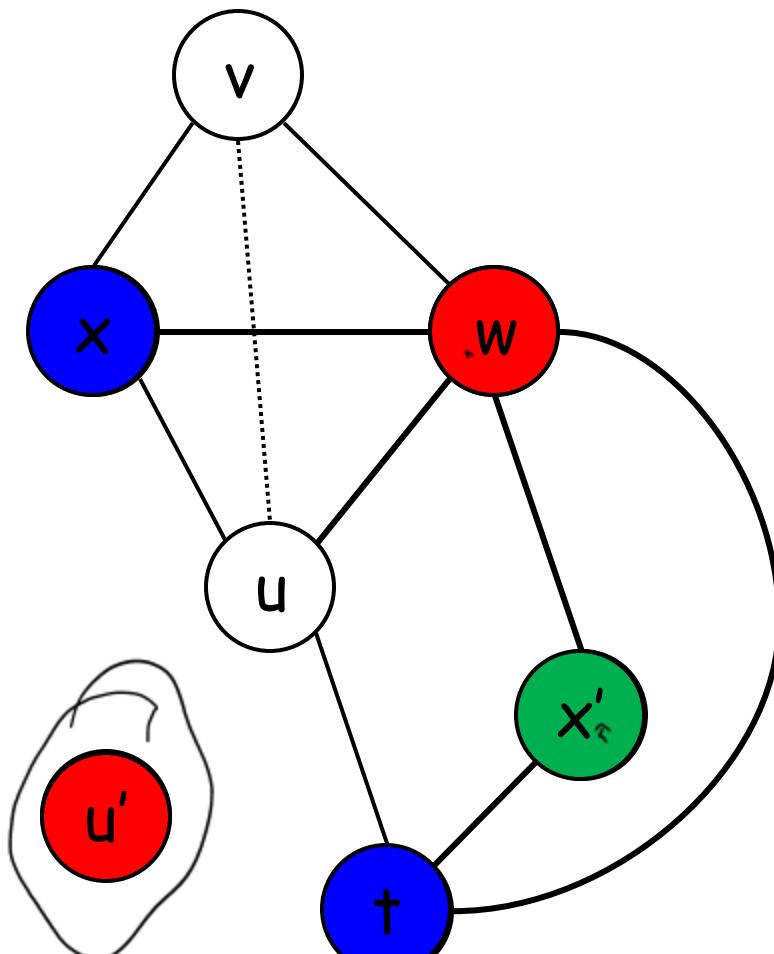
construct new interference graph

An Example, $k=3$

```

v ← 1
w ← v + 3
x ← w + v
M[0] ← x
u ← v
t ← u + v
M[1] ← u
x' ← M[0]
← w + x'
← t
u' ← M[1]
← u

```



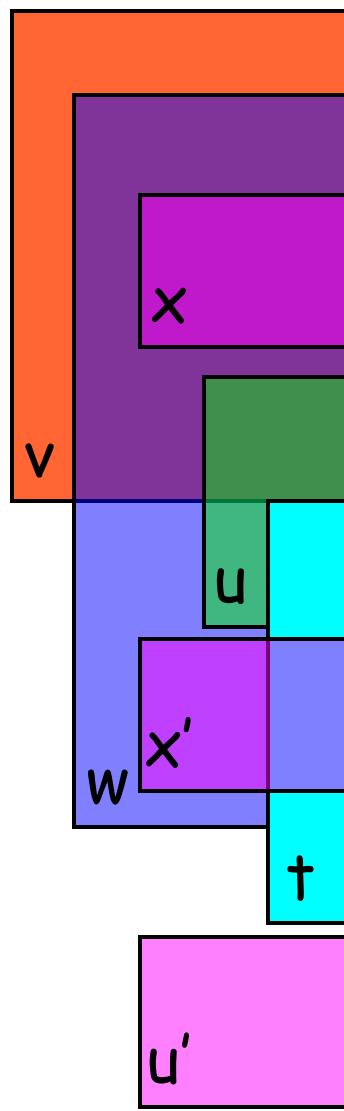
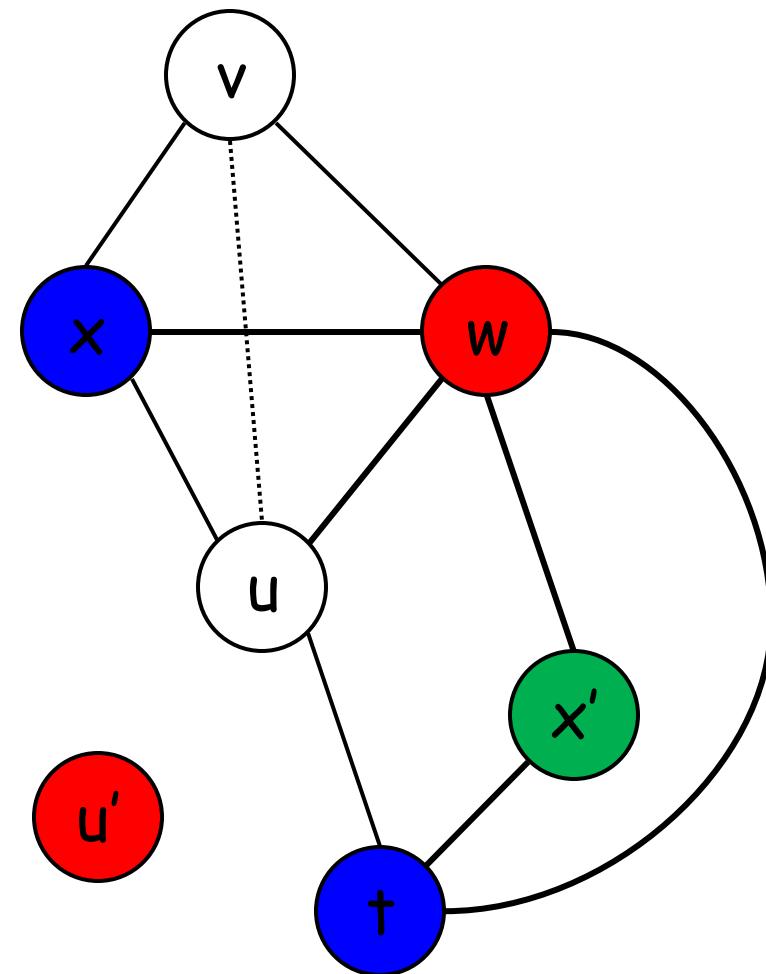
color graph

An Example, $k=3$

```

v ← 1
w ← v + 3
x ← w + v
M[0] ← x
u ← v
t ← u + v
M[1] ← u
x' ← M[0]
← w + x'
← t
u' ← M[1]
← u

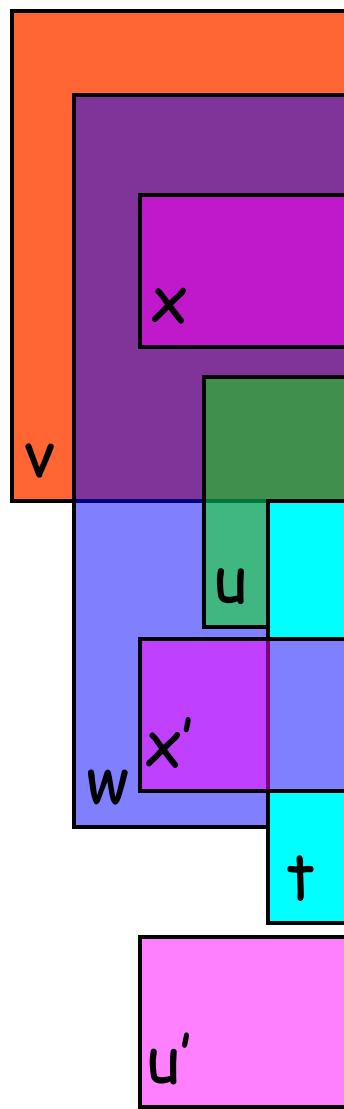
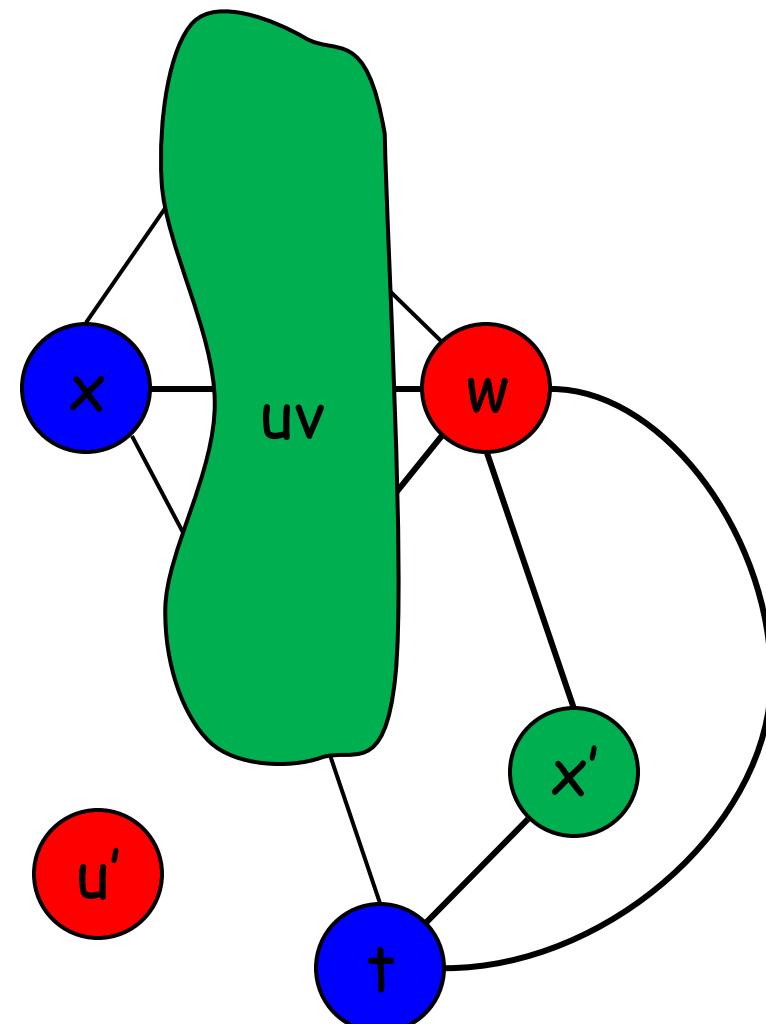
```



color graph

An Example, $k=3$

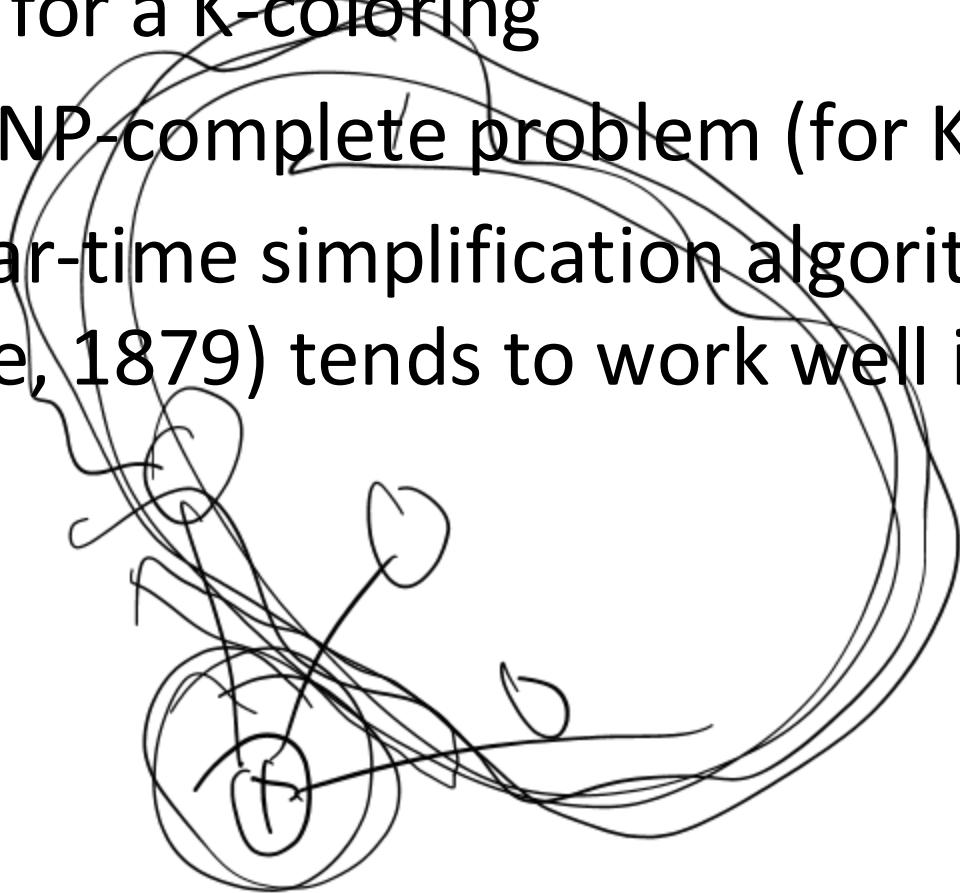
```
v ← 1
w ← v + 3
x ← w + v
M[0] ← x
u ← v
t ← u + v
M[1] ← u
x' ← M[0]
← w + x'
← t
u' ← M[1]
← u
```



color graph

Graph coloring

- Once we have an interference graph, we can attempt register allocation by searching for a K-coloring
- This is an NP-complete problem (for $K > 2$)
- But a linear-time simplification algorithm (by Kempe, 1879) tends to work well in practice



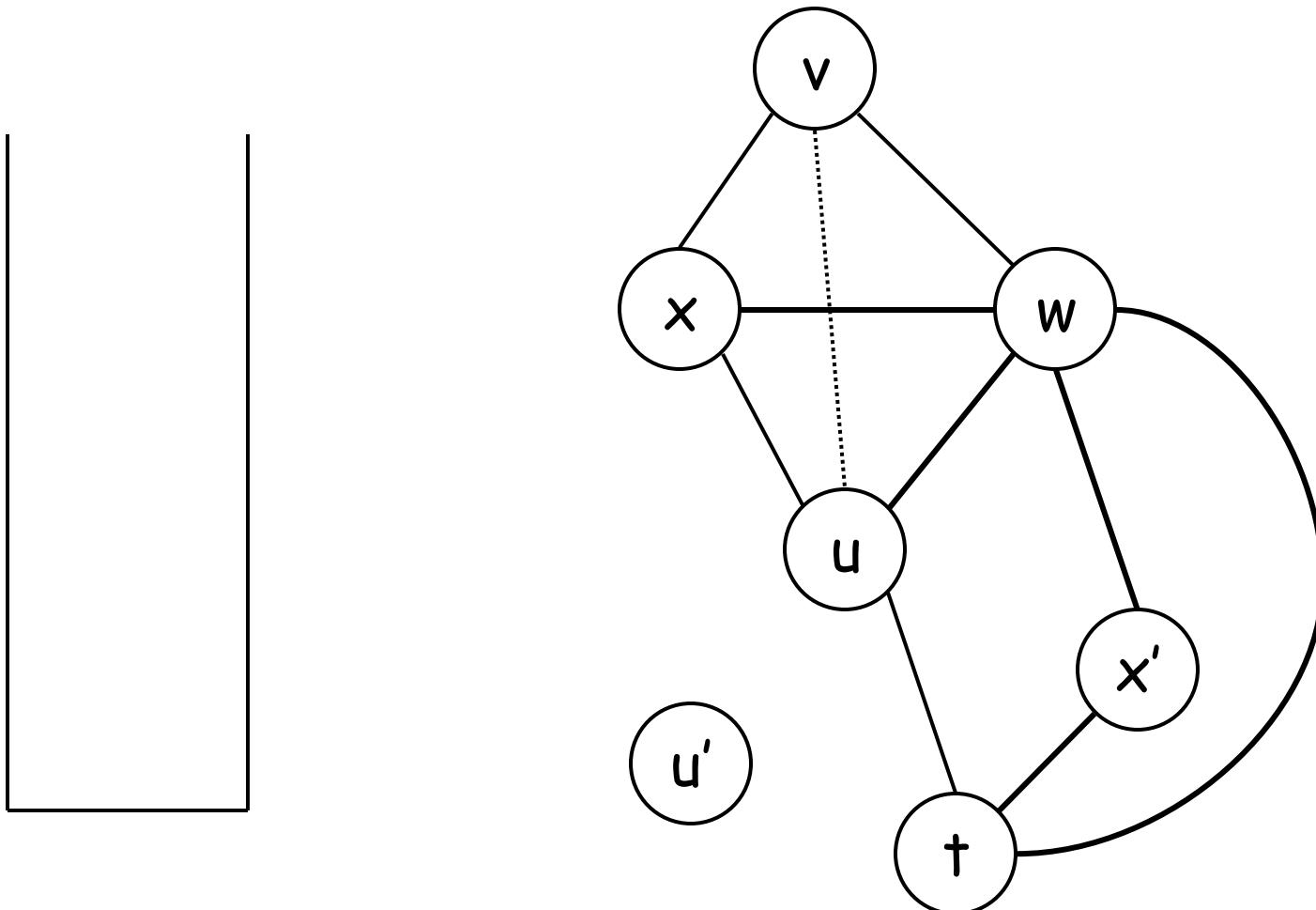
Kempe's observation

- Given a graph G that contains a node n with degree less than K , the graph is K -colorable iff G with n removed is K -colorable
 - This is called the “ $\text{degree} < K$ ” rule
- So, let's try iteratively removing nodes with $\text{degree} < K$
- If all nodes are removed, then G is definitely K -colorable

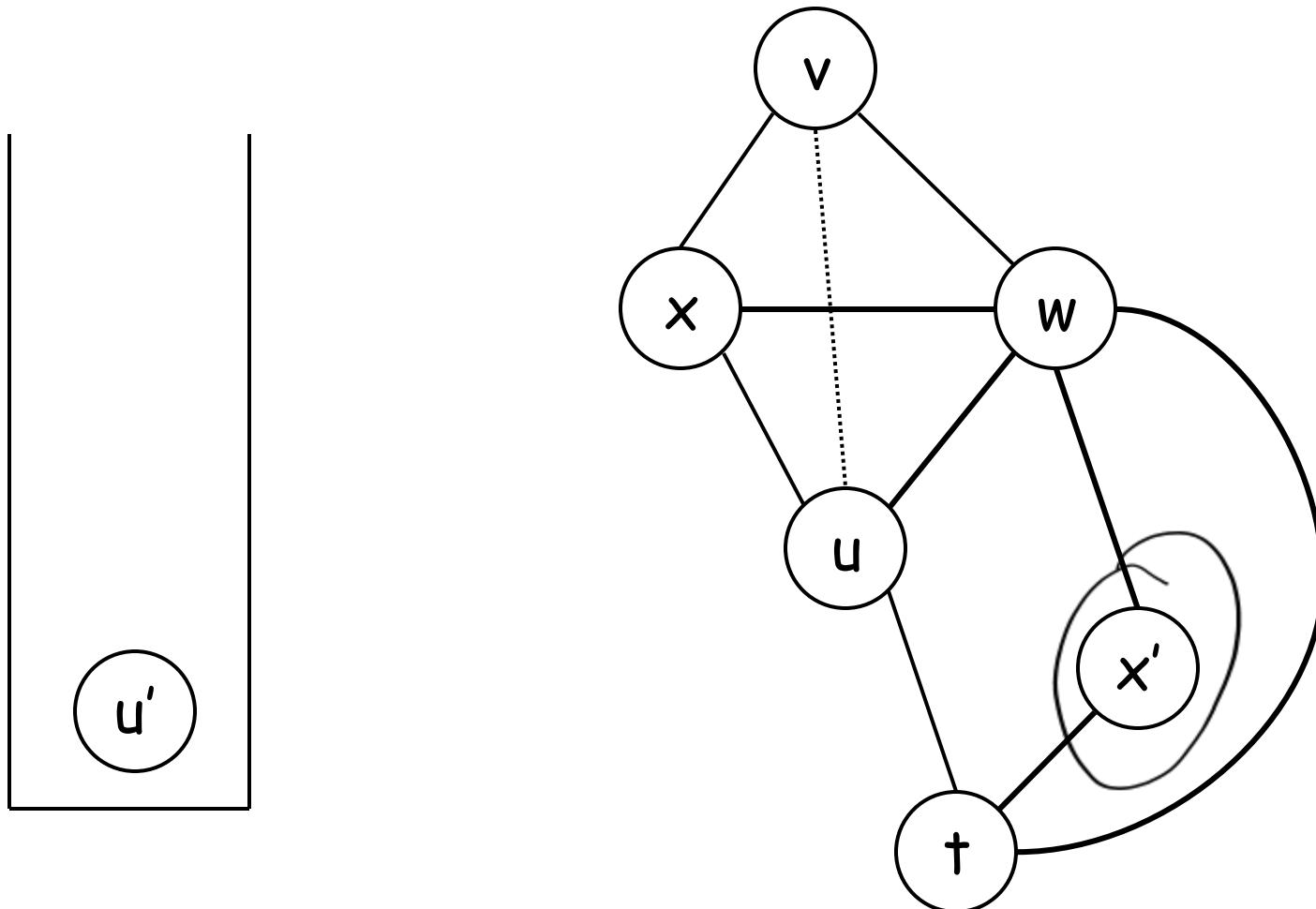
Kempe's algorithm

- First, iteratively remove $\text{degree} < K$ nodes, pushing each onto a stack
- If all get removed, then pop each node and rebuild the graph, coloring as we go
- If we get stuck (i.e., no $\text{degree} < K$ nodes), then remove ~~any~~ node and continue

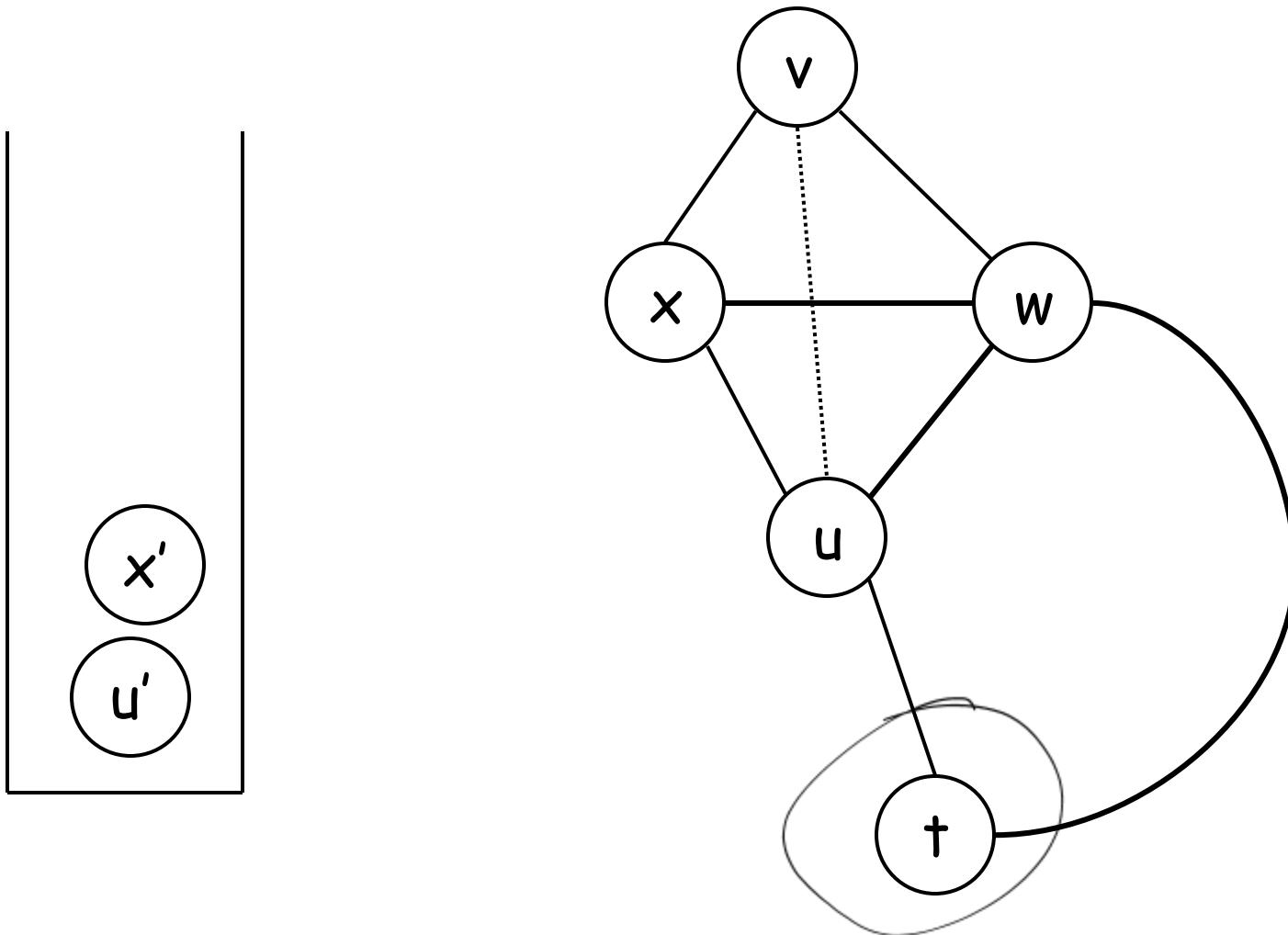
Example, $k=3$



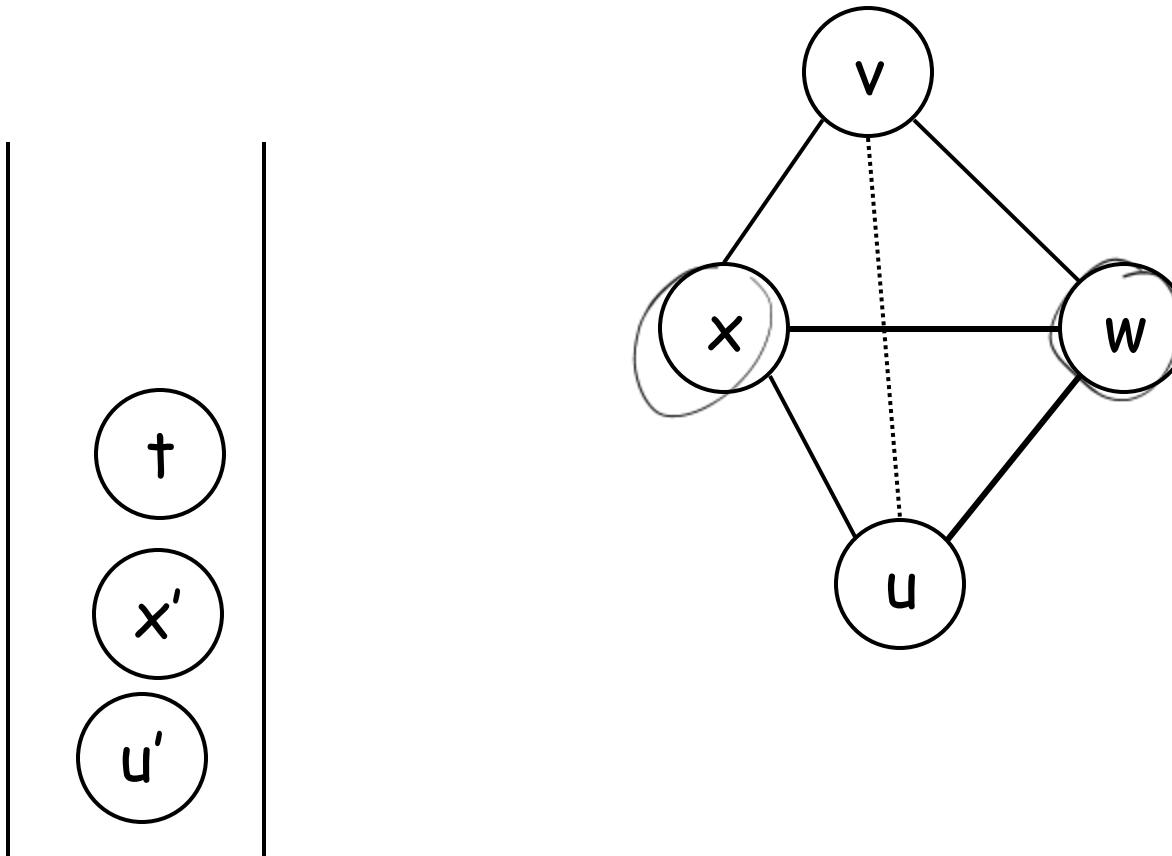
Example, $k=3$



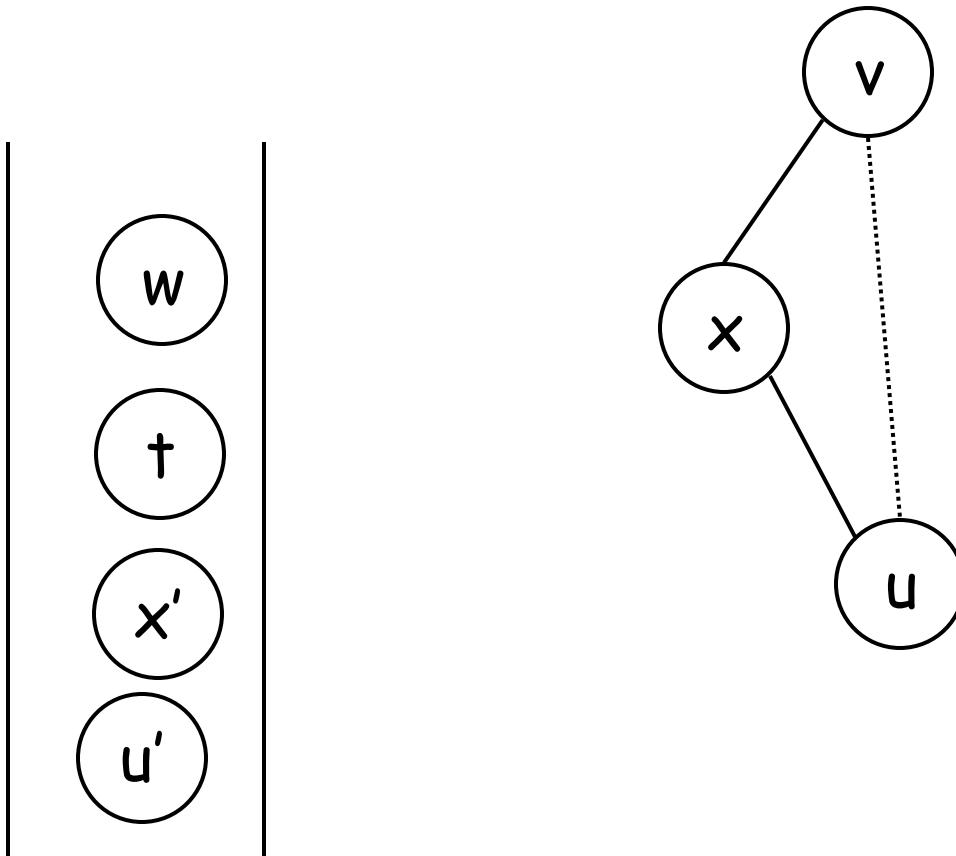
Example, $k=3$



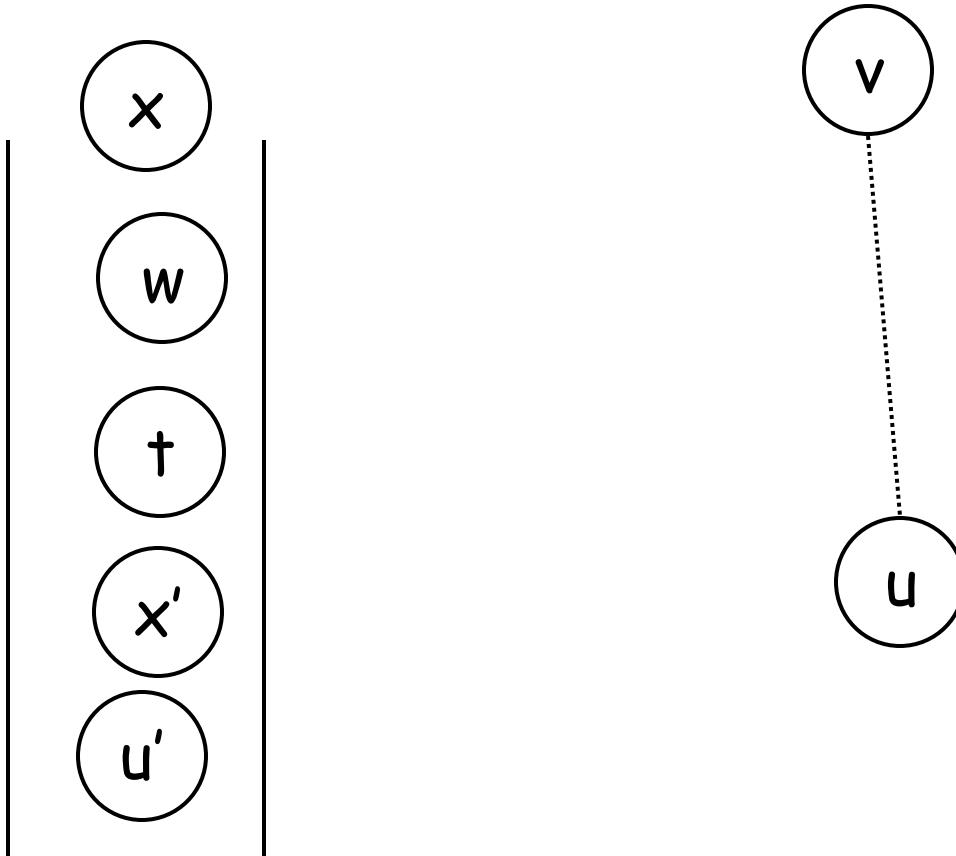
Example, $k=3$



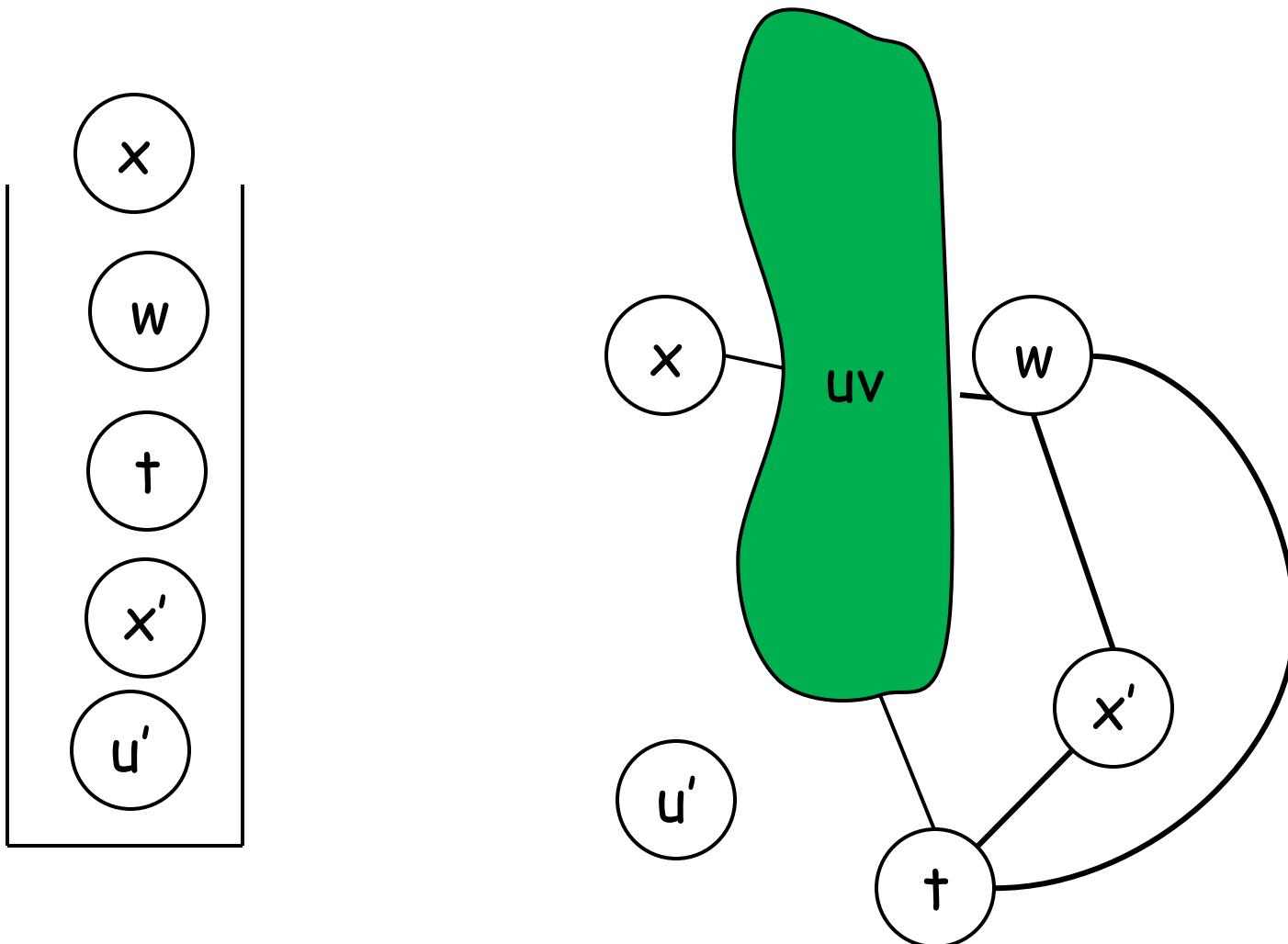
Example, $k=3$



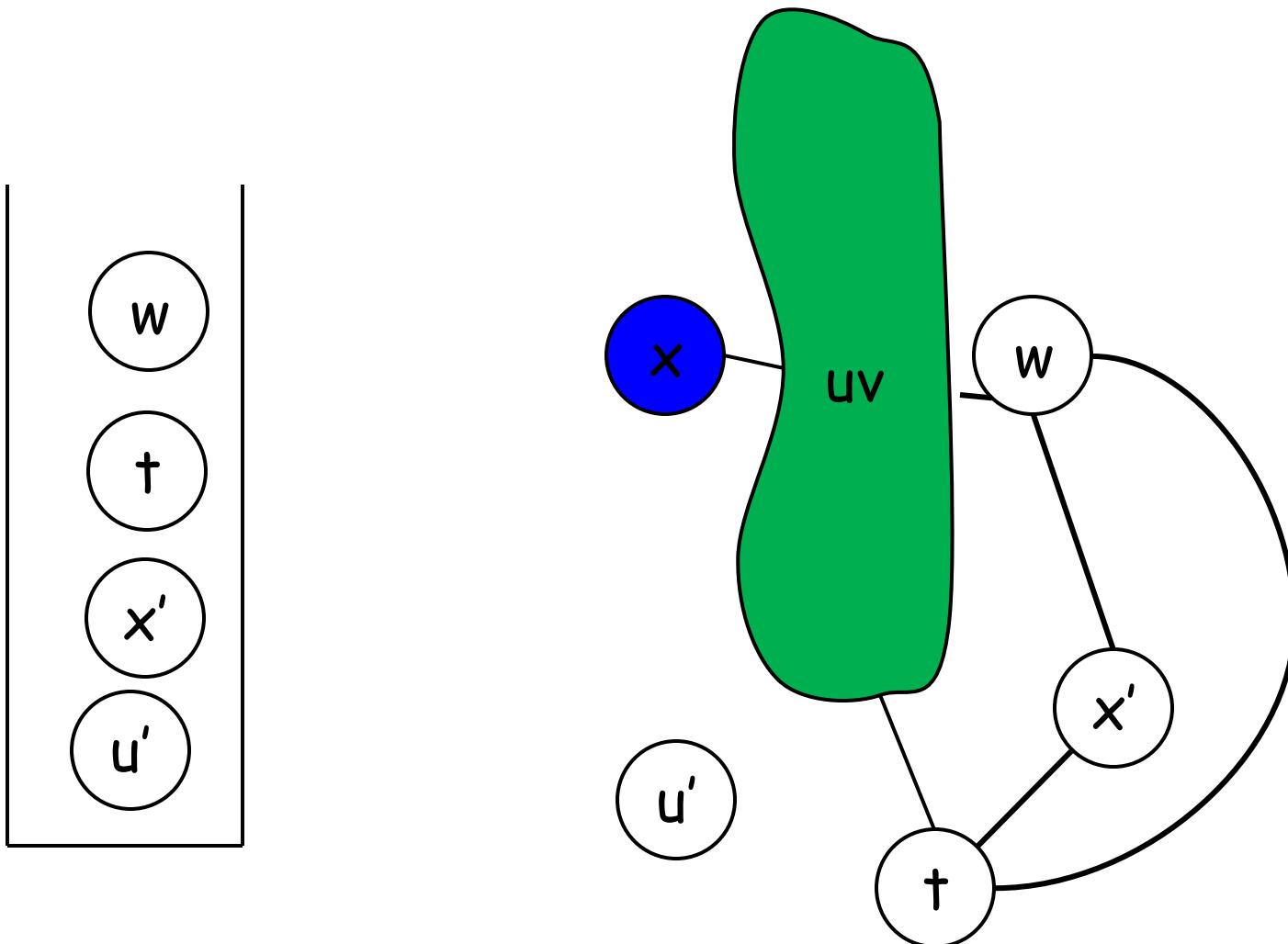
Example, $k=3$



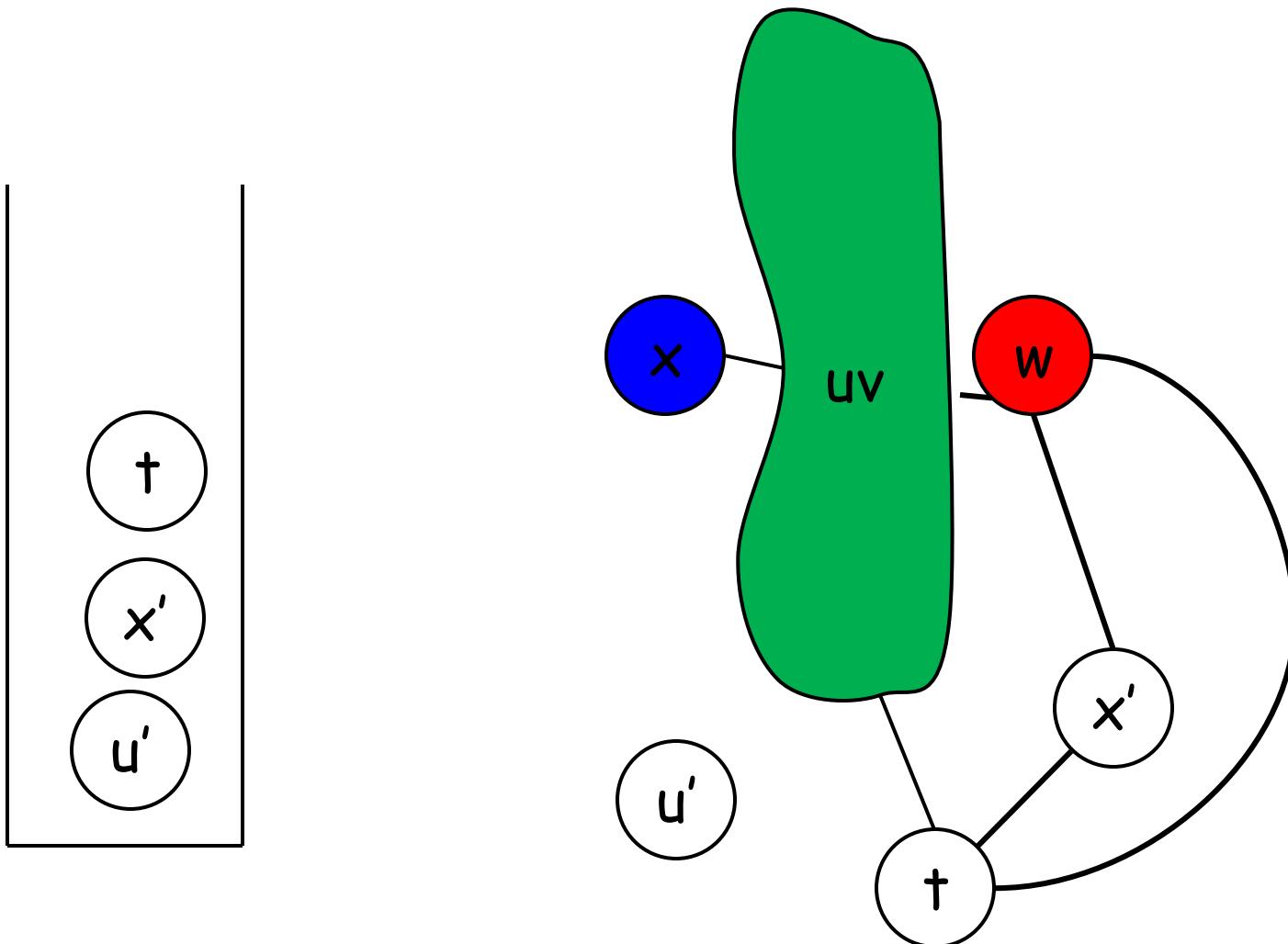
Example, $k=3$



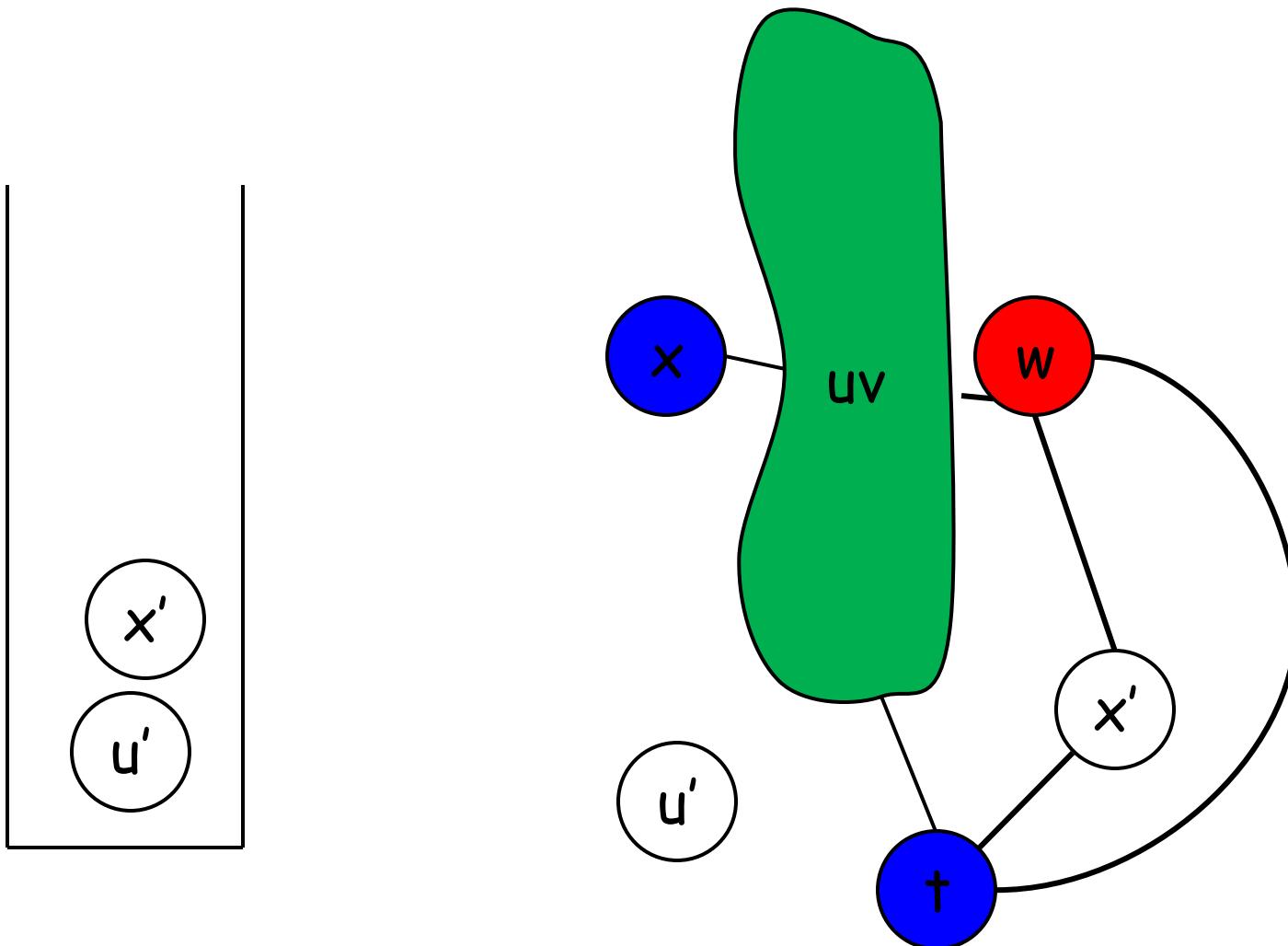
Example, $k=3$



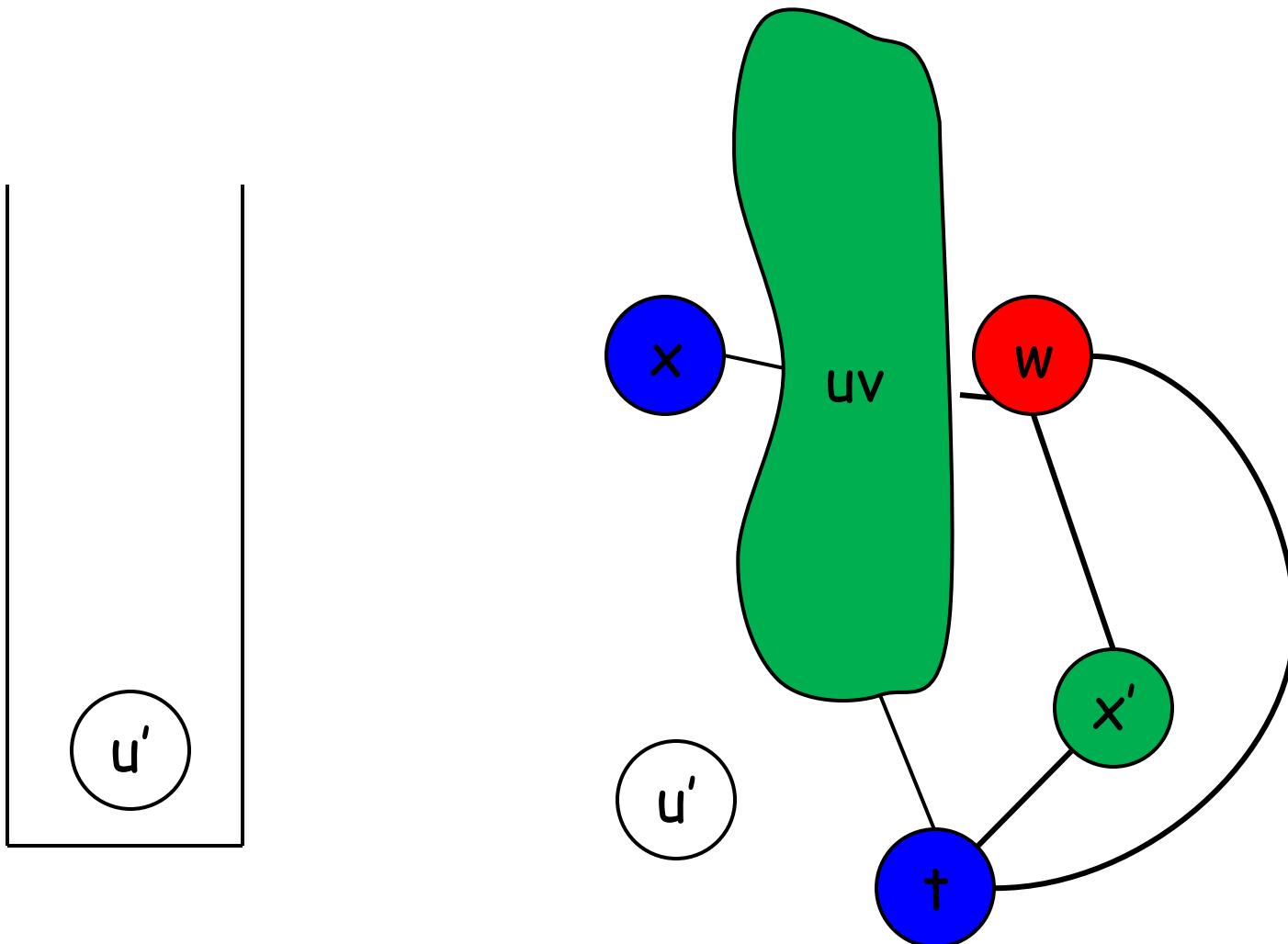
Example, $k=3$



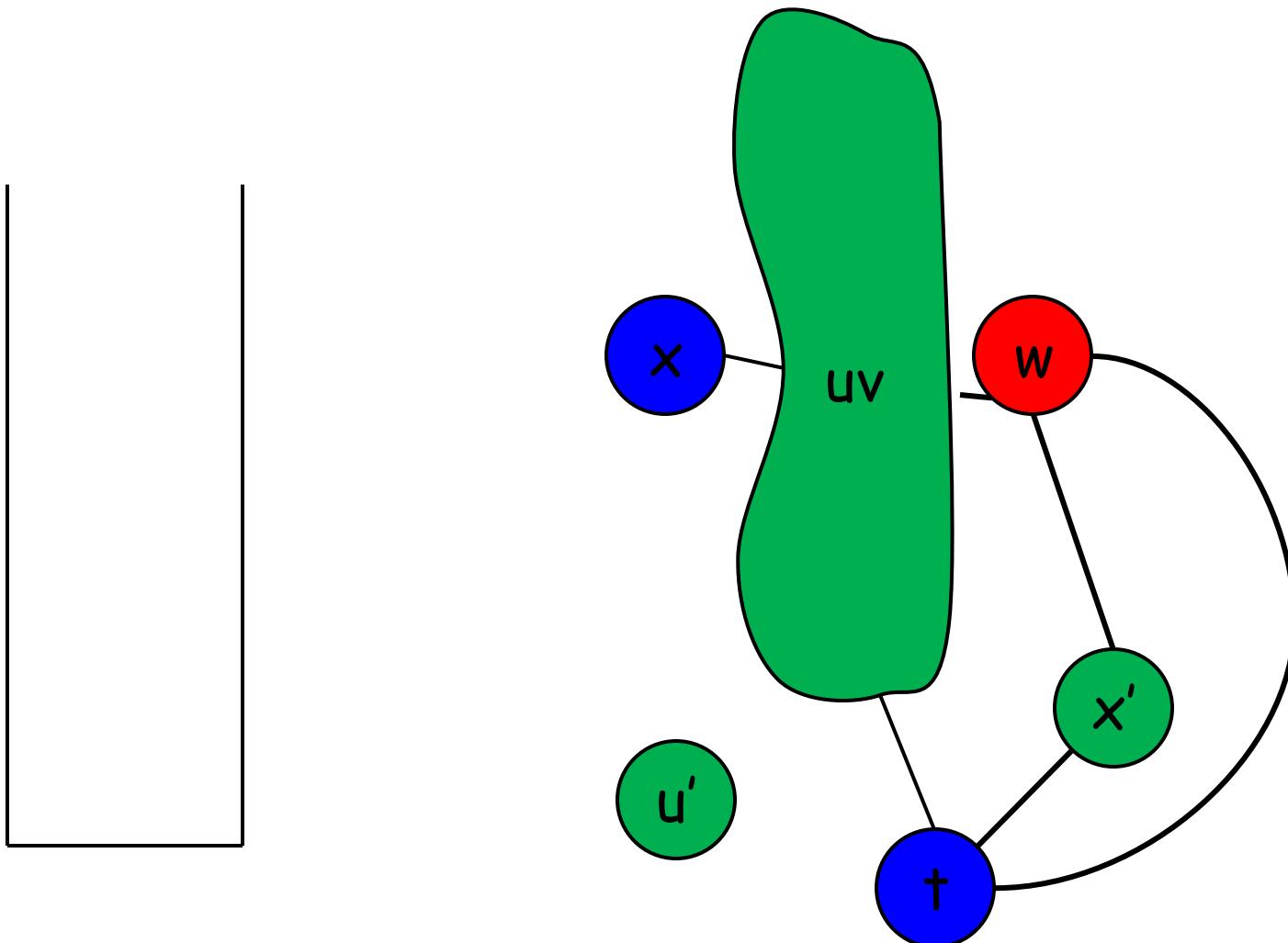
Example, $k=3$



Example, $k=3$

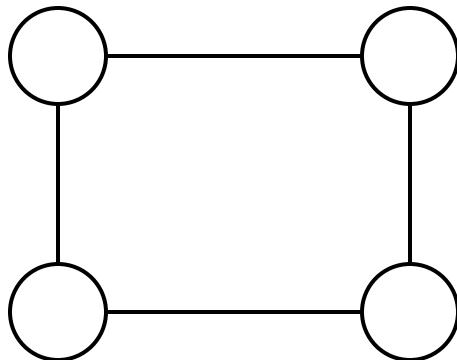
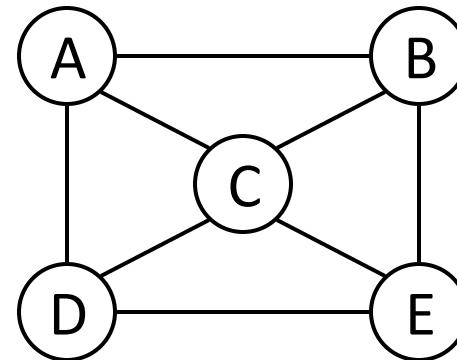


Example, $k=3$



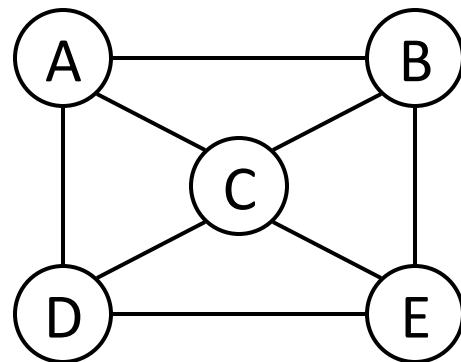
Voila!

Alg not perfect



What should we do when there
is no node of degree $< k$?

Optimisitic Coloring



Chaitin's allocator

- Build: construct the interference graph
- Simplify: node removal, a la Kempe
- Spill: if necessary, remove a degree $\geq k$ node, marking it as a **potential spill**
- Select: rebuild the graph, coloring as we go
 - if a potential spill can't be colored, mark it as an **actual spill** and continue
- Start over: if there are actual spills, generate spill code and then start over

Choosing potential spills

- When choosing a node to be a potential spill, we want to minimize its performance impact
- Can attempt to compute a spill cost for each temp
 - by estimating performance cost
 - or by using actual profile information
- More on this later...

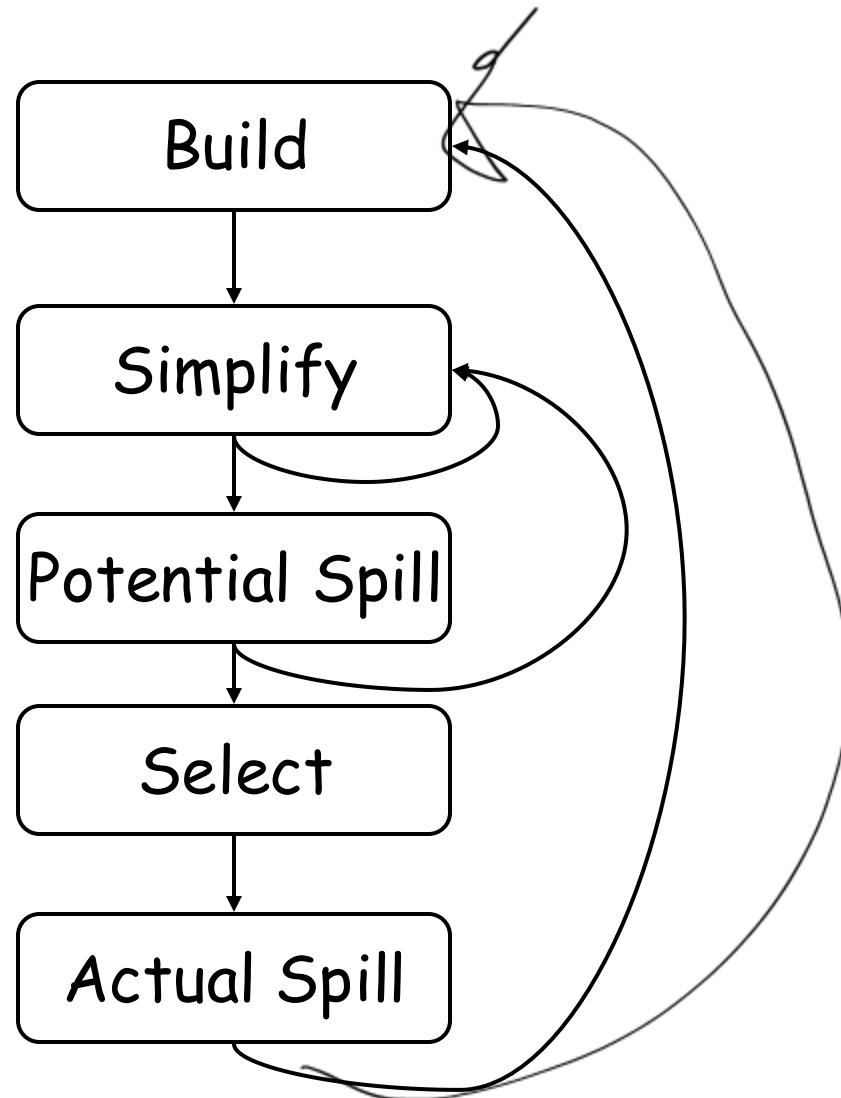
Choosing Potential Spills

- When choosing a node to be a potential spill, we want to minimize its performance impact
- What should we choose to spill?
 - Something that will eliminate a lot of } interference edges
 - Something that is used infrequently
 - Something that is NOT used in loops
 - Maybe something that is live across a lot of calls?

Setting Up For Better Spills

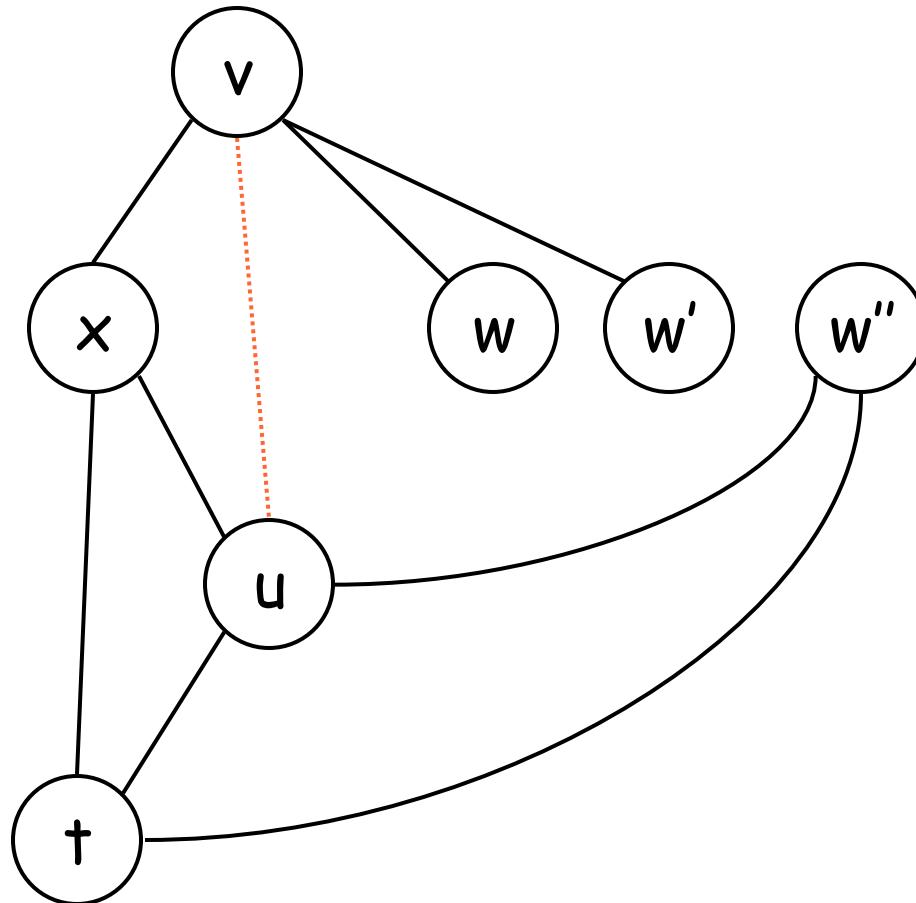
- We want temps not-live across procedures to be allocated to caller-save registers. Why?
- We want temps live across many procs to be in callee-save registers
- We prefer to use callee-save registers last.
- We want live ranges of precolored nodes to be short!

Where We Are



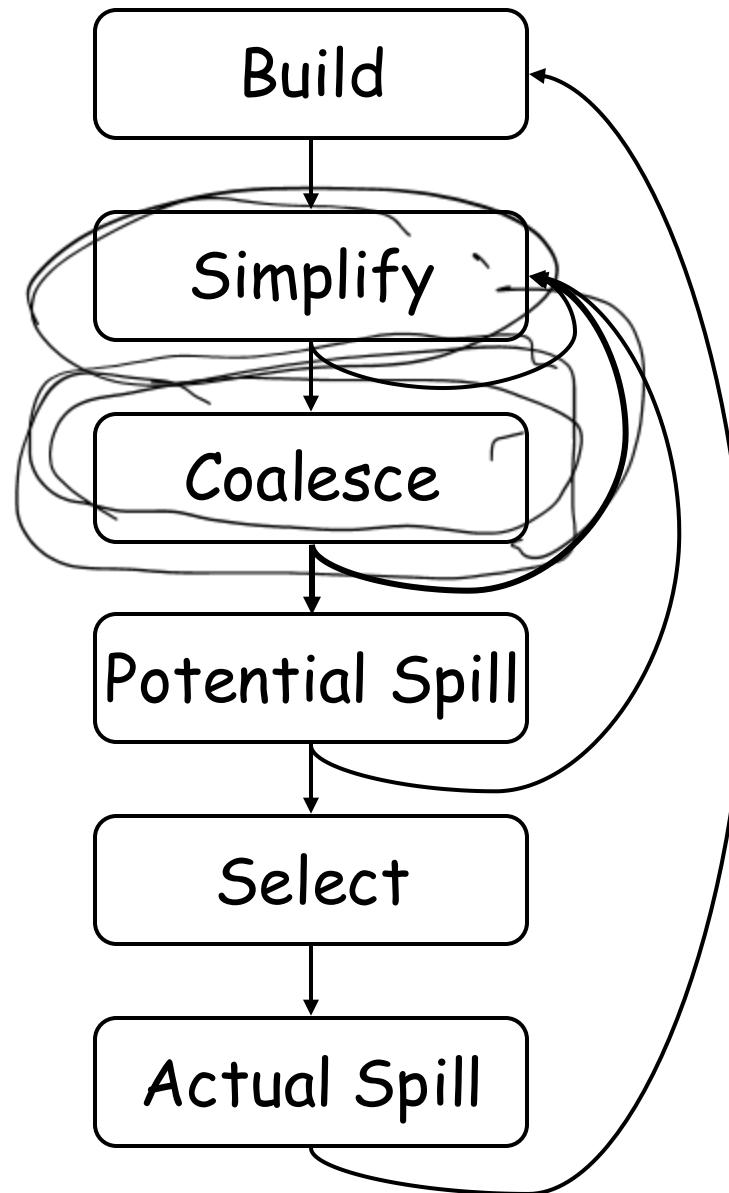
Coalescing

```
v ← 1
w ← v + 3
M[] ← w
w' ← M[]
x ← w' + v
u ← v
t ← u + v
w'' ← M[]
← w'' + x
← t
← u
```



Can u & v be coalesced?
Should u & v be coalesced?

Where We Are

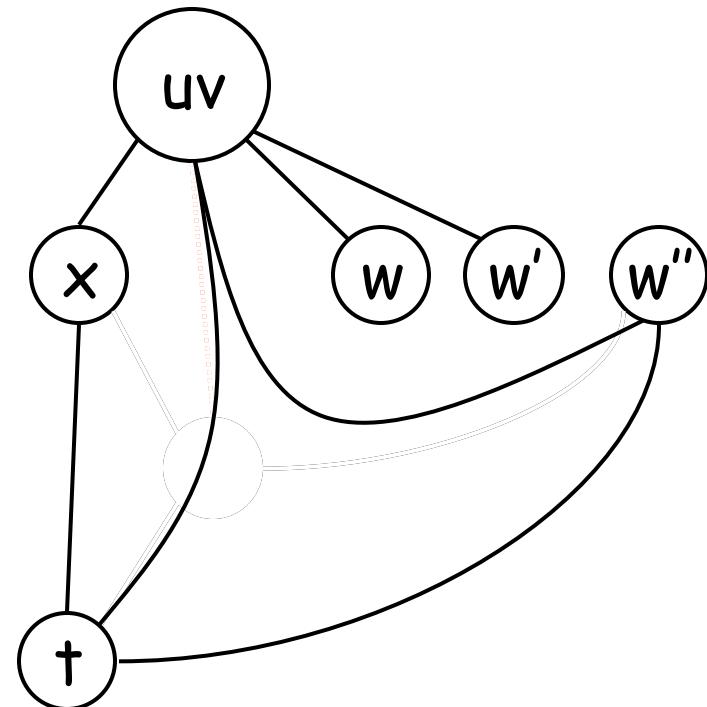


Coalescing

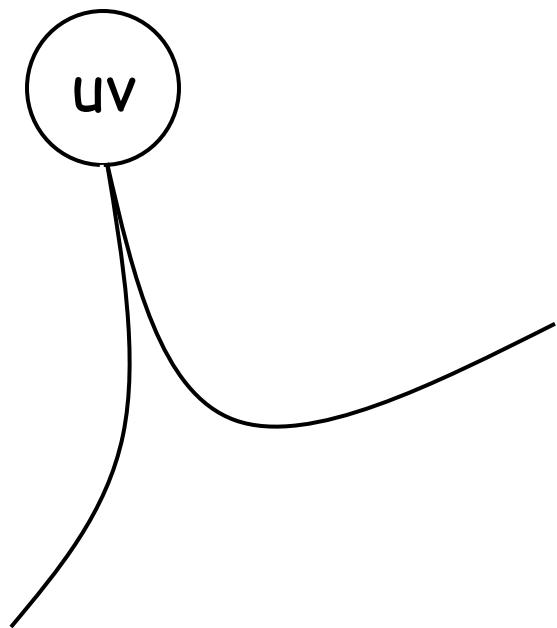
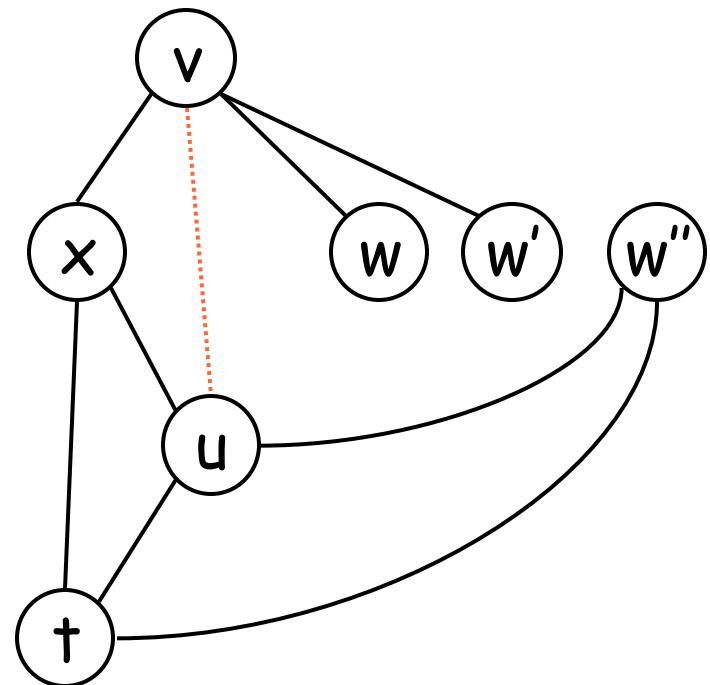
- Conservative or Aggressive?
- Aggressive:
 - coalesce even if potentially causes spill
 - Then, potentially undo
- Conservative:
 - coalesce if it won't make graph uncolorable
 - How to detect?

Briggs

- Can coalesce a and b if
 $(\# \text{ of neighbors of } ab \text{ with degree} > k) < k$
- Why?
 - Simplify removes all nodes with degree $< k$
 - # of remaining nodes $< k$
 - Thus, ab can be simplified



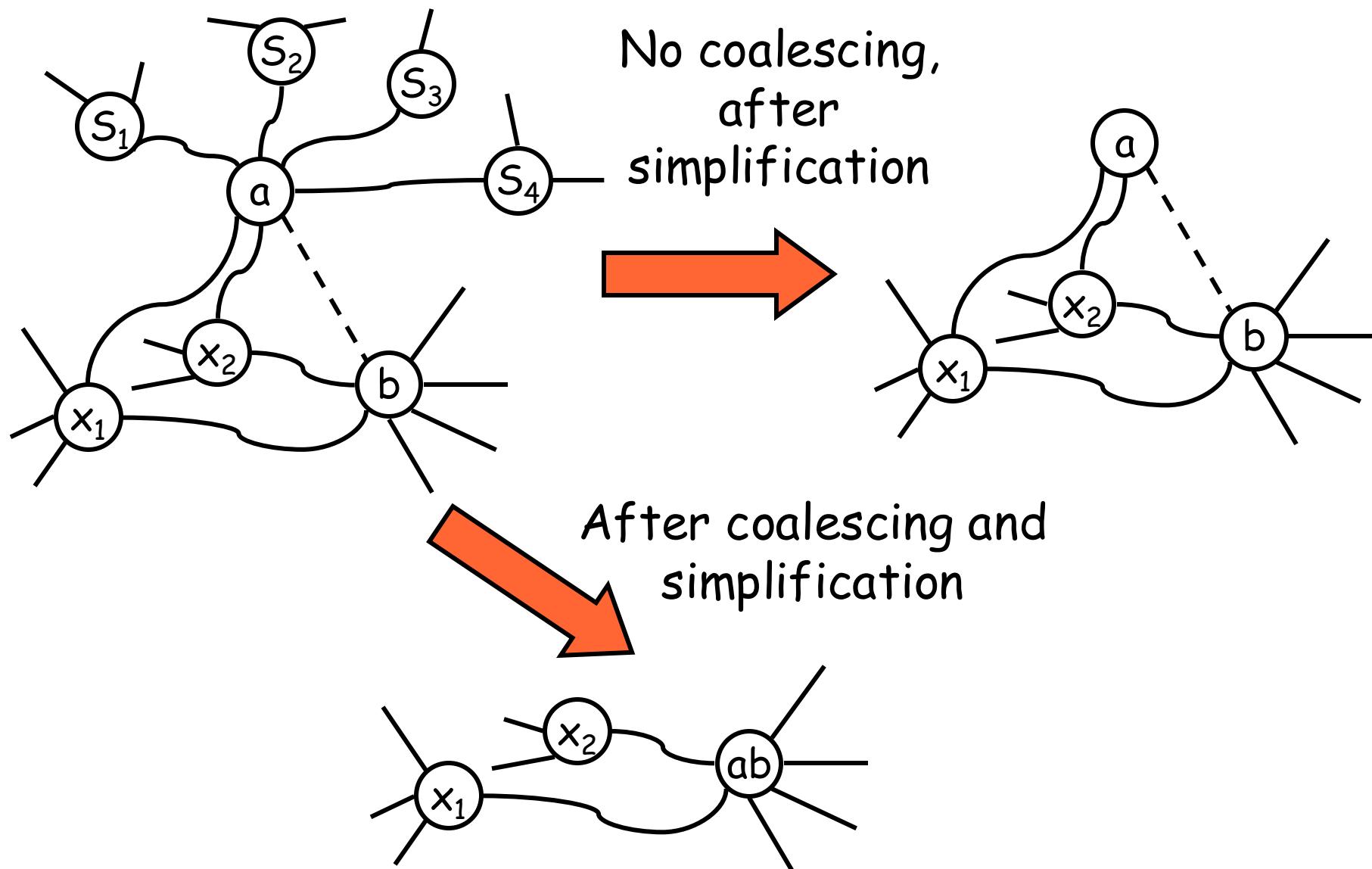
Briggs



Preston

- Can coalesce a and b if
 - foreach neighbor t of a
 - t interferes with b, or,
 - degree of t < k
- Why?
 - let S be set of neighbors of a with degree < k
 - If no coalescing, simplify removes all nodes in S, call that graph G^1
 - If we coalesce we can still remove all nodes in S, call that graph G^2
 - G^2 is a subgraph of G^1

Preston



Why Two Methods?

- With Briggs one needs to look at:
neighbors of a & b
- With Preston, only need to look at
neighbors of a.
- As we will see, we will need to insert “hard”
registers into graph and they have LOTS of
neighbors
 - RAX, RCX, RDI, ...
 - Called hard registers
 - aka precolored nodes

Briggs and Preston

- With Briggs one needs to look at:
neighbors of a & b
- With Preston, only need to look at
neighbors of a.
- Briggs
Used when a and b are both temps
- Preston
Used when either a or b is precolored

What about special registers?

- Instructions with register requirements

d \leftarrow **a** * **b**

ret **x**

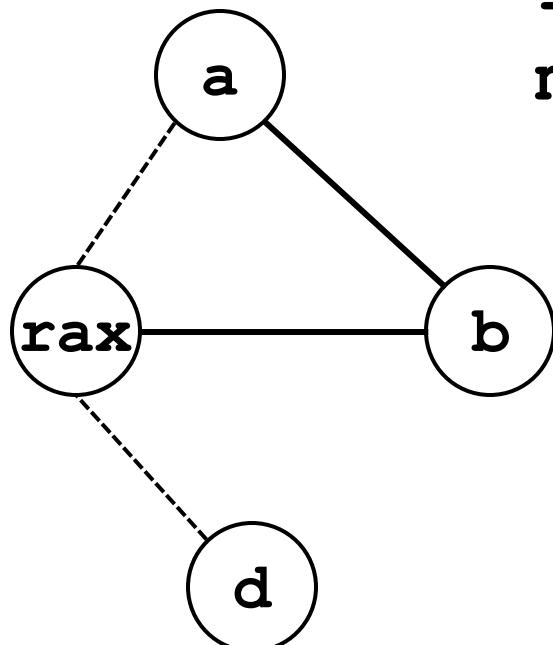
- Callee-save registers
 - x86-64: **RDI**, **RSI**, **RDX**, **RCX**, **R8**, **R9** must be saved by callee if callee wants to use them.

What about special registers?

- Instructions with register requirements

$d \leftarrow a * b$

→ `movl a, rax`
`imul b ; rdx, rax`
`movl rax, d`

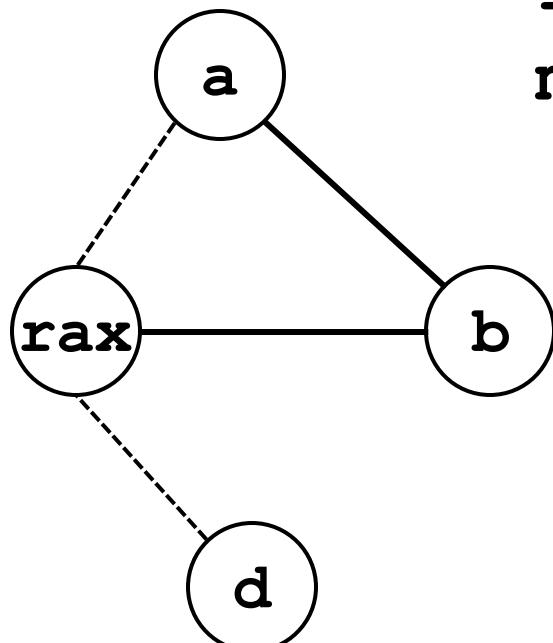


What about special registers?

- Instructions with register requirements

$d \leftarrow a * b$

→ `movl a, rax`
`imul b ; rdx, rax`
`movl rax, d`



If all goes perfectly, then **a** & **d** will end up being coalesced with **rax**

What about special registers?

- Instructions with register requirements

$d \leftarrow a * b$

→ `movl a, rax`
`imul b ; rdx, rax`
`movl rax, d`

`ret x`

→ `movl x, rax`
`ret`

Preserving Callee-registers

- Move callee-reg to temp at start of proc
- Move it back at end of proc.
- What happens if there is no register pressure?
- What happens if there is a lot of register pressure?

prologue: **define r**

t1 ← r

...

epilogue: **r ← t1**

use r