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Cartoon Compiler

Lex Parse Semantics translation

instruction 

selection

register 

allocation

code 

generation
optimization
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Unusual Order

• Standard is to start at the start and proceed 
down the passes: lexing, parsing, …

• We start with Register Allocation, then do 
Instruction Selection!
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Lex Parse Semantics translation

instruction 

selection

register 

allocation

code 

generation
optimization



Today

• Intro to language of L1

• briefly: AST, Abstract assembly, Temps

• Register Allocation Overview

• Interference Graph

• Iterated Register Allocation

– Simplify/Select

– Coalescing

– Spilling

• Special Registers
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Simple Source Language

• A language of assignments, expressions, 
and a return statement.

• Straight-line code

• Basically lab1 subset of C0
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Simple Source Language

program := s1 ; s2 ; … sn ; sequence of statements

s := v = e assignment

 | return e return

e := c constant

 | v variable

 | e1  e2 binary operation 

 := + | - | * | / | %
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Ambiguity?
Semantics?



stmt

expr

Abstract Syntax Tree
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stmt-list

stmt stmt-list

stmt-list

stmt

=

var expr



expr expr

var const

return

expr



Example

z = x + 3 * y – 5;

return z;
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Possible parse tree

z = x + 3 * y – 5;

return z;
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stmt-list

=
stmt-list

return

z

+

x -

y3

* 5

z

Many other possibilites



Abstract Assembly as IR

• Lowering of AST

• Facilitate

– Analysis & optimizations

– Translation to actual assembly

• Features:

– Unlimited number of “temporaries”

– May ( or may not) restrict how memory is used

– Simple operations

– May (or may not) restrict how constants are used

– May specify certain “special registers”
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In today’s world 
aka registers



Abstract Assembly as IR

• Features:

– Unlimited number of “temporaries”

– May ( or may not) restrict how memory is used

– Simple operations

– May (or may not) restrict how constants are used

– May specify certain “special registers”

dest  src1 operator src2

dest  operator src1

 operator
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src can be:
- constant
- temporary
- special register
- memory



Abstract Assembly Language

program := i1 i2 … in seq of instructions

i := d  s move

 | d  s1  s2 binop

 | return s1 return

s := c intermediate

 | t temporary

 | r register

d := t 

 | r 

 := + | - | * | / | %
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values

locations

• intermediate – constants of 
some type

• temporary – a compiler 
generated location which holds 
a value.  After compilation it will 
be mapped to a register or a 
memory location

• register – generally a real 
register from the target 
architecture



Abstract Assembly Language

program := i1 i2 … in seq of instructions

i := d  s move

 | d  s1  s2 binop

 | return s1 return

s := c intermediate

 | t temporary

 | r register

d := t 

 | r 

 := + | - | * | / | %
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values

locations

What is right “level”?



Closer to the machine

program := i1 i2 … in seq of instructions

i := d  s move

 | d  s1  s2 binop

 | return return what is in rax

s := c intermediate

 | t temporary

 | r register

d := t 

 | r 

 := + | - | * | / | %
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Deep Breath

• Defined source language using BNF

– Ambiguity 

– Semantics

• AST

• Abstract assembly

– Operators

– L-values and R-values

– Temps, registers, constants
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Register Allocation

• Until register allocation we assume an 
unlimited set of registers (aka “temps” or 
“pseudo-registers”).

• But real machines have a fixed set of 
registers.

• The register allocator must assign each 
temp to a machine register.



Register Allocation

• Map the variables & temps in the abstract 
assembly to actual locations in the machine

• The locations are either

– physical registers

– slots in the activation frame

• Essential for modern architectures

– registers are much faster, consume less power, etc.

– Some operations require registers

– Goal: Try and allocate as many of the important 
variables/temps to registers.

• However, there are only a few registers
15-411/611 © 2019-21 Goldstein 17



Locations

• Physical registers

• Slots in the activation frame
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Sub-tasks of Register Allocation

• Assignment: map temps to particular registers

• Spilling: If we can’t assign to a register, assign 
to a slot in the stack frame and add code to 
save and restore temp.

• Coalescing: If possible eliminate moves, ab, 
and map both a & b to the same location.

• Ensure special cases are handled properly.

– instructions, e.g., imul, ret, …

– ABI, e.g., callee/caller save registers, function 
arguments.
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Liveness

• A variable is “alive” if it is needed.

• It is needed if it is may be used on 
the righthand side of an 
instruction.

• Otherwise, it is dead.

• We might ask:

– What variables are live at some 
point in the program?

– When is a variable live in the 
program?
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u



15-411/611 © 2019-21 Goldstein 23

Interference

• Consider two temps, t0 and t1.

• If the live ranges for t0 and t1 overlap, we 
say that they interfere.

• First rule of register allocation:

– Temps with interfering live ranges may not be 
assigned to the same machine register.



Running Example

• Two variables, e.g., x & v, 
need to be in different 
registers if at some point in 
the program they hold 
different values.
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u



Running Example

• Two variables, e.g., x & v, 
need to be in different 
registers if at some point in 
the program they hold 
different values.
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u What (if any) program points 
require x & v to be in different 
registers?  (E.g., where do they 
“interfere”?)



Running Example

• Two variables, e.g., x & v, 
need to be in different 
registers if at some point in 
the program they hold 
different values.
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u



Running Example

• Two variables, e.g., x & v, need 
to be in different registers if at 
some point in the program they 
hold different values.

• Use liveness information

• A variable is live at a given point 
in the program if it is defined 
and can be used at some later 
point in the program.
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u



Liveness in straight line code

• Work backwards and at each 
instruction:

• If variable is used on right 
hand side, it is live-in

• if variable was live before it is 
still live-in (unless defined on 
left-hand side) 
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u



Liveness in straight line code

• Work backwards and at each instruction:

• If variable is used on right hand side, it is live-in

• if variable was live before it is still live-in (unless 
defined on left-hand side) 
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u



Liveness in straight line code

• Work backwards and at each instruction:

• If variable is used on right hand side, it is live-in

• if variable was live before it is still live-in (unless 
defined on left-hand side) 
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

{ }

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

live-in sets

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u



Live-out more useful

15-411/611 © 2019-21 Goldstein 32

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u



Interference and Liveness

• Two variables that are live at the same point in the 
program interfere with each other and need to be 
assigned to different registers.
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }
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General Plan

• Construct an interference graph

• Map temps to registers

• Deal with spills

• Generate code to save & restore

• Respect special registers

– avoid reserved registers

– Use registers properly

– respect distinction between callee/caller save 
registers



Interference Graph

• Nodes are temps and registers

• Edge (a,b) indicates a and b “interfere”
In other words, a and b cannot be in the 
same register.
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v

x w

u

t
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Optimistic Graph Coloring

• Construct Interference Graph
– Use liveness information

– Each node in the interference graph is a temp

– (u,v)  G iff u & v can’t be in the same hard register, 
i.e., they interfere

• Color Graph
– Assign to each node a color from a set of k colors, 

k = | register set |

• Spill
– If can’t color graph with  k colors then spill some 

temps into memory.  Regenerate asm code and 
start over.
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An Example, k=4

v               

w           x        

u     
t 

Compute live ranges

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }
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An Example, k=4

Construct the interference graph

v

x w

u

t

v               

w           x        

u     
t 

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u



In Practice

• At point of definition of t, add edges 
between t and all u  live-out, tu
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }

v

x w

u

t



In Practice

• At point of definition of t, add edges 
between t and all u  live-out, tu
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }

v

x w

u

t
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An Example, k=4

A greedy Coloring

v

x w

u

t

v

x

t

u

w

Voila, registers are assigned!v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u
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A Special Interference Edge

u & v are special.  They interfere, but only through a move!

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

v               

w           x        

u     
t 

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }

v

x w

u

t

v

x

t

u

w



Interference and Coalescing

• We would like to eliminate the move  u  v  by 
having u and v share a register (i.e, coalescing)
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v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

{ v }

{ w, v }

{ w, x, v }

{ w, u, x, v }

{ w, t, u, x }

{ u, t }

{ u }

{ }



15-411/611 © 2019-21 Goldstein 44

An Example, k=4

v

x w

u

t

v

x

t

u

w

Rewrite the code to coalesce u & v

uvuv

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

uv               

w           x        

uv     
t 
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Another way to think about it

v

x w

u

t

v

x

t

u

wuvv

v  1

w  v + 3

x  w + v

u  v

t  v + v

   w + x

   t

   v

w           x        

v     
t 
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Is Coalescing always good?

y

u x

b

av

uv

Was 2-colorable,
now it needs 3 colors

So, we treat moves specially.
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An Example, k=4

v

x w

u

t

v

x

t

u

w

Interference from moves become “move edges.”

uvuv

v               

w           x        

u     
t 
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An Example, k=3

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u
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An Example, k=3

Compute live ranges

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

v               

w           x        

u     
t 
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An Example, k=3

Construct the interference graph

v

x w

u

t

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

v               

w           x        

u     
t 
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An Example, k=3

v

x w

u

t

x

t

So, we need to spill

w

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u
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An Example, k=3

v

x w

u

t

x

t

What to spill?  Why?

w

v  1

w  v + 3

x  w + v

u  v

t  u + v

   w + x

   t

   u

v               

w           x        

u     
t 



v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

   w + x’

   t

   u
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An Example, k=3
Choose x and Rewrite program



v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

   w + x’

   t

   u
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An Example, k=3
recalculate live ranges

{ v }

{ w, v }

{ w, v, x }

{ w, v }

{ w, u, v }

{ w, t, u }

{ w, t, u, 

x’ }

{ u, t } }

{ }



v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

   w + x’

   t

   u
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An Example, k=3
recalculate live ranges

{ v }

{ w, v }

{ w, v, x }

{ w, v }

{ w, u, v }

{ w, t, u }

{ w, t, u, x’ }

{ u, t }

{ u }

{ }



v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

   w + x’

   t

   u
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An Example, k=3
recalculate live ranges

v               

w           x        

u     

t 

v               

w           

x        

u     

t 

x’        

Spilling reduces live ranges, which 
decreases register pressure.
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An Example, k=3

Recalculate interference graph

v

x

u

t

w

x’

v               

w           

x        

u     

t 

x’        

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

   w + x’

   t

   u
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An Example, k=3

Recalculate interference graph

v

x

u

t

w

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

   w + x’

   t

   u

x’

v               

w           

x        

u     

t 

x’        
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An Example, k=3

Recolor Graph

v

x

u

t

w

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

   w + x’

   t

   u

x’

v               

w           

x        

u     

t 

x’        
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An Example, k=3

Sigh

v

x

u

t

w

v  1

w  v + 3

x  w + v

M[]  x

u  v

t  u + v

x’ M[]

   w + x’

   t

   u

x’

v               

w           

x        

u     

t 

x’        
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An Example, k=3

respill

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

   w + x’

   t

u’ M[1]

   u
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An Example, k=3

construct new interference graph

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

   w + x’

   t

u’ M[1]

   u

v               

w           

x        

u     

t 

u’        

v

x

u

t

w

x’

u’

x’        
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An Example, k=3

construct new interference graph

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

   w + x’

   t

u’ M[1]

   u

v               

w           

x        

u     

t 

u’        

v

x

u

t

w

x’

u’

x’        
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An Example, k=3

color graph

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

   w + x’

   t

u’ M[1]

   u

v               

w           

x        

u     

t 

u’        

v

x

u

t

w

x’

u’

x’        

wx

x’

t

u’
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An Example, k=3

color graph

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

   w + x’

   t

u’ M[1]

   u

v               

w           

x        

u     

t 

u’        

v

x

u

t

w

x’

u’

x’        
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An Example, k=3

color graph

v  1

w  v + 3

x  w + v

M[0]  x

u  v

t  u + v

M[1]  u

x’ M[0]

   w + x’

   t

u’ M[1]

   u

v               

w           

x        

u     

t 

u’        

v

x

u

t

w

x’

u’

x’        

uv



Graph coloring

• Once we have an interference graph, we 
can attempt register allocation by 
searching for a K-coloring

• This is an NP-complete problem (for K>2)

• But a linear-time simplification algorithm 
(by Kempe, 1879) tends to work well in 
practice
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Kempe’s observation

• Given a graph G that contains a node n 
with degree less than K, the graph is K-
colorable iff G with n removed is K-
colorable

– This is called the “degree<K” rule

• So, let’s try iteratively removing nodes 
with degree<K

• If all nodes are removed, then G is 
definitely K-colorable
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Kempe’s algorithm

• First, iteratively remove degree<K nodes, 
pushing each onto a stack

• If all get removed, then pop each node 
and rebuild the graph, coloring as we go

• If we get stuck (i.e., no degree<K nodes), 
then remove any node and continue
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Example, k=3
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Example, k=3
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Example, k=3
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Example, k=3
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Example, k=3
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Example, k=3
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Example, k=3
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Example, k=3
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Example, k=3

15-411/611 © 2019-21 Goldstein 79

v

u

t

x’

u’

uvx

t

w

x’

u’



Example, k=3
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Example, k=3
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Example, k=3
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Voila!
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Alg not perfect

A B

D E

C

What should we do when there 
is no node of degree < k?



Optimisitic Coloring
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Chaitin’s allocator

• Build: construct the interference graph

• Simplify: node removal, a la Kempe

• Spill: if necessary, remove a degree≥K 
node, marking it as a potential spill

• Select: rebuild the graph, coloring as 
we go

– if a potential spill can’t be colored, mark 
it as an actual spill and continue

• Start over: if there are actual spills, 
generate spill code and then start over
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Choosing potential spills

• When choosing a node to be a 
potential spill, we want to minimize its 
performance impact

• Can attempt to compute a spill cost 
for each temp

– by estimating performance cost

– or by using actual profile information

• More on this later...
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Choosing Potential Spills

• When choosing a node to be a potential 
spill, we want to minimize its performance 
impact

• What should we choose to spill?
– Something that will eliminate a lot of 

interference edges

– Something that is used infrequently

– Something that is NOT used in loops

– Maybe something that is live across a lot of 
calls?



15-411/611 © 2019-21 Goldstein 88

Setting Up For Better Spills

• We want temps not-live across procedures to be 
allocated to caller-save registers. Why?

• We want temps live across many procs to be in 
callee-save registers

• We prefer to use callee-save registers last.

• We want live ranges of precolored nodes to be 
short!
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Where We Are

Build

Simplify

Potential Spill

Select

Actual Spill
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Coalescing 

v

x w

u

t

w’ w’’

v  1

w  v + 3

M[]  w

w’  M[]

x  w’ + v

u  v

t  u + v

w”  M[]

   w” + x

   t

   u Removing unnecessary 
moves.

Can u & v be coalesced?
Should u & v be coalesced?
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Where We Are

Build
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Potential Spill
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Coalesce



Coalescing

• Conservative or Aggressive?

• Aggressive:

– coalesce even if potentially causes spill

– Then, potentially undo

• Conservative:

– coalesce if it won’t make graph uncolorable

– How to detect?
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Briggs

• Can coalesce a and b if
 (# of neighbors of ab with degree  k) < k

• Why?

– Simplify removes all nodes with degree < k

– # of remaining nodes < k

– Thus, ab can be simplified
v

x w

u

t

w’ w’’

uv
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Briggs

v

x w
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uv
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Preston

• Can coalesce a and b if
 foreach neighbor t of a

– t interferes with b, or,

– degree of t < k

• Why?
– let S be set of neighbors of a with degree < k

– If no coalescing, simplify removes all nodes in S, call 
that graph G1

– If we coalesce we can still remove all nodes in S, call 
that graph G2

– G2 is a subgraph of G1
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Preston

a

b

S1

S2
S3

S4

x1

x2

a

b
x1

x2

No coalescing, 
after 

simplification

ab
x1

x2

After coalescing and 
simplification



15-411/611 © 2019-21 Goldstein 98

Why Two Methods?

• With Briggs one needs to look at:
 neighbors of a & b

• With Preston, only need to look at
 neighbors of a.

• As we will see, we will need to insert “hard” 
registers into graph and they have LOTS of 
neighbors

– RAX, RCX, RDI, …

– Called hard registers

– aka precolored nodes
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Briggs and Preston

• With Briggs one needs to look at:
 neighbors of a & b

• With Preston, only need to look at
 neighbors of a.

• Briggs
 Used when a and b are both temps

• Preston
 Used when either a or b is precolored



What about special registers?

• Instructions with register requirements

• Callee-save registers
– x86-64: RDI, RSI, RDX, RCX, R8, R9 must be 

saved by callee if callee wants to use them.
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d  a * b

ret x



What about special registers?

• Instructions with register requirements
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d  a * b

movl a, rax

 imul b      ; rdx,rax 

 movl rax, da

rax

d

b



What about special registers?

• Instructions with register requirements
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d  a * b

movl a, rax

 imul b      ; rdx,rax 

 movl rax, da

rax

d

b If all goes perfectly, then a & d will 

end up being coalesced with rax



What about special registers?

• Instructions with register requirements
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d  a * b

ret x

movl a, rax

 imul b      ; rdx,rax 

 movl rax, d

movl x, rax

 ret 
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Preserving Callee-registers

• Move callee-reg to temp at start of proc

• Move it back at end of proc.  

• What happens if there is no register pressure?

• What happens if there is a lot of register pressure?

prologue: define r

  t1  r

  …

epilogue: r  t1

  use r


