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Unusual Order

e Standard is to start at the start and proceed
down the passes: lexing, parsing, ...

e \We start with Register Allocation, then do
Instruction Selection!

Lex Parse Semantics translation —|

PN

{ instruction Lo /" register code |
) —| optimization [~ . ] .
selection | allocation generation /'




Today

ntro to language of L1

oriefly: AST, Abstract assembly, Temps
Register Allocation Overview
nterference Graph

terated Register Allocation
— Simplify/Select

— Coalescing

— Spilling

Special Registers



Simple Source Language

e Alanguage of assighments, expressions,
and a return statement.

e Straight-line code
e Basically labl subset of CO



Simple Source Language

program := Sl,Sz, . Sy, sequence of statements
,_A_______,—-—\/—\_) ___\N_\
@ Ev=e assignment
| returne return

(e = Co constant
\_/

variable

/@ e, binary operation
@D =+ 1* /] %
Ambiguity?

Semantics?
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Example

z =x+ 3 *y - 5;

return z; “W
v




Possible parse tree

z =x + 3 *y - 5;

return z; @
e stmt-list

D G >
° a Many other possibilites




Abstract Assembly as IR

e Lowering of AST
e Facilitate

— Analysis & optimizations

— Translation to actual assembly In today’s world
aka registers

e Features: B
— Unlimited number @MQ—J
— May ( or may not)restrict-how-memory is used
— Simple operations
— May (or may not) restrict how constants are used
— May specify certain “special registers”
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Abstract Assembly as Ilyﬁ_?

e Features: M
— Unlimited number of “temporaries” |
— May ( or may not) restrict how memory is used
— Simple operations
— May (or may not) restrict how constants are used
— May specify certain “special registers”

B \
< dest «— éré%peritor @rc2 src can be:
L : - constant
fi dest « @r Srcy k//
,f* - temporary .
< Ope rator - special register L/
P

- memory\
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Abstract Assembly Language

program := iy iy .., seq of instructions

move
binop
return
intermediate
temporary — values

register

J \

— |ocations




Abstract Assembly Language

program := ;I ... 1, seq of instructions
\~— Y
i = d <—|f's@ move
N
| d<s5;,®Ps, binop
| returns; return
S = €/ intermediate |

temporary — values

J \

o
o

— |ocations

v
/ register
J
J

D +-1*1/]%
T~ What is right “level”?
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Closer to the machine

program Iy by .l seq of instructions

| = d<s move
| d<s;®s,  binop

1 rewm  rewmhatisin rax
> = ¢ intermediate
|t temporary

T register
d -t

| r
@ = - 1* 1/ %
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Deep Breath

e Defined source language using BNF
— Ambiguity
— Semantics

e AST
e Abstract assembly

— Operators
— L-values and R-values

— Temps, registers, constants



Register Allocation

e Until register allocation we assume an
unlimited set of registers (aka “temps” or
“pseudo-registers”).

e But real machines have a fixed set of
registers.

e The register allocator must assign each
temp to a machine register.
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Register Allocation

Map the variables & temps in the abstract
assembly to actual locations in the machine

The locations are either
— physical registers
— slots in the activation frame

Essential for modern architectures
— registers are much faster, consume less power, etc.
— Some operations require registers

— Goal: Try and allocate as many of the important
variables/temps to registers.

However, there are only a few registers

© 2019-21 Goldstein
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Locations

e Physical registers
e Slots in the activation frame



Sub-tasks of Register Allocation *

e Assignment: map temps to particular registers

e Spilling: If we can’t assign to a register, assign
to a slot in the stack frame and add code to
save and restore temp.

e Coalescing: If possible eliminate moves, a<Db,
and map both a & b to the same location.

e Ensure special cases are handled properly.
— instructions, e.g., imul, ret, ...

— ABI, e.g., callee/caller save registers, function
arguments.



Liveness

e A variable is “alive” if it is needed.

e Itis needed if it is may be used on
‘@“ the righthand side of an
instruction.

w +

-
-
-
<_

v | e Otherwise, it is dead.

_* We might ask:

— What variables are live at some
point in the program?

— When is a variable live in the
program?
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Interference

e Consider two temps, t0 and t1.

e |f the live ranges for t0 and t1 overlap, we
say that they interfere.

e First rule of register allocation:

— Temps with interfering live ranges may not be
assigned to the same machine register.



r7TtTT T T 1T

Running Example

e Two variables, e.g., x & v,
need to be in different
registers if at some point in
the program they hold
different values.
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r7TtTT T T 1T

o

w
t

(o

4+

+

+
+

3

v

-
v

X

Running Example

“‘Y- Two variables, e.g., x & v,

]

e,

need to be in different
—registers if at some point in

[ the program they hold

-

—different values.

What (if any)progranypoints
require x & vbe—i%@(erent

registers? (E.g., where do they
“interfere”?)
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V <«
W &

u <«

t «

Running Example

e Two variables, e.g., x & v,
need to be in different

registers if at some point in

the program they hold

different values.



r7TtTT T T 1T

Running Example

e Two variables, e.g., x & v, need
to be in different registers if at

- some point in the program they

 hold different values.

e Use liveness information

e Avariable is live at a given point
in the program if it is defined
and can be used at some later
point in the program.



r7TtTT T T 1T

Liveness in straight line code

e \Work backwards and at each
v+ 3 instruction:

e If variable is used on right
hand side, it is live-in

+
w + x e if variable was live before it is
£ 1)) still live-in (unless defined on
i N left-hand side)
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Liveness in straight line code

- 5

v« 1 -
b V)
we v+ 3 é/ ll\f‘-’)\j?)
o e
kéﬁ“ﬂﬂb‘”
@(— u + v =
~ w+x é/ﬁJ%U\JL)Nﬂﬂ\
— t Q‘-)ﬁwj’k\ﬂ\
e w94

e \Work backwards and at each instruction:
e |f variable is used on right hand side, it is live-in

e if variable was live before it is still live-in (unless
defined on left-hand side)



Liveness in straight line code

ve 1 .

wWe v+ 3 t v live-in sets
X < W+ v tw, v}

U« v tw x, v}

tée u+v {w, u, x, v}

« t tu t}

« u tul

e \Work backwards and at each instruction:
e |f variable is used on right hand side, it is live-in

e if variable was live before it is still live-in (unless
defined on left-hand side)
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r1+Tt+TrTr Tt

(o

Live-out more useful
v }
w, X, v }

W/ tl u’ X }

{

{

{
{w, u x, v}
{

{u t}

{ ul}
{1}
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Interference and Liveness

(_
{ v}
«— v + 3
{ w, v}
X w + v
{w, x, v}
u < v
{wlulxlv}
{Wltlulx}
— w + X
{ u, t}
<~ t
{ u}
< u

{}

e Two variables that are live at the same point in the
program interfere with each other and need to be
assigned to different registers.
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General Plan

° Construct an interference graph
e Map temp O registers
e Deal with spllls

—_—

e Generate code to save & restore
M

e Respect special registers
— avoid reserved registers
— Use registers properly

— respect distinction between callee/caller save
registers

15-411/611 © 2019-21 Goldstein



Interference Graph

e Nodes are temps and registers

e Edge (a,b) indicates a and b “interfere”
In other words, a and b cannot be in the
same register.




Optimistic Graph Coloring

e Construct Interference Graph
— Use liveness information
— Each node in the interference graph is a temp

— (u,v) € G iff u & vcan’t be in the same hard register,
i.e., they interfere

e Color Graph

— Assign to each node a color from a set of k colors,
k = | register set |
e Spill

— If can’t color graph with k colors then spill some
temps into memory. Regenerate asm code and
start over.



An Example, k=4

(_
{ v}
«~— v + 3
{ w, v}
X w + v
{w, x, v}
u < v
{W,u,X,V}
«— u + v
{wltlulx}
— w + X
{ u, t}
«— t U
{ u}
< u

{1}

Compute live ranges

15-411/611 © 2019-21 Goldstein
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r1+Tt+Tr Tttt

o

An Example, k=4

Construct the interference graph

© 2019-21 Goldstein
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V <«
W &

X <
@(—
t «
«
«

(_

u

L T e T o T o S S S S )

In Practice

w, v}

x, v}

)
W, l@ X, V.
u, x

t,

}
}

©

O

O

(W

e At point of definition o@ add edges

between t and all u € live-out, t#u
/_\_,/_\\/ﬁ
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In Practice

v}

w, v}

wl xl v }

{
{
{
{
{
{

(o
r7TtTT T T 1T
<

(o

{1}

e At point of definition of t, add edges
between t and all u € live-out, t#u
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(o

An Example, k=4

Voila, registers are assignhed!

A greedy Coloring

© 2019-21 Goldstein
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A Special Interference Edge

v« 1
wé— Vv + 3

X < w + Vv

LE3

t¢«< u+v
«— W + x
«~— t
< u

L T e T S Y S S .

u & v are special. They interfere, but only through a movel!
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Interference and Coalescing

(_
{ v}
«— v + 3
{ w, v}
X w + v
{w, x, v}
u <« v
{W,u,X,V}
t¢e« u+v
{Wltlulx}
— w + X
{ u, t}
<~ t
{ u}
< u

{}

e We would like to eliminate the move u <« v by
having u and v share a register (i.e, coalescing)

15-411/611 © 2019-21 Goldstein

43



An Example, k=4

v <« 1

wé— Vv + 3

X < w + Vv

t¢< u+v

«— w + X
«— t
«— u

Rewrite the code to coalesce u & v
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Another way to think about it

v« 1
wé— Vv + 3

X < w + Vv

t ¢« v + v
«— w + X

«~— t




Is Coalescing always good?

-

O
@
.

L L.




An Example, k=4

Interference from moves become "move edges."
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r1+Tt+TrTr Tt

(o

An Example, k=3
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r1+Tt+TrTr Tt

o

An Example, k=3

Compute live ranges

© 2019-21 Goldstein
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r1+Tt+TrTr Tt

o

An Example, k=3

Construct the interference graph
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r1+Tt+TrTr Tt

o

An Example, k=3
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r1+Tt+TrTr Tt
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An Example, k=3
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An Example, k=3

Choose x and Rewrite program

© 2019-21 Goldstein
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V <
W

X <«
M[] «
u <
t «

X'

(_

1
v + 3

w + Vv

u + v
M[]
w + x’

t

An Example, k=3

recalculate live ranges

{1}

© 2019-21 Goldstein
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V <
W

X <«
M[] «
u <
t «

X'

An Example, k=3

1

{ v}
v + 3

{ w, v}
w + v

{w, v, x}
X

{w, v}
v

{ w, u, v}
u + v

{w, £, ul}
M[]

{wltlul
w + x’

{ u, t}
t

{ ul}
u

{1}

© 2019-21 Goldstein
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An Example, k=3

recalculate live ranges

v« 1
wWé— v + 3

X < w + Vv
M[] « x
u <« v

tée< u+v

X"« MJ[]
«— w + x’
«~— t
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An Example, k=3

O
OO

vV 1
wWé— v + 3

X < w + Vv
M[] « x
u <« v

tée< u+v

P O
«— w + x’
- (<

-+ M1

Recalculate interference graph
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V <
W

X <«
M[] «
u <
t «

X'

u + v
MI[]

w + x’

An Example, k=3

Recalculate interference graph

© 2019-21 Goldstein
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V <
W

X <«
M[] «
u <
t «

X'

e

u + v
M[]
w + x’

t

An Example, k=3

Recolor Graph

© 2019-21 Goldstein
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An Example, k=3

O,

T T 1

Sigh
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vV 1
W v + 3

X < w + Vv

M[0] « x

u <« v

I

t¢« u+v
A

M[1] < u,

x'"¢«< M[O]

<« w + x’

15-411/611

An Example, k=3

respill

© 2019-21 Goldstein
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An Example, k=3

vV 1
wWé— v + 3

X < w + Vv

M[O0] « x

u < Vv

tée< u+v

M[1l] « u

x'"¢«< M[O]
«— w + x'’
«~— t

u’ <« MJ[1]
< u

construct new interference graph
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An Example, k=3

vV 1
wWé— v + 3

X < w + Vv

M[O0] « x

u < Vv

tée< u+v

M[1l] « u

x'"¢«< M[O]
«— w + x'’
«~— t

u’ <« MJ[1]
< u

construct new interference graph
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An Example, k=3

vV 1
wWé— v + 3

X < w + Vv

M[O0] « x

u < Vv

tée< u+v

M[1l] ¢« u

x'"¢«< M[O]
«— w + x'’
«~— t

u’ <« M[1]
«— u

color graph

15-411/611 © 2019-21 Goldstein



An Example, k=3

vV 1
wWé— v + 3

X < w + Vv

M[O0] « x

u < Vv

tée< u+v

M[1l] ¢« u

x'"¢«< M[O]
«— w + x'’
«~— t

u’ <« M[1]
«— u

color graph
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An Example, k=3

vV 1
wWé— v + 3

X w + v
M[0] « x
u <« v

tée< u+v

M[1l] ¢« u
x'"¢«< M[O]

«— W + x'

“ ¢ (v)
u’ <« M[1]

«~ u

color graph
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Graph coloring

e Once we have an interference graph, we
can attempt register allocation by
searching for a K-cole|

=

e This is an NP£ogmplete
e Butalinea
(by Kempe,\!
— /
practice



Kempe’s observation

e Given a graph G that contains a hode n
with degree less than K, the graph is K-
colorable iff G with n removed is K-
colorable

— This is called the w rule

e So, let’s try iterati\}ely removing nodes
with degree<K

e |f all nodes are removed, then G is
definitely K-colorable



Kempe’s algorithm

e First, iteratively remove degree<K nodes,
pushing each onto a stack

e |f all get removed, then pop each node
and rebuild the graph, coloring as we go

e |f we get stuck (i.e., no degree<K nodes),
then remove-any node and continue



Example, k=3




Example, k=3




Example, k=3




QOIO

Example, k=3




Example, k=3

OO E




Example, k=3

®

OOOEOE




Example, k=3

OOOEOE




OO E

Example, k=3




QOIO

Example, k=3




Example, k=3




Example, k=3




Example, k=3

Voilal



Alg not perfect

[




Optimisitic Coloring




Chaitin’s allocator

e Build: construct the interference graph

S~

implify: node removal W

o %ﬁ%ﬂ if necessary, remove a degree>K
de, marking it as a potential spill

e Select:rebuild the graph, coloring as

we go
— if a potential spitk.can’t be colored, mark

it as an and continue

e Start over: if there are actual spills,
generate spill code and then start over




Choosing potential spills

e When choosing a node to be a
potential spill, we want to minimize its
performance impact

e (Can attempt to compute a spill cost
for each temp
— by estimating performance cost
— or by using actual profile information

e More on this later...



Choosing Potential Spills

e When choosing a node to be a potential
spill, we want to minimize its performance
Impact

e What should we choose to spill? ifcé‘"
— Something that will eliminate a lot ofzI - ‘
interference edges @‘”@
— Something thatis used im B
hing that s NOT U e
— Something that is ed in loops -

— Maybe something that is live across a lot of
calls? - N é/f



Setting Up For Better Spills

e \We want temps not-live across procedures to be
allocated to caller-save registers. Why?

e \We want temps live across many procs to be in
callee-save registers

e We prefer to use callee-save registers last.

e We want live ranges of precolored nodes to be
short!



Where We Are

[ Build

[ Simplify

Potential Spill

Select

[ Ac’ruc‘(rl Spill J
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V <«
W &

Coalescing

x (W) (W) (w)

Can u & v be coalesced?
Should u & v be coalesced?

© 2019-21 Goldstein
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Where We Are
: Build J

?(cr—:--._.__
Simplify °

~\

p
Coalesce

\_

Potential Spill

Select

[ Actual Spill ]
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Coalescing

e Conservative or Aggressive?
e Aggressive:

— coalesce even if potentially causes spill
— Then, potentially undo

e Conservative:

— coalesce if it won’t make graph uncolorable
— How to detect?

© 2019-21 Goldstein
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Briggs

e Can coalesce a and b if

e Why?
— Simplify removes all nodes with degree < k

— # of remaining nodes < k
— Thus, ab can be simplified




Briggs




Preston

e Can coalesce aand b if

e Why?
— |let S be set of neighbors of a with degree < k
— If no coalescing, simplify removes all nodes in S, call
that graph G
— If we coalesce we can still remove all nodes in S, call
that graph G2
— G?%is a subgraph of G1
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Preston

No coalescing,
affer

After coalescing and
simplification
> j@\_



Why Two Methods?

e \With Briggs one needs to look at:
neighbors ofa & b

e With Preston, only need to look at
neighbors of a.

e As we will see, we will need to insert “hard”
registers into graph and they have LOTS of
neighbors
— RAX, RCX, RDI, ...

— Called hard registers
— aka precolored nodes



Briggs and Preston

e \With Briggs one needs to look at:
neighbors ofa & b

e With Preston, only need to look at
neighbors of a.
e Briggs
Used when a and b are both temps

e Preston
Used when either a or b is precolored



What about special registers?
e Instructions with register requirements

d <« a *Db

ret x

e Callee-save registers

— x86-64: RDI, RSI, RDX, RCX, R8, R9 must be
saved by callee if callee wants to use them.



What about special registers?

e Instructions with register requirements

d <« a *Db

=) movl a, rax
imul b ; rdx,rax
movl rax, d

rax b



What about special registers?

e Instructions with register requirements

d <« a *Db

=) movl a, rax
imul b ; rdx,rax
movl rax, d

rax b If all goes perfectly, then a & d will

N
\,
\
N\
N\,
N
\
N
\:
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end up being coalesced with rax



What about special registers?

e Instructions with register requirements

d <« a *Db

=) movl a, rax
imul b ; rdx,rax
movl rax, d



Preserving Callee-registers

e Move callee-reg to temp at start of proc

e Move it back at end of proc.

e What happens if there is no register pressure?
e What happens if there is a lot of register pressure?

prologue:

epilogue:

15-411/611

define r

tl1<«r

r <« tl1

user
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