15-411/15-611 Compiler Design

Spring 2026 with Seth Copen Goldstein

http://www.cs.cmu.edu/~411

http://www.cs.cmu.edu/~411

Compilers at 60K

What is a Compiler?

(@

&)

program pProgram

executable form

&)

1 RESULT

program |

e \

J

executable form

© Goldstein 2020 15-411

"A” Compiler is a misnomer

- Multiple sources compiled into .o files

runnable app

. Linker combines .o files into .exe file
- Loader combi

nes .exe file (with .so) into a
ication

- But, we will mostly ignore this in class.

Better View of a Compiler

Source
code

+ Compiler

Target

code

Implications

»Errors

- Must recognize legal (and illegal) programs
- Must generate correct code

- Must manage storage of a

| variables (a

- Must agree with target on-

nd code)

‘ormat for obj

ect code

Big step up from assembly language—use higher level

nota

tions

Executors

(@

D) (@)

RESULT
!

|

© Goldstein 2020

C.

Compilers transform specifications

Interpreters execute specifications
- (without generating new target code)

E.g.. C++is usually compiled
Python is usually interpreted
Java/JavaScript are JIT-compiled

Many common Issues
411 mainly focuses on compilers.

15-411

Why take this class?

. Compilers design and construction
combines:
- theory
- algorithms
- Al
- systems
- architecture
- software engineering

Compilers Are Everywhere

. FTP daemon
. \WWeb browsers

- perl, sed, awk, emacs, bc
. excel, tex

. web servers (e.q., asp)

- databases (query opt)

. virtual machines
.7

Compilers are Essential

L 60-A0N

- 0-A0N

- £0-AON

- 90-AON

- G0-AON

- 70-AON

L £0-AON

- Z0-AON

\ - TO-AON

1 - 00-AON

\ - 66-AON

!
/ \ - 86-AON
.f.,.
/ \ - /6-AON

Performance Gains Due to Compiler (gcc)

S50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

jusawnoldwI @o2uewo04i2d 000Z)D3dS

15-411

© Goldstein 2020

Compilers are Essential

Virtual machines employ JITs for dramatic speedups

JIT SpEEdup - Wizard-SPC W allopt @ nok @ nokfold @ noisel @ nomr

30

25

15

10

PolyBenchC Ostrich Libsodium

© Goldstein 2020 15-411 10

Compilers Are Fun

- Many very hard problems
- Many (it not most) are NP-hard

- S0, what to do”?
- Applies theory and practice

- Modern architectures depend on
compilers: Compiler writers drive

architectures!
. You can see the results

What makes a good compiler?

Correctness

Performance of translated program
- Predictably small and fast code
Scalability of compiler

- Fast complile time
- Separate (incremental, parallel) compilation

Easy to modity

Alds programmer

- good complile time error messages
- support for debugger

© Goldstein 2020 15-411

Compilers at 30K

13

A Simple Example

X :=a * 2 +b * (x * 3)

- What does this mean? Is it valid?
- How do we determine its meaning:

- break |

Nnto words

— conver:

- words to sentences

- Interpret the meaning of the sentences

© Goldstein 2020

Lexical Analysis

X :=a *2 +Db * (x * 3)

id<x> assign id<a> times int<2> plus id
times lparen id<x> times int<3> rparen

Group characters into tokens

=

tr

188

inate unnecessary characters from

€

INput stream

Use regular expressions to specity and
DFAs to implement.

E.g., lex

15-411

Syntactic Analysis

X :=a *2 +Db * (x * 3)

id<x> assign id<a> times int<2> plus id
times lparen id<x> times int<3> rparen

- Group tokens into sentences ‘

Eliminate unnecessary tokens from ® &
the input stream () (%

Use context-free grammars to @5\@ &
specify and push down automata to Q

implement © @

E.g., bison

Semantic Analysis

X = a * 2

+ b * (x * 3)

id<x> assign id<a> times int<2> plus id
times lparen id<x> times int<3> rparen

Determines meaning o

- sentence.

- What are the types of t
(X, a, b)?

- Constants (2, 3)7
- Operators (¥, +)

tables, ...

s it legal to read and write x7
Use attributed grammars, symbol

ne variables

Translation

. |Interface between front-end and back-end

- Many different types of IRs
- Hierarchical

- Linear

- Tree based

- Triple based

Instruction Selection

- Translates IR Into target instruction set
- Choose instructions (smul or s11)

- Choose operand modes

- immediate constants (2 or 3)

- load iImmediates A
- addressing modes

- Complex instructions
- Types of branches

- Use tree grammars &
dynamic programming

© Goldstein 2020

rrrTrtTMrT1TMT™N

Instruction Selection

load M|[fp+x]
loadi 3

mul r,, r,
load M[fp+b]
mul r,;, r,
load M[fp+a]
sll r,, 1

add r,, r.

store M[fp+x] € rg

15-411

20

Optimizations

Improves the code by some

metric:
- code size
- reqister usage
- speed

- power consumption
Types of optimizations:
- Basic block (peephole)
- Global (loop hoisting)

- Interprocedural (leaf functions)

- Whole program (inlining of
methods)

Uses: flow analysis, etc.

© Goldstein 2020

15-411

rr*rtTrr1rTr1rTr1r™T A

load
loadi
mulr,,
load
mulr,,
load
sllr,,
addr,,

store

M[fp+x]
3

M[fp+x] €

21

r, &
r, €

© Goldstein 2020

Metrics Matter

Assume load takes 3 cycles, mul takes 2 cycles

load M[fp+x] r, € load M[fp+x]
loadi 3 r, € load M[fp+b]
mulr,, r, () € load M[fp+a]

load M[fp+b] 7n r, € loadi 3

mulr,, r, , ¥, € mulr,, r,

load M[fp+a] ~ ¥, € mulr,, r,

slxr,)1 re € sliry 1

addr,, r, r, € addr,, r,

store M[fp+x] € r; store M[fp+x] € r,

Cycles: @ Cycles: @

15-411

22

Register Allocation

Assign variables to registers

and/or memory locations
Decisions are crucial

Take Into account

- specialized registers
(fp, sp, mul on x80)

- calling conventions
- number and type
- lifetimes

algorithms

© Goldstein 2020

15-411

graph coloring and linear scan
are the most commonly-used

rrtTrr1rTr1rTr1r™T A

load
load
load
loadi
mulr,,
mulr,,
sllr,,
addr,,

store

M[fp+x]
M[fp+b]
M[fp+a]
3

M[fp+x] € r,

23

Compilers at 45K

24

Compilers

- A compiler translates a programming language (source language) into

executable code (target language)

- Quality measures for a compiler

>~ Correctness (Does the compiled code work as intended?)

» Code quality (Does the compiled code run fast?)

> Efficiency of compilation (

> Usability (Does the compi

s compilation fast?)

er produce useful errors and warnings?)

25

Organizing a Compller

- Split work into different compiler phases !!

- Phases transform one program representation into another

- Every phase has a clear role, some more complex than others

- Phases can be between different types of program representations

- Phases can be on the same program representation

26

Example phases of a compiler

Parse Semantics Translation

Instruction Y Register Code
. Optimization . .
selection allocation generation

Order of these may
© Goldstein 2020 Va r.>/’I5—41 1 27

Lex

Many representations

Abstract syntax

Parse

tree

tokens

Semantics

1 Translation

AST+symbol tables

(tree)

Intermediate Representation

Instruction
selection

- Optimization —

Register
allocation

Code
generation

© Goldstein 2020

Code
Triples

15-411

28

Traditional Two-pass Compiler

Source

Front

code

. Back enc

- SuUp

NOrts |

IR Back Machine

End

End code

> Errors

Implications
Jse an intermediate
-ront enc

maps lega

representation (IR)
source code Into IR

maps IR In

0 target machine code

ndependence between source and target

Typically, front end is O(n) or O(n log n), while back
end is NP-hard

Without IR

nxm compilers!

With IR

SML X86
Java Sparc
C { MIPS
OCaml PPC
C# ARM

P.S. No compiler has a truly universal IR (so far).

vs n+m compilers

Traditional Three-pass Compiler

Source

Code

Front
End

IR

Middle
End

IR

Back
End

Machine
code

> Errors

Code Improvement (or Optimization)
Analyzes IR and rewrites (or transforms) IR
Primary goal is to improve program (- optimize™)

- Execution time space, power consumption, ...

Must preserve “meaning” of the code
— Correct behavior, output of the program

Compilers is a “Mature” Field

- Compiler History

» 1943 Plankalkul, first high-level language (Konrad Zuse)

v

1951: Formules, first self-hosting compiler

> 1952: A-0, term ‘compiler’ (Grace Hopper)

» 1957: FORTRAN, first commercial compiler (John Backus; 18 PY)

> 1962: Lisp, self-hosting compiler and GC (Tim Hart and Mike Levin)

- Compilers today
> Modern compilers are complex (gcc has 7.5M LOC)
>~ There is still a lot of compiler research (LLVM, verified compilation, ...)

>~ There is still a lot of compiler development in industry (guest lecture?)

33

Classic Compilers
1957: The FORTRAN Automatic Coding System

—> > > COde > > . > —>
Front Index Merge Flow Register Final
End Optimiz’'n Analysis | | Allocat’n | | Assembly
bookkeeping
Front End Middle End Back End

. SIX passes in a fixed order
- (Generated good code

Assumed unlimitec
Code motion out of
nalysis & reg

Did flow a

|00

NS, Wit

Ister al

INndex registers

N Ifs and gotos

ocation

Classic Compilers
1969: IBM's FORTRAN H Compiler

| Build | | .. | Loop | ‘ ‘ |
—~ Scan ~ ~eg Find GSE [Inv [7] Copy [7] OSR [Reassoc [Reg. (—+ Final
& 2 Busy code | | Elim consts) Alloc. | | Assy.
. consts
Parse DOM Vars Mot'n
Front Middle End Back End

Used low-level IR (quads), identified loops with
dominators

Focused on optimizing loops (“inside out™ order)
Passes are familiar today

Simple front end, simple back end for IBM 370

Classic Compilers
1975: BLISS-11 compiler (Wulf et al., CMU)

Register allocation

Lex-
| Syn- [|Delay| | TLA | |Rank| |Pack| |Code| |Final |
Flo
Front Middle BackEnd
End End

The great compiler for the PDP-11
Seven passes in a fixed order

Focused on code shape & instruction selection
LexSynFlo did preliminary flow analysis
Final included a grab-bag of peephole optimizations

Classic Compilers
1980: IBM’s PL.8 Compiler

Dead code elimination

Global cse

Code motion

| | Constant folding : . L
Strength reduction

Value numbering

Dead store elimination

----------------------------- I\ Code Back End

Trap elimination
Algebraic reassociation

Many passes, one front end, several back ends

Collection of 10 or more passes glulti-levellR has
Repeat some passes and analyses / ecome common

wisdom
Represent complex operations at 2 levels
Below machine-level IR

Classic Compilers

1986: HP’s PA-RISC Compiler

- Several front ends, an optimizer, and a back end
- Four fixed-order choices for optimization
(9 passes)
- Graph-coloring allocator, instruction scheduler,
peephole optimizer

Classic Compilers
1999: The SUIF Compiler System

Fortran 77 _/, el
C & C++ 7
Java
FrontEnd Middle End

ANO
3 L

/

ont ends, 3

her classically-built compiler

pack ends
8 passes, configurable or e/

'wo-level IR (H

igh SUI

C/Fortran

Alpha

x86

Cap
Virti

Datt
Scal
Red1

Poik Giobal value numbering
Al " Strength reduction
0C

P
/SSA cﬁnstmctian
“DE&Z code elimination

Partial redundancy elimination
Constant propagation

Reassociation
Instruction scheduling
Register allocation

Garuuge coliecltion

- Low SU

")

Intended as research infrastructure

Logisitics

40

Course Staff — Seth Copen Goldstein

- Office hours: Wed 2pm-3:30pm 7111GHC or zoom (link on piazza)

- Research
» Concurrent Systems (Parallel, Distributed, ...)
~ Architecture/Compilers
» Monetary Systems (BoLT) & Future of Work
» Web3

- Teaching
> 15-411/611 Compiler Design
> 15-319/619 Cloud Computing

> 15-213 Introduction to Computer Systems

41

Communication and Resources

e Lecture: Tue/Thu 9:30-10:50am at DH A302
e Recitation A: Fri 1:00pm GHC 4102

B: Fri2:00pm BH 235A
C. Fri4:.00pm WEH 5312

D: Fri1:00pm PHA18C
e Website: http://www.cs.cmu.edu/~411

e Piazza: You will be enrolled this afternoon
e Gradescope: Enrollment code will be on Piazza
e Lecture notes: Will be available after the lecture

e Textbook: Andrew Appel - Modern Compiler Implementation in ML

http://www.cs.cmu.edu/~411
http://www.cs.cmu.edu/~411
http://www.cs.cmu.edu/~411

The

-ssential TAS!

43

Karen Wu

- Junior in CS
- | like crocheting and embroidery!

. Ocaml

45

Daniel Guo

- Junior doubling in CS + Al
- | enjoy wake surfing

. OCaml

46

Victoria Ll

- Junior in CS
- | enjoy sailing & skiing!

. OCaml

47

Ethan Chu

- 2022 BS inCS @ CMU
- 2nd Year PhD in CS
- | love traveling and biking

- Rust (& OCaml)

48

Max Kulbida

49

Opal the Optimizing Otter

- Course mascot
- Provides emotional support

50

Other Textbooks

" ENGINEERING
A
COMPILER

o\ iy .s-.'.‘_o‘ z.r et rE

BN QRSP w «
P R BOSC) ma g ¢
2 e e [€
sy G20 fmemt (58 e

Compilers

Principles, Techniques, & Tools

56

What will you learn?

S57

Compiler Design

- How to structure compilers

- Applied algorithms and data structures
~ Context-free grammars and parsing
> Static single assignment form
>~ Data flow analysis and type checking

~ Chordal graph coloring and register allocation

- Focus on sequential imperative programming language
Not functional, parallel, distributed, object-oriented, ...

- Focus on code generation and optimization
Not error messages, type inference, runtime system, ...

58

Focus of the Course

> Correctness (Does the compiled code work as intended?)
>~ Code quality (Does the compiled code run fast?)
> Efficiency of compilation (Is compilation fast?)

> Usability (Does the compiler produce useful errors and warnings?)

99

We won'’t discuss this

Software Engineering much in lecture.

- Implementing a compiler is a substantial software project

>~ Building, organizing, testing, debugging, specifying, ...
- Understanding and implementing high-level specifications
- Satisfying performance constraints

- Make (and reevaluate) design decision

Compilers are perfect

| to practice software
~ Data structures and algorithms engineering.

> Implementation language and libraries

» Modules and interfaces

- Revise and modify your code

60

Learning Goals |

- Distinguish the main phases of a state-of-the-art compiler
- Understand static and dynamic semantics of an imperative language
- Develop parsers and lexers using parser generators

- Perform semantic analysis

A

- Translate abstract syntax trees to intermediate representations and
static single assignment form

- Analyze the dataflow in an imperative language

- Perform standard compiler optimizations

61

Learning Goals |l

- Allocate registers using a graph-coloring algorithm
- Generate efficient assembly code for a modern architecture

- Understand opportunities and limitations of compiler optimizations

- Appreciate design tradeoffs and how representation affects optimizations

A

- Develop complex software following high-level specifications

62

How will this work?

63

Your Responsibilities

- Attend lectures No exams.
>~ Lecture notes are only supplementary material

- 6 Labs: you will impl. compilers for subsets of CO to x86-64 assembly
~ Lab1-4: each worth 100 points (total 400 points) _
With a partner
» Lab 3.5: worth 50 points or individual.
~ Code review after Lab 3: 60 points

~ Lab 5: 200 points + 100 points for report

- 4 Assignments: you will complete four problem sets that help you
understand the material presented in the lectures

>~ Assighments 1-4: each 60 points (total 240 points) Individual.

64

Labs — Overview

- Labs (760 points)

>

>

>

>

>

|

_ab 1: tests and compi
_ab 2: tests and compi

er for
er for

_1 (straight-line code)
_2 (conditionals and loops)

_ab 3: tests and compiler for L3 (functions) Aut ded
uto graded.
_ab 3.5: compiler for L3 into LLVM <
_ab 4: tests and compiler for L4 (memory)
_ab 5: compiler and paper (optimizations) TA graded.
TA graded.

- Code review (60 points)

> You show your code for Lab 3 and get feedback

>~ We expect that every team member is familiar with all components

> We expect that every team member contributes equally

Support for 411/611 Comes From ...

@ Jane Street

Helps to
- Improve the grading infrastructure

- Pay for AWS cost

66

Source Language: CO

Subset of C

- Small

- Safe

- Fully specified

- Rich enough to be representative and interesting

- Small enough to manage in a semester

67

Target Language

x86-64 architecture
- Widely used
- Quirky, but you can choose the instructions you use

- Low level enough you can get a taste of the hardware

Runtime system
- CO uses the ABI (Application Binary Interface) for C

- Strict adherence (internally, and for library functions)

68

Finding a partner for the labs

| strongly suggest you work in
teams of two.

69

abs — Finding a Partner ~« Dontpanic.

There are two options

1. You fill out a questionnaire and we suggest a partner (staff selection)

>~ Suggestion is not binding but it's expected that you team up

2. You team up with somebody yourself (self selection)

> Like in previous iterations of the course

Register your team on of before
Monday 1/20.

70

Option 1: Staff Selection

- You fill out a questionnaire about Until Thursday
> Your plans and goals for the class
> Your strengths and work style
> And your time constraints Friday

- We suggest a partner with complementary strengths and similar
plans/goals

- 'You meet with your partner and (hopefully) decide to team up

. Advantages: Until Monday 1/20

> You will get a partner who is a good match
> You will likely meet somebody new

>~ Prepares you for working in a software company

71

Option 1: Example Questions we Ask

- What programming language would you prefer to use?

- Are you more interested in theory or in building systems?

- Are you familiar with x86 assembly?

- How much time would be so much that you would rather drop?

- How much effort do you plan to invest in Compilers, on average?
- What grade are you aiming for in Compilers?

- Do you prefer to collaborate when writing code?

72

Option 2: Self Selection

- Pick your partner carefully!

- Have an honest discussion about your goals and expectations
> What grades you are willing to accept?
> How much time will you spend?

> What times of day you work best?

That’s not necessarily your
- Find somebody who’'s a good match best friend.

- Go through the questionnaire and compare your answers

Consider switching to Option 1 if
there are mismatches.

73

Labs — Picking a Programming Language

- You can freely choose a programming language to use

- It has been suggested that you use a typed functional language
~ Writing a compiler is a killer app for functional programming

» Most teams used OCaml last year

- We provide starter code for the following languages
» SML, OCaml, Haskell, and, Rust

» Also, but not recommended: C++ and Java

- When picking a language also consider the availability of parser
generators and libraries

74

Logistics

- Assignments are submitted via Gradescope

- Labs are submitted via GitHub (on Gradescope)
> Get a GitHub account and fill out a google form to register your team
> Recelve your group name
> Receive an invitation to join your group on GitHub
> Submit your code by pushing to your repository

> Local development is available using docker containers

- Auto grading with Gradescope
> Your compiler is tested against the test cases of other groups
> And test cases from previous years
> You can submit as often as you like
> Best submission before the deadline counts

75

Gradescope Caveats

You have to give Gradescope permissions to see your 15-411-s26-
<groupname> repo

You can submit as often as you like, but ...
» Wait for each submission to complete
> |f it takes awhile, that is not because Gradescope hung

>~ Submitting multiple times before previous completes will slow things down
for everyone

76

Advice

e Labs are difficult and take time
o Plan ahead!
o Set up meetings with lab partners

o Talk to us and others about design decisions
e Don't start the compiler after the tests
e Errors carry over to the next lab
e Submit early and often
e Compilers are complex
o That's part of the fun
e Consider rewrites

e Don't vibecode, Do understand your code

77

Workload Over the Semester

Plaid

Ludicrous

Ridiculous

High

Light

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5
Workload*

* scale from the movie Spaceballs. i

This Year's Theme - Famous Dynasties

P N N
&
l.x erranean
-_ : :
LY 3 :;.a,‘ N
Sumeriane Pvramld ngs

.i Khufu & Co..

Achaemend Persians %

o ;& L ok e

Ashoka’s Mauryas g, SEES Knights of the Capetians ' Tokugawa Shoguns

\

This Year's Theme - Famous

©WoOoNeGaRrEODN-=

Sumerians, c. 3000-2300 BCE, Mesopotamia

Akkadians, c. 2300-2150 BCE, Mesopotamia

Pyramid Kings (Khufu & Co.), c. 2700-2200 BCE, Egypt
Hittite Kings, c. 1600-1200 BCE, Anatolia

Shang, c. 1600-1046 BCE, China

Zhou, c. 1046-256 BCE, China

Assyrians, c. 1400-600 BCE, Mesopotamia

Persians (Achaemenids), c. 550-330 BCE, Persia & Near East
Mauryas (Ashoka’s Line), c. 320-185 BCE, India

. Seleucids, c. 312-63 BCE, Near East

. Han, 206 BCE-220 CE, China

. Julio-Claudians, 27 BCE-68 CE, Roman Empire
. Flavians, 69-96 CE, Roman Empire

. Antonines, 96-192 CE, Roman Empire

. Severans, 193-235 CE, Roman Empire

. Guptas (Golden Age India), c. 320-550, India

. Sassanians, 224-651, Persia

. Constantinian Romans, 300s—400s, Roman / Byzantine Empire
. Umayyads, 661750, Middle East & North Africa
. Abbasids, 750-1258, Middle East

. Tang, 618-907, China

. Song, 960-1279, China

23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45.

Dynasties

Capetians, 987-1300s, France

Ottonians, 900s—1000s, Holy Roman Empire
Normans, 900s—1100s, England & Normandy
Komnenoi (Byzantine Revival), 1081-1185, Eastern Mediterranean
House of Genghis (Borjigin), 1206—1400s, Eurasia
Golden Horde, 1200s—-1400s, Russia & Steppe
llkhans, 1200s—1300s, Persia

Yuan (Kublai Khan), 1271-1368, China

Ming, 1368—1644, China

Ottomans, c. 1300-1922, Anatolia, Balkans, Middle East
Safavids, 1501-1736, Persia

Mughals, 1526—-1857, India

Habsburgs, 1200s—1900s, Central Europe & Spain
Tudors, 1485-1603, England

Stuarts, 1600s—1700s, Britain

Tokugawa, 1603—-1868, Japan

Qing, 1644-1912, China

Romanovs, 1613-1917, Russia

Bourbons, 1600s—present, France & Spain
Windsors, 1900s—present, United Kingdom

House of Saud, 1700s—present, Arabia

Pahlavis, 1925-1979, Iran

Kim Dynasty, 1948—present, North Korea

80

Deadlines and Academic Integrity

- Deadlines are midnight; being late results in a late day
> You have five (5) late days for the labs (see details online)

~ You have three (3) late days for the assignments (details online)

- Talk to me or your undergrad advisor if you cannot make a deadline for
personal reasons (religious holidays, illness, ...)

- Don’t cheat! (details online)
>~ Use code only from the standard library, add to Readme
» Don’t use code from other teams, earlier years, etc.
> If in doubt talk to the instructor

>~ The written assignments need to be completed individually (1 person)

81

Things you Should Use

- Debugger

- Profiler

- Test programs

- Standard library

- Lecture notes

. Textbooks

82

Well-Being

- This is only a course!
- Take care of yourself
~ Watch out for others

> Come speak to us. We really do care.

- Get help if you struggle or feel stressed

> If you or anyone you know experiences any academic stress, difficult
life events, or feelings like anxiety or depression seek support

» Counseling and Psychological Services (CaPS) is here to help:
Phone: 412-268-2922
Web: http://www.cmu.edu/counseling/

83

Who should take this course?

84

15-411 In the Curriculum

. 15-213 Introduction to Computer Systems Frerequisite

15-411 Compiler Design

~ How are high-level programs translated to machine code?

15-410 Operating System Design and Implementation

> How is the execution of programs managed?

15-441 Computer Networks
» How do programs communicate? System requirement

- 15-417 HOT Compilation

> How to compile higher-order typed languages?

85

Things you Should Know (Learn)
- CO programming language
> The source language

- X86-64 assembly

~ The target language

- Functional programming

» Recommended?

. Git version control

> For submitting labs

86

Reminder: inductive definitions

87

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

