
15-411/15-611 Compiler Design

Spring 2026 with Seth Copen Goldstein

http://www.cs.cmu.edu/~411

1

http://www.cs.cmu.edu/~411

Compilers at 60K

2

What is a Compiler?

Compilerprogram program

executable form

Interpreterprogram
RESULT

!

executable form

What did I forget?

15-411 3© Goldstein 2020

“A” Compiler is a misnomer

∙ Multiple sources compiled into .o files

∙ Linker combines .o files into .exe file

∙ Loader combines .exe file (with .so) into a

runnable application

∙ But, we will mostly ignore this in class.

15-411 4© Goldstein 2020

Implications

∙ Must recognize legal (and illegal) programs

∙ Must generate correct code

∙ Must manage storage of all variables (and code)

∙ Must agree with target on format for object code

Big step up from assembly language—use higher level

notations

Better View of a Compiler

Source

code

Target

code
Compiler

Errors

∙ Compilers transform specifications

∙ Interpreters execute specifications

− (without generating new target code)

∙ E.g.: C++ is usually compiled
Python is usually interpreted
Java/JavaScript are JIT-compiled

∙ Many common issues

∙ 411 mainly focuses on compilers.

Executors

Compilerprogram program Interpreterprogram
RESULT

!

15-411 6© Goldstein 2020

Why take this class?

∙ Compilers design and construction

combines:

− theory

− algorithms

− AI

− systems

− architecture

− software engineering

15-411 7© Goldstein 2020

Compilers Are Everywhere

∙ FTP daemon

∙ Web browsers

∙ perl, sed, awk, emacs, bc

∙ excel, tex

∙ web servers (e.g., asp)

∙ databases (query opt)

∙ virtual machines

∙ ?

15-411 8© Goldstein 2020

Compilers are Essential
Performance Gains Due to Compiler (gcc)

15-411 9© Goldstein 2020

Compilers are Essential
Virtual machines employ JITs for dramatic speedups

15-411 10© Goldstein 2020

Compilers Are Fun

∙ Many very hard problems

− Many (if not most) are NP-hard

− So, what to do?

∙ Applies theory and practice

∙ Modern architectures depend on

compilers: Compiler writers drive

architectures!

∙ You can see the results

15-411 11© Goldstein 2020

∙ Correctness

∙ Performance of translated program

− Predictably small and fast code

∙ Scalability of compiler

− Fast compile time

− Separate (incremental, parallel) compilation

∙ Easy to modify

∙ Aids programmer

− good compile time error messages

− support for debugger

What makes a good compiler?

15-411 12© Goldstein 2020

Compilers at 30K

13

A Simple Example

∙ What does this mean? Is it valid?

∙ How do we determine its meaning:

− break into words

− convert words to sentences

− interpret the meaning of the sentences

x := a * 2 + b * (x * 3)

15-411 14© Goldstein 2020

Lexical Analysis

∙ Group characters into tokens

∙ Eliminate unnecessary characters from

the input stream

∙ Use regular expressions to specify and

DFAs to implement.

∙ E.g., lex

id<x> assign id<a> times int<2> plus id

times lparen id<x> times int<3> rparen

15-411 15© Goldstein 2020

x := a * 2 + b * (x * 3)

Syntactic Analysis

∙ Group tokens into sentences

∙ Eliminate unnecessary tokens from

the input stream

∙ Use context-free grammars to

specify and push down automata to

implement

∙ E.g., bison

id<x> assign id<a> times int<2> plus id

times lparen id<x> times int<3> rparen

:

=

x

*

+

a 2

*

b *

x 3

15-411 16© Goldstein 2020

x := a * 2 + b * (x * 3)

Semantic Analysis

∙ Determines meaning of sentence.

∙ What are the types of the variables
(x, a, b)?

∙ Constants (2, 3)?

∙ Operators (*, +)

∙ Is it legal to read and write x?

∙ Use attributed grammars, symbol
tables, …

id<x> assign id<a> times int<2> plus id

times lparen id<x> times int<3> rparen

:

=

*

+

2

*

*

x

a b

x 3

intb

inta

intx

15-411 17© Goldstein 2020

x := a * 2 + b * (x * 3)

Translation

∙ Interface between front-end and back-end

∙ Many different types of IRs

− Hierarchical

− Linear

− Tree based

− Triple based

:

=

*

+

2

*

*

x

a b

x 3

intb

inta

intx

15-411 18© Goldstein 2020

Instruction Selection
∙ Translates IR into target instruction set

∙ Choose instructions (smul or sll)

∙ Choose operand modes
− immediate constants (2 or 3)

− load immediates

− addressing modes

∙ Complex instructions

∙ Types of branches

∙ Use tree grammars &
dynamic programming

:

=

*

+

2

*

*

x

a b

x 3

intb

inta

intx

15-411 19© Goldstein 2020

Instruction Selection

:

=

*

+

2

*

*

x

a b

x 3

intb

inta

intx

r1 ← load M[fp+x]

r2 ← loadi 3

r3 ← mul r1, r2

r4 ← load M[fp+b]

r5 ← mul r3, r4

r6 ← load M[fp+a]

r7 ← sll r6, 1

r8 ← add r6, r5

store M[fp+x] ← r8

15-411 20© Goldstein 2020

Optimizations

r1 ← load M[fp+x]

r2 ← loadi 3

r3 ← mulr1, r2

r4 ← load M[fp+b]

r5 ← mulr3, r4

r6 ← load M[fp+a]

r7 ← sllr6, 1

r8 ← addr7, r5

store M[fp+x] ←
r8

∙ Improves the code by some
metric:
− code size

− register usage

− speed

− power consumption

∙ Types of optimizations:
− Basic block (peephole)

− Global (loop hoisting)

− Interprocedural (leaf functions)

− Whole program (inlining of
methods)

∙ Uses: flow analysis, etc.

15-411 21© Goldstein 2020

Metrics Matter

r1 ← load M[fp+x]

r4 ← load M[fp+b]

r6 ← load M[fp+a]

r2 ← loadi 3

r1 ← mulr1, r2

r1 ← mulr1, r4

r6 ← sllr6, 1

r1 ← addr6, r1

store M[fp+x] ← r1

r1 ← load M[fp+x]

r2 ← loadi 3

r1 ← mulr1, r2

r2 ← load M[fp+b]

r1 ← mulr1, r2

r2 ← load M[fp+a]

r2 ← sllr2, 1

r1 ← addr1, r2

store M[fp+x] ← r1

Registers: 2

Cycles: 14

Registers: 4

Cycles: 9

Assume load takes 3 cycles, mul takes 2 cycles

15-411 22© Goldstein 2020

Register Allocation

r1 ← load M[fp+x]

r4 ← load M[fp+b]

r6 ← load M[fp+a]

r2 ← loadi 3

r1 ← mulr1, r2

r1 ← mulr1, r4

r6 ← sllr6, 1

r1 ← addr6, r1

store M[fp+x] ← r1

∙ Assign variables to registers

and/or memory locations

∙ Decisions are crucial!

∙ Take into account

− specialized registers

(fp, sp, mul on x86)

− calling conventions

− number and type

− lifetimes

∙ graph coloring and linear scan

are the most commonly-used

algorithms

15-411 23© Goldstein 2020

Compilers at 45K

24

Compilers

∙ A compiler translates a programming language (source language) into

executable code (target language)

∙ Quality measures for a compiler

‣ Correctness (Does the compiled code work as intended?)

‣ Code quality (Does the compiled code run fast?)

‣ Efficiency of compilation (Is compilation fast?)

‣ Usability (Does the compiler produce useful errors and warnings?)

25

Organizing a Compiler

∙ Split work into different compiler phases !!

∙ Phases transform one program representation into another

∙ Every phase has a clear role, some more complex than others

∙ Phases can be between different types of program representations

∙ Phases can be on the same program representation

26

front-end

back-end

Example phases of a compiler

Lex Semantics Translation

Instruction

selection

Register

allocation

Code

generation
Optimization

Order of these may

vary15-411 27© Goldstein 2020

Parse

Many representations

Lex Parse Semantics Translation

Instruction

selection

Register

allocation

Code

generation
Optimization

tokens

Abstract syntax

tree

AST+symbol tables

Intermediate Representation

(tree)

Code

Triples

15-411 28© Goldstein 2020

Traditional Two-pass Compiler

Implications

∙ Use an intermediate representation (IR)

∙ Front end maps legal source code into IR

∙ Back end maps IR into target machine code

∙ Supports independence between source and target

Typically, front end is O(n) or O(n log n), while back

end is NP-hard

Source

code
Front

End

Errors

Machine

code

Back

End

IR

Without IR

SML

Sparc

x86

MIPS

PPC

ARM

Java

C

OCaml

C#

n×m compilers!

With IR

Java

SML

C

OCaml

C#

Sparc

x86

MIPS

PPC

ARM

vs n+m compilers

IR

P.S. No compiler has a truly universal IR (so far).

Traditional Three-pass Compiler

Code Improvement (or Optimization)

∙ Analyzes IR and rewrites (or transforms) IR

∙ Primary goal is to improve program (“optimize”)
− Execution time space, power consumption, …

∙ Must preserve “meaning” of the code
− Correct behavior, output of the program

Errors

Source

Code
Middle

End

Front

End

Machine

code

Back

End

IR IR

Compilers is a “Mature” Field

∙ Compiler History

‣ 1943: Plankalkül, first high-level language (Konrad Zuse)

‣ 1951: Formules, first self-hosting compiler

‣ 1952: A-0, term ‘compiler’ (Grace Hopper)

‣ 1957: FORTRAN, first commercial compiler (John Backus; 18 PY)

‣ 1962: Lisp, self-hosting compiler and GC (Tim Hart and Mike Levin)

∙ Compilers today

‣ Modern compilers are complex (gcc has 7.5M LOC)

‣ There is still a lot of compiler research (LLVM, verified compilation, …)

‣ There is still a lot of compiler development in industry (guest lecture?)

33

1957: The FORTRAN Automatic Coding System

∙ Six passes in a fixed order

∙ Generated good code
Assumed unlimited index registers

Code motion out of loops, with ifs and gotos

Did flow analysis & register allocation

Classic Compilers

Front

End

Front End Middle End Back End

Index

Optimiz’n

Code

Merge

bookkeeping

Flow

Analysis

Register

Allocat’n
Final

Assembly

1969: IBM’s FORTRAN H Compiler

∙ Used low-level IR (quads), identified loops with

dominators

∙ Focused on optimizing loops (“inside out” order)

Passes are familiar today

∙ Simple front end, simple back end for IBM 370

Classic Compilers

Front

End

Middle End Back End

Scan
&

Parse

Find
Busy
Vars

Loop
Inv

Code
Mot’n

OSR
Reg.
Alloc.

Final
Assy.

Reassoc

(consts)

Copy
Elim.

CSE
Build
CFG
&

DOM

1975: BLISS-11 compiler (Wulf et al., CMU)

∙ The great compiler for the PDP-11

∙ Seven passes in a fixed order

∙ Focused on code shape & instruction selection
LexSynFlo did preliminary flow analysis

Final included a grab-bag of peephole optimizations

Classic Compilers

Middle

End

Back EndFront

End

Lex-
Syn-
Flo

Delay TLA Rank Pack Code Final

Register allocation

1980: IBM’s PL.8 Compiler

∙ Many passes, one front end, several back ends

∙ Collection of 10 or more passes
Repeat some passes and analyses

Represent complex operations at 2 levels

Below machine-level IR

Classic Compilers

Front

End

Middle End Back End

Multi-level IR has

become common

wisdom

*

Dead code elimination

Global cse

Code motion

Constant folding

Strength reduction

Value numbering

Dead store elimination

Code straightening

Trap elimination

Algebraic reassociation

1986: HP’s PA-RISC Compiler

∙ Several front ends, an optimizer, and a back end

∙ Four fixed-order choices for optimization

(9 passes)

∙ Graph-coloring allocator, instruction scheduler,

peephole optimizer

Classic Compilers

Front

End

Middle End Back

End

Middle End

Fortran 77

C & C++

Java

C/Fortran

Alpha

x86

Front End Back End

1999: The SUIF Compiler System

Another classically-built compiler

∙ 3 front ends, 3 back ends

∙ 18 passes, configurable order

∙ Two-level IR (High SUIF, Low SUIF)

∙ Intended as research infrastructure

Data dependence analysis

Scalar & array privitization

Reduction recognition

Pointer analysis

Affine loop transformations

Blocking

Capturing object definitions

Virtual function call elimination

Garbage collection

SSA construction

Dead code elimination

Partial redundancy elimination

Constant propagation

Global value numbering

Strength reduction

Reassociation

Instruction scheduling

Register allocation

Classic Compilers

Logisitics

40

Course Staff – Seth Copen Goldstein

∙ Office hours: Wed 2pm-3:30pm 7111GHC or zoom (link on piazza)

∙ Research

‣ Concurrent Systems (Parallel, Distributed, …)

‣ Architecture/Compilers

‣ Monetary Systems (BoLT) & Future of Work

‣ Web3

∙ Teaching

‣ 15-411/611 Compiler Design

‣ 15-319/619 Cloud Computing

‣ 15-213 Introduction to Computer Systems
41

A: Fri 1:00pm GHC 4102

B: Fri 2:00pm BH 235A

C: Fri 4:00pm WEH 5312

D: Fri 1:00pm PH A18C

Communication and Resources

● Lecture: Tue/Thu 9:30-10:50am at DH A302

● Recitation

● Website: http://www.cs.cmu.edu/~411

● Piazza: You will be enrolled this afternoon

● Gradescope: Enrollment code will be on Piazza

● Lecture notes: Will be available after the lecture

● Textbook: Andrew Appel - Modern Compiler Implementation in ML

42

http://www.cs.cmu.edu/~411
http://www.cs.cmu.edu/~411
http://www.cs.cmu.edu/~411

The Essential TAs!

43

Karen Wu

∙ Junior in CS

∙ I like crocheting and embroidery!

∙ Ocaml

45

Daniel Guo

∙ Junior doubling in CS + AI

∙ I enjoy wake surfing

∙ OCaml

46

Picture

Victoria Li

∙ Junior in CS

∙ I enjoy sailing & skiing!

∙ OCaml

47

Ethan Chu

∙ 2022 BS in CS @ CMU

∙ 2nd Year PhD in CS

∙ I love traveling and biking

∙ Rust (& OCaml)

48

Picture

Max Kulbida

49

Opal the Optimizing Otter

∙ Course mascot

∙ Provides emotional support

50

Other Textbooks

56

What will you learn?

57

∙ How to structure compilers

∙ Applied algorithms and data structures

‣ Context-free grammars and parsing

‣ Static single assignment form

‣ Data flow analysis and type checking

‣ Chordal graph coloring and register allocation

∙ Focus on sequential imperative programming language

Not functional, parallel, distributed, object-oriented, ...

∙ Focus on code generation and optimization

Not error messages, type inference, runtime system, ...

Compiler Design

58

Focus of the Course

‣ Correctness (Does the compiled code work as intended?)

‣ Code quality (Does the compiled code run fast?)

‣ Efficiency of compilation (Is compilation fast?)

‣ Usability (Does the compiler produce useful errors and warnings?)

59

Software Engineering

∙ Implementing a compiler is a substantial software project

‣ Building, organizing, testing, debugging, specifying, …

∙ Understanding and implementing high-level specifications

∙ Satisfying performance constraints

∙ Make (and reevaluate) design decision

‣ Implementation language and libraries

‣ Data structures and algorithms

‣ Modules and interfaces

∙ Revise and modify your code

We won’t discuss this

much in lecture.

Compilers are perfect

to practice software

engineering.

60

Learning Goals I

∙ Distinguish the main phases of a state-of-the-art compiler

∙ Understand static and dynamic semantics of an imperative language

∙ Develop parsers and lexers using parser generators

∙ Perform semantic analysis

∙ Translate abstract syntax trees to intermediate representations and

static single assignment form

∙ Analyze the dataflow in an imperative language

∙ Perform standard compiler optimizations

`

61

Learning Goals II

∙ Allocate registers using a graph-coloring algorithm

∙ Generate efficient assembly code for a modern architecture

∙ Understand opportunities and limitations of compiler optimizations

∙ Appreciate design tradeoffs and how representation affects optimizations

∙ Develop complex software following high-level specifications
`

62

How will this work?

63

Your Responsibilities

‣ Lecture notes are only supplementary material

∙ 6 Labs: you will impl. compilers for subsets of C0 to x86-64 assembly

‣ Lab1-4: each worth 100 points (total 400 points)

‣ Lab 3.5: worth 50 points

‣ Code review after Lab 3: 60 points

‣ Lab 5: 200 points + 100 points for report

∙ 4 Assignments: you will complete four problem sets that help you

understand the material presented in the lectures

‣ Assignments 1-4: each 60 points (total 240 points)

With a partner

or individual.

Individual.

No exams.∙ Attend lectures

64

Labs — Overview

∙ Labs (760 points)

‣ Lab 1: tests and compiler for L1 (straight-line code)

‣ Lab 2: tests and compiler for L2 (conditionals and loops)

‣ Lab 3: tests and compiler for L3 (functions)

‣ Lab 3.5: compiler for L3 into LLVM

‣ Lab 4: tests and compiler for L4 (memory)

‣ Lab 5: compiler and paper (optimizations)

∙ Code review (60 points)

‣ You show your code for Lab 3 and get feedback

‣ We expect that every team member is familiar with all components

‣ We expect that every team member contributes equally

Auto graded.

TA graded.

65

TA graded.

Support for 411/611 Comes From …

Helps to

∙ Improve the grading infrastructure

∙ Pay for AWS cost

66

Source Language: C0

Subset of C

∙ Small

∙ Safe

∙ Fully specified

∙ Rich enough to be representative and interesting

∙ Small enough to manage in a semester

67

Target Language

x86-64 architecture

∙ Widely used

∙ Quirky, but you can choose the instructions you use

∙ Low level enough you can get a taste of the hardware

Runtime system

∙ C0 uses the ABI (Application Binary Interface) for C

∙ Strict adherence (internally, and for library functions)

68

Finding a partner for the labs

I strongly suggest you work in

teams of two.

69

Labs — Finding a Partner

There are two options

1. You fill out a questionnaire and we suggest a partner (staff selection)

‣ Suggestion is not binding but it’s expected that you team up

2. You team up with somebody yourself (self selection)

‣ Like in previous iterations of the course

Don’t panic.

Register your team on of before

Monday 1/20.

70

Option 1: Staff Selection

∙ You fill out a questionnaire about

‣ Your plans and goals for the class

‣ Your strengths and work style

‣ And your time constraints

∙ We suggest a partner with complementary strengths and similar

plans/goals

∙ You meet with your partner and (hopefully) decide to team up

∙ Advantages:

‣ You will get a partner who is a good match

‣ You will likely meet somebody new

‣ Prepares you for working in a software company

Until Thursday

Friday

Until Monday 1/20

71

Option 1: Example Questions we Ask

∙ What programming language would you prefer to use?

∙ Are you more interested in theory or in building systems?

∙ Are you familiar with x86 assembly?

∙ How much time would be so much that you would rather drop?

∙ How much effort do you plan to invest in Compilers, on average?

∙ What grade are you aiming for in Compilers?

∙ Do you prefer to collaborate when writing code?

72

Option 2: Self Selection

∙ Pick your partner carefully!

∙ Have an honest discussion about your goals and expectations

‣ What grades you are willing to accept?

‣ How much time will you spend?

‣ What times of day you work best?

∙ Find somebody who’s a good match

∙ Go through the questionnaire and compare your answers

That’s not necessarily your

best friend.

Consider switching to Option 1 if

there are mismatches.

73

Labs — Picking a Programming Language

∙ You can freely choose a programming language to use

∙ It has been suggested that you use a typed functional language

‣ Writing a compiler is a killer app for functional programming

‣ Most teams used OCaml last year

∙ We provide starter code for the following languages

‣ SML, OCaml, Haskell, and, Rust

‣ Also, but not recommended: C++ and Java

∙ When picking a language also consider the availability of parser

generators and libraries

74

Logistics

∙ Assignments are submitted via Gradescope

∙ Labs are submitted via GitHub (on Gradescope)

‣ Get a GitHub account and fill out a google form to register your team

‣ Receive your group name

‣ Receive an invitation to join your group on GitHub

‣ Submit your code by pushing to your repository

‣ Local development is available using docker containers

∙ Auto grading with Gradescope

‣ Your compiler is tested against the test cases of other groups

‣ And test cases from previous years

‣ You can submit as often as you like

‣ Best submission before the deadline counts
75

Gradescope Caveats

∙ You have to give Gradescope permissions to see your 15-411-s26-
<groupname> repo

∙ You can submit as often as you like, but …

‣ Wait for each submission to complete

‣ If it takes awhile, that is not because Gradescope hung

‣ Submitting multiple times before previous completes will slow things down

for everyone

76

Advice

● Labs are difficult and take time

○ Plan ahead!

○ Set up meetings with lab partners

○ Talk to us and others about design decisions

● Don’t start the compiler after the tests

● Errors carry over to the next lab

● Submit early and often

● Compilers are complex

○ That’s part of the fun

● Consider rewrites

● Don’t vibecode, Do understand your code
77

Workload Over the Semester

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6

Light

High

Ridiculous

Ludicrous

Plaid

Workload*

* scale from the movie Spaceballs.

The scale is a joke but the relative

workload is about right.

78

This Year’s Theme - Famous Dynasties

1. Sumerians, c. 3000–2300 BCE, Mesopotamia

2. Akkadians, c. 2300–2150 BCE, Mesopotamia

3. Pyramid Kings (Khufu & Co.), c. 2700–2200 BCE, Egypt

4. Hittite Kings, c. 1600–1200 BCE, Anatolia

5. Shang, c. 1600–1046 BCE, China

6. Zhou, c. 1046–256 BCE, China

7. Assyrians, c. 1400–600 BCE, Mesopotamia

8. Persians (Achaemenids), c. 550–330 BCE, Persia & Near East

9. Mauryas (Ashoka’s Line), c. 320–185 BCE, India

10. Seleucids, c. 312–63 BCE, Near East

11. Han, 206 BCE–220 CE, China

12. Julio-Claudians, 27 BCE–68 CE, Roman Empire

13. Flavians, 69–96 CE, Roman Empire

14. Antonines, 96–192 CE, Roman Empire

15. Severans, 193–235 CE, Roman Empire

16. Guptas (Golden Age India), c. 320–550, India

17. Sassanians, 224–651, Persia

18. Constantinian Romans, 300s–400s, Roman / Byzantine Empire

19. Umayyads, 661–750, Middle East & North Africa

20. Abbasids, 750–1258, Middle East

21. Tang, 618–907, China

22. Song, 960–1279, China

79

23. Capetians, 987–1300s, France

24. Ottonians, 900s–1000s, Holy Roman Empire

25. Normans, 900s–1100s, England & Normandy

26. Komnenoi (Byzantine Revival), 1081–1185, Eastern Mediterranean

27. House of Genghis (Borjigin), 1206–1400s, Eurasia

28. Golden Horde, 1200s–1400s, Russia & Steppe

29. Ilkhans, 1200s–1300s, Persia

30. Yuan (Kublai Khan), 1271–1368, China

31. Ming, 1368–1644, China

32. Ottomans, c. 1300–1922, Anatolia, Balkans, Middle East

33. Safavids, 1501–1736, Persia

34. Mughals, 1526–1857, India

35. Habsburgs, 1200s–1900s, Central Europe & Spain

36. Tudors, 1485–1603, England

37. Stuarts, 1600s–1700s, Britain

38. Tokugawa, 1603–1868, Japan

39. Qing, 1644–1912, China

40. Romanovs, 1613–1917, Russia

41. Bourbons, 1600s–present, France & Spain

42. Windsors, 1900s–present, United Kingdom

43. House of Saud, 1700s–present, Arabia

44. Pahlavis, 1925–1979, Iran

45. Kim Dynasty, 1948–present, North Korea

This Year’s Theme - Famous Dynasties

1. Sumerians, c. 3000–2300 BCE, Mesopotamia

2. Akkadians, c. 2300–2150 BCE, Mesopotamia

3. Pyramid Kings (Khufu & Co.), c. 2700–2200 BCE, Egypt

4. Hittite Kings, c. 1600–1200 BCE, Anatolia

5. Shang, c. 1600–1046 BCE, China

6. Zhou, c. 1046–256 BCE, China

7. Assyrians, c. 1400–600 BCE, Mesopotamia

8. Persians (Achaemenids), c. 550–330 BCE, Persia & Near East

9. Mauryas (Ashoka’s Line), c. 320–185 BCE, India

10. Seleucids, c. 312–63 BCE, Near East

11. Han, 206 BCE–220 CE, China

12. Julio-Claudians, 27 BCE–68 CE, Roman Empire

13. Flavians, 69–96 CE, Roman Empire

14. Antonines, 96–192 CE, Roman Empire

15. Severans, 193–235 CE, Roman Empire

16. Guptas (Golden Age India), c. 320–550, India

17. Sassanians, 224–651, Persia

18. Constantinian Romans, 300s–400s, Roman / Byzantine Empire

19. Umayyads, 661–750, Middle East & North Africa

20. Abbasids, 750–1258, Middle East

21. Tang, 618–907, China

22. Song, 960–1279, China

80

23. Capetians, 987–1300s, France

24. Ottonians, 900s–1000s, Holy Roman Empire

25. Normans, 900s–1100s, England & Normandy

26. Komnenoi (Byzantine Revival), 1081–1185, Eastern Mediterranean

27. House of Genghis (Borjigin), 1206–1400s, Eurasia

28. Golden Horde, 1200s–1400s, Russia & Steppe

29. Ilkhans, 1200s–1300s, Persia

30. Yuan (Kublai Khan), 1271–1368, China

31. Ming, 1368–1644, China

32. Ottomans, c. 1300–1922, Anatolia, Balkans, Middle East

33. Safavids, 1501–1736, Persia

34. Mughals, 1526–1857, India

35. Habsburgs, 1200s–1900s, Central Europe & Spain

36. Tudors, 1485–1603, England

37. Stuarts, 1600s–1700s, Britain

38. Tokugawa, 1603–1868, Japan

39. Qing, 1644–1912, China

40. Romanovs, 1613–1917, Russia

41. Bourbons, 1600s–present, France & Spain

42. Windsors, 1900s–present, United Kingdom

43. House of Saud, 1700s–present, Arabia

44. Pahlavis, 1925–1979, Iran

45. Kim Dynasty, 1948–present, North Korea

Deadlines and Academic Integrity

∙ Deadlines are midnight; being late results in a late day

‣ You have five (5) late days for the labs (see details online)

‣ You have three (3) late days for the assignments (details online)

∙ Talk to me or your undergrad advisor if you cannot make a deadline for

personal reasons (religious holidays, illness, …)

∙ Don’t cheat! (details online)

‣ Use code only from the standard library, add to Readme

‣ Don’t use code from other teams, earlier years, etc.

‣ If in doubt talk to the instructor

‣ The written assignments need to be completed individually (1 person)

81

Things you Should Use

∙ Debugger

∙ Profiler

∙ Test programs

∙ Standard library

∙ Lecture notes

∙ Textbooks

82

Well-Being

∙ This is only a course!

‣ Take care of yourself

‣ Watch out for others

‣ Come speak to us. We really do care.

∙ Get help if you struggle or feel stressed

‣ If you or anyone you know experiences any academic stress, difficult

life events, or feelings like anxiety or depression seek support

‣ Counseling and Psychological Services (CaPS) is here to help:

Phone: 412-268-2922

Web: http://www.cmu.edu/counseling/

83

Who should take this course?

84

15-411 in the Curriculum

∙ 15-213 Introduction to Computer Systems

∙ 15-411 Compiler Design

‣ How are high-level programs translated to machine code?

∙ 15-410 Operating System Design and Implementation

‣ How is the execution of programs managed?

∙ 15-441 Computer Networks

‣ How do programs communicate?

∙ 15-417 HOT Compilation

‣ How to compile higher-order typed languages?

Prerequisite

System requirement

85

Things you Should Know (Learn)

∙ C0 programming language

‣ The source language

∙ x86-64 assembly

‣ The target language

∙ Functional programming

‣ Recommended?

∙ Git version control

‣ For submitting labs

86

Reminder: inductive definitions

See: Bob Harper’s “Practical

Foundations for Programming

Languages”

One of the Topics of this week’s recitation

87

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

