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Compilers at 60K



What is a Compiler?
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"A” Compiler is a misnomer

- Multiple sources compiled into .o files

runnable app

. Linker combines .o files into .exe file
- Loader combi

nes .exe file (with .so) into a
ication

- But, we will mostly ignore this in class.



Better View of a Compiler

Source
code

+  Compiler

Target

code

Implications

»Errors

- Must recognize legal (and illegal) programs
- Must generate correct code

- Must manage storage of a

| variables (a

- Must agree with target on-

nd code)

‘ormat for obj

ect code

Big step up from assembly language—use higher level

nota
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Executors
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C.

Compilers transform specifications

Interpreters execute specifications
- (without generating new target code)

E.g.. C++is usually compiled
Python is usually interpreted
Java/JavaScript are JIT-compiled

Many common Issues
411 mainly focuses on compilers.

15-411




Why take this class?

. Compilers design and construction
combines:
- theory
- algorithms
- Al
- systems
- architecture
- software engineering




Compilers Are Everywhere

. FTP daemon
. \WWeb browsers

- perl, sed, awk, emacs, bc
. excel, tex

. web servers (e.q., asp)

- databases (query opt)

. virtual machines
.7



Compilers are Essential

L 60-A0N

- 0-A0N

- £0-AON

- 90-AON

- G0-AON

- 70-AON

L £0-AON

- Z0-AON

\ - TO-AON

1 - 00-AON

\ - 66-AON

!
/ \ - 86-AON
.f.,.
/ \ - /6-AON

Performance Gains Due to Compiler (gcc)

S50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

jusawnoldwI @o2uewo04i2d 000Z)D3dS

15-411

© Goldstein 2020



Compilers are Essential

Virtual machines employ JITs for dramatic speedups

JIT SpEEdup - Wizard-SPC W allopt @ nok @ nokfold @ noisel @ nomr
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Compilers Are Fun

- Many very hard problems
- Many (it not most) are NP-hard

- S0, what to do”?
- Applies theory and practice

- Modern architectures depend on
compilers: Compiler writers drive

architectures!
. You can see the results




What makes a good compiler?

Correctness

Performance of translated program
- Predictably small and fast code
Scalability of compiler

- Fast complile time
- Separate (incremental, parallel) compilation

Easy to modity

Alds programmer

- good complile time error messages
- support for debugger

© Goldstein 2020 15-411



Compilers at 30K
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A Simple Example

X :=a * 2 +b * (x * 3)

- What does this mean? Is it valid?
- How do we determine its meaning:

- break |

Nnto words

— conver:

- words to sentences

- Interpret the meaning of the sentences
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Lexical Analysis

X :=a *2 +Db * (x * 3)

id<x> assign id<a> times int<2> plus id<b>
times lparen id<x> times int<3> rparen

Group characters into tokens

=

tr

188

inate unnecessary characters from

€

INput stream

Use regular expressions to specity and
DFAs to implement.

E.g., lex

15-411



Syntactic Analysis

X :=a *2 +Db * (x * 3)

id<x> assign id<a> times int<2> plus id<b>
times lparen id<x> times int<3> rparen

- Group tokens into sentences ‘

Eliminate unnecessary tokens from ® &
the input stream () (%

Use context-free grammars to @5\@ &
specify and push down automata to Q

implement © @

E.g., bison




Semantic Analysis

X = a * 2

+ b * (x * 3)

id<x> assign id<a> times int<2> plus id<b>
times lparen id<x> times int<3> rparen

Determines meaning o

- sentence.

- What are the types of t
(X, a, b)?

- Constants (2, 3)7
- Operators (¥, +)

tables, ...

s it legal to read and write x7
Use attributed grammars, symbol

ne variables




Translation

. |Interface between front-end and back-end

- Many different types of IRs
- Hierarchical

- Linear

- Tree based

- Triple based




Instruction Selection

- Translates IR Into target instruction set
- Choose instructions (smul or s11)

- Choose operand modes

- immediate constants (2 or 3)

- load iImmediates A
- addressing modes

- Complex instructions
- Types of branches

- Use tree grammars &
dynamic programming
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rrrTrtTMrT1TMT™N

Instruction Selection

load M|[fp+x]
loadi 3

mul r,, r,
load M[fp+b]
mul r,;, r,
load M[fp+a]
sll r,, 1

add r,, r.

store M[fp+x] € rg

15-411

20



Optimizations

Improves the code by some

metric:
- code size
- reqister usage
- speed

- power consumption
Types of optimizations:
- Basic block (peephole)
- Global (loop hoisting)

- Interprocedural (leaf functions)

- Whole program (inlining of
methods)

Uses: flow analysis, etc.

© Goldstein 2020
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load
loadi
mulr,,
load
mulr,,
load
sllr,,
addr,,

store

M[ fp+x]
3

M[fp+x] €

21



r, &
r, €

© Goldstein 2020

Metrics Matter

Assume load takes 3 cycles, mul takes 2 cycles

load M[ fp+x] r, € load M[ fp+x]
loadi 3 r, € load M[ fp+b]
mulr,, r, () € load M[ fp+a]

load M[fp+b] 7n r, € loadi 3

mulr,, r, , ¥, € mulr,, r,

load M[fp+a] ~ ¥, € mulr,, r,

slxr, )1 re € sliry 1

addr,, r, r, € addr,, r,

store M[fp+x] € r; store M[fp+x] € r,

Cycles: @ Cycles: @

15-411
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Register Allocation

Assign variables to registers

and/or memory locations
Decisions are crucial

Take Into account

- specialized registers
(fp, sp, mul on x80)

- calling conventions
- number and type
- lifetimes

algorithms

© Goldstein 2020

15-411

graph coloring and linear scan
are the most commonly-used

rrtTrr1rTr1rTr1r™T A

load
load
load
loadi
mulr,,
mulr,,
sllr,,
addr,,

store

M[fp+x]
M[ fp+b]
M[ fp+a]
3

M[fp+x] € r,

23



Compilers at 45K
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Compilers

- A compiler translates a programming language (source language) into

executable code (target language)

- Quality measures for a compiler

>~ Correctness (Does the compiled code work as intended?)

» Code quality (Does the compiled code run fast?)

> Efficiency of compilation (

> Usability (Does the compi

s compilation fast?)

er produce useful errors and warnings?)

25



Organizing a Compller

- Split work into different compiler phases !!

- Phases transform one program representation into another

- Every phase has a clear role, some more complex than others

- Phases can be between different types of program representations

- Phases can be on the same program representation

26



Example phases of a compiler

Parse Semantics Translation

Instruction Y Register Code
. Optimization . .
selection allocation generation

Order of these may
© Goldstein 2020 Va r.>/’I5—41 1 27



Lex

Many representations

Abstract syntax

Parse

tree

tokens

Semantics

1 Translation

AST+symbol tables

(tree)

Intermediate Representation

Instruction
selection

- Optimization —

Register
allocation

Code
generation

© Goldstein 2020

Code
Triples

15-411
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Traditional Two-pass Compiler

Source

Front

code

. Back enc

- SuUp

NOrts |

IR Back Machine

End

End code

> Errors

Implications
Jse an intermediate
-ront enc

maps lega

representation (IR)
source code Into IR

maps IR In

0 target machine code

ndependence between source and target

Typically, front end is O(n) or O(n log n), while back
end is NP-hard



Without IR

nxm compilers!



With IR

SML X86
Java Sparc
C { MIPS
OCaml PPC
C# ARM

P.S. No compiler has a truly universal IR (so far).

vs n+m compilers



Traditional Three-pass Compiler

Source

Code

Front
End

IR

Middle
End

IR

Back
End

Machine
code

> Errors

Code Improvement (or Optimization)
Analyzes IR and rewrites (or transforms) IR
Primary goal is to improve program (- optimize™)

- Execution time space, power consumption, ...

Must preserve “meaning” of the code
— Correct behavior, output of the program




Compilers is a “Mature” Field

- Compiler History

» 1943 Plankalkul, first high-level language (Konrad Zuse)

v

1951: Formules, first self-hosting compiler

> 1952: A-0, term ‘compiler’ (Grace Hopper)

» 1957: FORTRAN, first commercial compiler (John Backus; 18 PY)

> 1962: Lisp, self-hosting compiler and GC (Tim Hart and Mike Levin)

- Compilers today
> Modern compilers are complex (gcc has 7.5M LOC)
>~ There is still a lot of compiler research (LLVM, verified compilation, ...)

>~ There is still a lot of compiler development in industry (guest lecture?)

33



Classic Compilers
1957: The FORTRAN Automatic Coding System

—> > > COde > > . > —>
Front Index Merge Flow Register Final
End Optimiz’'n Analysis | | Allocat’n | | Assembly
bookkeeping
Front End Middle End Back End

. SIX passes in a fixed order
- (Generated good code

Assumed unlimitec
Code motion out of
nalysis & reg

Did flow a

|00

NS, Wit

Ister al

INndex registers

N Ifs and gotos

ocation



Classic Compilers
1969: IBM's FORTRAN H Compiler

| Build | | .. | Loop | ‘ ‘ |
—~ Scan ~ ~eg Find GSE [ Inv [7] Copy [7] OSR [ Reassoc [ Reg. (—+ Final
& 2 Busy code | | Elim consts) Alloc. | | Assy.
. consts
Parse DOM Vars Mot'n
Front Middle End Back End

Used low-level IR (quads), identified loops with
dominators

Focused on optimizing loops (“inside out™ order)
Passes are familiar today

Simple front end, simple back end for IBM 370




Classic Compilers
1975: BLISS-11 compiler (Wulf et al., CMU)

Register allocation

Lex-
| Syn- [ |Delay| | TLA | |Rank| |Pack| |Code| |Final |
Flo
Front Middle BackEnd
End End

The great compiler for the PDP-11
Seven passes in a fixed order

Focused on code shape & instruction selection
LexSynFlo did preliminary flow analysis
Final included a grab-bag of peephole optimizations



Classic Compilers
1980: IBM’s PL.8 Compiler

Dead code elimination

Global cse

Code motion

| | Constant folding : . L
Strength reduction

Value numbering

Dead store elimination

----------------------------- I\ Code Back End

Trap elimination
Algebraic reassociation

Many passes, one front end, several back ends

Collection of 10 or more passes glulti-levellR has
Repeat some passes and analyses / ecome common

wisdom
Represent complex operations at 2 levels
Below machine-level IR



Classic Compilers

1986: HP’s PA-RISC Compiler

- Several front ends, an optimizer, and a back end
- Four fixed-order choices for optimization
(9 passes)
- Graph-coloring allocator, instruction scheduler,
peephole optimizer




Classic Compilers
1999: The SUIF Compiler System

Fortran 77 \_/, el
C & C++ 7
Java
FrontEnd Middle End

ANO
3 L

/

ont ends, 3

her classically-built compiler

pack ends
8 passes, configurable or e/

'wo-level IR (H

igh SUI

C/Fortran

Alpha

x86

Cap
Virti

Datt
Scal
Red1

Poik Giobal value numbering
Al " Strength reduction
0C

P
/SSA cﬁnstmctian
“DE&Z code elimination

Partial redundancy elimination
Constant propagation

Reassociation
Instruction scheduling
Register allocation

Garuuge coliecltion

- Low SU

")

Intended as research infrastructure




Logisitics
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Course Staff — Seth Copen Goldstein

- Office hours: Wed 2pm-3:30pm 7111GHC or zoom (link on piazza)

- Research
» Concurrent Systems (Parallel, Distributed, ...)
~ Architecture/Compilers
» Monetary Systems (BoLT) & Future of Work
» Web3

- Teaching
> 15-411/611 Compiler Design
> 15-319/619 Cloud Computing

> 15-213 Introduction to Computer Systems

41



Communication and Resources

e Lecture: Tue/Thu 9:30-10:50am at DH A302
e Recitation A: Fri 1:00pm GHC 4102

B:  Fri2:00pm BH 235A
C. Fri4:.00pm WEH 5312

D: Fri1:00pm PHA18C
e Website: http://www.cs.cmu.edu/~411

e Piazza: You will be enrolled this afternoon
e Gradescope: Enrollment code will be on Piazza
e Lecture notes: Will be available after the lecture

e Textbook: Andrew Appel - Modern Compiler Implementation in ML


http://www.cs.cmu.edu/~411
http://www.cs.cmu.edu/~411
http://www.cs.cmu.edu/~411

The

-ssential TAS!
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Karen Wu

- Junior in CS
- | like crocheting and embroidery!

. Ocaml

45



Daniel Guo

- Junior doubling in CS + Al
- | enjoy wake surfing

. OCaml

46



Victoria Ll

- Junior in CS
- | enjoy sailing & skiing!

. OCaml

47



Ethan Chu

- 2022 BS inCS @ CMU
- 2nd Year PhD in CS
- | love traveling and biking

- Rust (& OCaml)

48



Max Kulbida

49



Opal the Optimizing Otter

- Course mascot
- Provides emotional support

50



Other Textbooks

" ENGINEERING
A
COMPILER

o\ iy .s-.'.‘_o‘ z.r et rE

BN QRSP w «
P R BOSC) ma g ¢
2 e e [ €
sy G20 fmemt (58 e

Compilers

Principles, Techniques, & Tools
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What will you learn?

S57



Compiler Design

- How to structure compilers

- Applied algorithms and data structures
~ Context-free grammars and parsing
> Static single assignment form
>~ Data flow analysis and type checking

~ Chordal graph coloring and register allocation

- Focus on sequential imperative programming language
Not functional, parallel, distributed, object-oriented, ...

- Focus on code generation and optimization
Not error messages, type inference, runtime system, ...

58



Focus of the Course

> Correctness (Does the compiled code work as intended?)
>~ Code quality (Does the compiled code run fast?)
> Efficiency of compilation (Is compilation fast?)

> Usability (Does the compiler produce useful errors and warnings?)

99



We won'’t discuss this

Software Engineering much in lecture.

- Implementing a compiler is a substantial software project

>~ Building, organizing, testing, debugging, specifying, ...
- Understanding and implementing high-level specifications
- Satisfying performance constraints

- Make (and reevaluate) design decision

Compilers are perfect

| to practice software
~ Data structures and algorithms engineering.

> Implementation language and libraries

» Modules and interfaces

- Revise and modify your code

60



Learning Goals |

- Distinguish the main phases of a state-of-the-art compiler
- Understand static and dynamic semantics of an imperative language
- Develop parsers and lexers using parser generators

- Perform semantic analysis

A

- Translate abstract syntax trees to intermediate representations and
static single assignment form

- Analyze the dataflow in an imperative language

- Perform standard compiler optimizations

61



Learning Goals |l

- Allocate registers using a graph-coloring algorithm
- Generate efficient assembly code for a modern architecture

- Understand opportunities and limitations of compiler optimizations

- Appreciate design tradeoffs and how representation affects optimizations

A

- Develop complex software following high-level specifications

62



How will this work?

63



Your Responsibilities

- Attend lectures No exams.
>~ Lecture notes are only supplementary material

- 6 Labs: you will impl. compilers for subsets of CO to x86-64 assembly
~ Lab1-4: each worth 100 points (total 400 points) _
With a partner
» Lab 3.5: worth 50 points or individual.
~ Code review after Lab 3: 60 points

~ Lab 5: 200 points + 100 points for report

- 4 Assignments: you will complete four problem sets that help you
understand the material presented in the lectures

>~ Assighments 1-4: each 60 points (total 240 points) Individual.

64



Labs — Overview

- Labs (760 points)

>

>

>

>

>

|

_ab 1: tests and compi
_ab 2: tests and compi

er for
er for

_1 (straight-line code)
_2 (conditionals and loops)

_ab 3: tests and compiler for L3 (functions) Aut ded
uto graded.
_ab 3.5: compiler for L3 into LLVM <
_ab 4: tests and compiler for L4 (memory)
_ab 5: compiler and paper (optimizations) TA graded.
TA graded.

- Code review (60 points)

> You show your code for Lab 3 and get feedback

>~ We expect that every team member is familiar with all components

> We expect that every team member contributes equally



Support for 411/611 Comes From ...

@ Jane Street

Helps to
- Improve the grading infrastructure

- Pay for AWS cost

66



Source Language: CO

Subset of C

- Small

- Safe

- Fully specified

- Rich enough to be representative and interesting

- Small enough to manage in a semester

67



Target Language

x86-64 architecture
- Widely used
- Quirky, but you can choose the instructions you use

- Low level enough you can get a taste of the hardware

Runtime system
- CO uses the ABI (Application Binary Interface) for C

- Strict adherence (internally, and for library functions)

68



Finding a partner for the labs

| strongly suggest you work in
teams of two.

69



abs — Finding a Partner ~« Dontpanic.

There are two options

1. You fill out a questionnaire and we suggest a partner (staff selection)

>~ Suggestion is not binding but it's expected that you team up

2. You team up with somebody yourself (self selection)

> Like in previous iterations of the course

Register your team on of before
Monday 1/20.

70



Option 1: Staff Selection

- You fill out a questionnaire about Until Thursday
> Your plans and goals for the class
> Your strengths and work style
> And your time constraints Friday

- We suggest a partner with complementary strengths and similar
plans/goals

- 'You meet with your partner and (hopefully) decide to team up

. Advantages: Until Monday 1/20

> You will get a partner who is a good match
> You will likely meet somebody new

>~ Prepares you for working in a software company

71



Option 1: Example Questions we Ask

- What programming language would you prefer to use?

- Are you more interested in theory or in building systems?

- Are you familiar with x86 assembly?

- How much time would be so much that you would rather drop?

- How much effort do you plan to invest in Compilers, on average?
- What grade are you aiming for in Compilers?

- Do you prefer to collaborate when writing code?

72



Option 2: Self Selection

- Pick your partner carefully!

- Have an honest discussion about your goals and expectations
> What grades you are willing to accept?
> How much time will you spend?

> What times of day you work best?

That’s not necessarily your
- Find somebody who’'s a good match best friend.

- Go through the questionnaire and compare your answers

Consider switching to Option 1 if
there are mismatches.

73



Labs — Picking a Programming Language

- You can freely choose a programming language to use

- It has been suggested that you use a typed functional language
~ Writing a compiler is a killer app for functional programming

» Most teams used OCaml last year

- We provide starter code for the following languages
» SML, OCaml, Haskell, and, Rust

» Also, but not recommended: C++ and Java

- When picking a language also consider the availability of parser
generators and libraries

74



Logistics

- Assignments are submitted via Gradescope

- Labs are submitted via GitHub (on Gradescope)
> Get a GitHub account and fill out a google form to register your team
> Recelve your group name
> Receive an invitation to join your group on GitHub
> Submit your code by pushing to your repository

> Local development is available using docker containers

- Auto grading with Gradescope
> Your compiler is tested against the test cases of other groups
> And test cases from previous years
> You can submit as often as you like
> Best submission before the deadline counts

75



Gradescope Caveats

You have to give Gradescope permissions to see your 15-411-s26-
<groupname> repo

You can submit as often as you like, but ...
»  Wait for each submission to complete
> |f it takes awhile, that is not because Gradescope hung

>~ Submitting multiple times before previous completes will slow things down
for everyone

76



Advice

e Labs are difficult and take time
o Plan ahead!
o Set up meetings with lab partners

o Talk to us and others about design decisions
e Don't start the compiler after the tests
e Errors carry over to the next lab
e Submit early and often
e Compilers are complex
o That's part of the fun
e Consider rewrites

e Don't vibecode, Do understand your code

77



Workload Over the Semester

Plaid

Ludicrous

Ridiculous

High

Light

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5
Workload*

* scale from the movie Spaceballs. i



This Year's Theme - Famous Dynasties
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This Year's Theme - Famous

©WoOoNeGaRrEODN-=

Sumerians, c. 3000-2300 BCE, Mesopotamia

Akkadians, c. 2300-2150 BCE, Mesopotamia

Pyramid Kings (Khufu & Co.), c. 2700-2200 BCE, Egypt
Hittite Kings, c. 1600-1200 BCE, Anatolia

Shang, c. 1600-1046 BCE, China

Zhou, c. 1046-256 BCE, China

Assyrians, c. 1400-600 BCE, Mesopotamia

Persians (Achaemenids), c. 550-330 BCE, Persia & Near East
Mauryas (Ashoka’s Line), c. 320-185 BCE, India

. Seleucids, c. 312-63 BCE, Near East

. Han, 206 BCE-220 CE, China

. Julio-Claudians, 27 BCE-68 CE, Roman Empire
. Flavians, 69-96 CE, Roman Empire

. Antonines, 96-192 CE, Roman Empire

. Severans, 193-235 CE, Roman Empire

. Guptas (Golden Age India), c. 320-550, India

. Sassanians, 224-651, Persia

. Constantinian Romans, 300s—400s, Roman / Byzantine Empire
. Umayyads, 661750, Middle East & North Africa
. Abbasids, 750-1258, Middle East

. Tang, 618-907, China

. Song, 960-1279, China

23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45.

Dynasties

Capetians, 987-1300s, France

Ottonians, 900s—1000s, Holy Roman Empire
Normans, 900s—1100s, England & Normandy
Komnenoi (Byzantine Revival), 1081-1185, Eastern Mediterranean
House of Genghis (Borjigin), 1206—1400s, Eurasia
Golden Horde, 1200s—-1400s, Russia & Steppe
llkhans, 1200s—1300s, Persia

Yuan (Kublai Khan), 1271-1368, China

Ming, 1368—1644, China

Ottomans, c. 1300-1922, Anatolia, Balkans, Middle East
Safavids, 1501-1736, Persia

Mughals, 1526—-1857, India

Habsburgs, 1200s—1900s, Central Europe & Spain
Tudors, 1485-1603, England

Stuarts, 1600s—1700s, Britain

Tokugawa, 1603—-1868, Japan

Qing, 1644-1912, China

Romanovs, 1613-1917, Russia

Bourbons, 1600s—present, France & Spain
Windsors, 1900s—present, United Kingdom

House of Saud, 1700s—present, Arabia

Pahlavis, 1925-1979, Iran

Kim Dynasty, 1948—present, North Korea

80



Deadlines and Academic Integrity

- Deadlines are midnight; being late results in a late day
> You have five (5) late days for the labs (see details online)

~ You have three (3) late days for the assignments (details online)

- Talk to me or your undergrad advisor if you cannot make a deadline for
personal reasons (religious holidays, illness, ...)

- Don’t cheat! (details online)
>~ Use code only from the standard library, add to Readme
» Don’t use code from other teams, earlier years, etc.
> If in doubt talk to the instructor

>~ The written assignments need to be completed individually (1 person)
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Things you Should Use

- Debugger

- Profiler

- Test programs

- Standard library

- Lecture notes

. Textbooks

82



Well-Being

- This is only a course!
- Take care of yourself
~ Watch out for others

> Come speak to us. We really do care.

- Get help if you struggle or feel stressed

> If you or anyone you know experiences any academic stress, difficult
life events, or feelings like anxiety or depression seek support

» Counseling and Psychological Services (CaPS) is here to help:
Phone: 412-268-2922
Web: http://www.cmu.edu/counseling/

83



Who should take this course?

84



15-411 In the Curriculum

. 15-213 Introduction to Computer Systems Frerequisite

15-411 Compiler Design

~ How are high-level programs translated to machine code?

15-410 Operating System Design and Implementation

> How is the execution of programs managed?

15-441 Computer Networks
» How do programs communicate? System requirement

- 15-417 HOT Compilation

> How to compile higher-order typed languages?

85



Things you Should Know (Learn)
- CO programming language
> The source language

- X86-64 assembly

~ The target language

- Functional programming

» Recommended?

. Git version control

> For submitting labs

86



Reminder: inductive definitions

87
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