
Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (A), Spring 2025

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below.

3. PLEASE DO NOT WRITE FAINTLY WITH PENCIL. Please write in
ink, or, if writing in pencil, please ensure that zero strokes in zero words
are faint. Using a mechanical pencil with thin lead is probably unwise.

4. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

5. If you have a clarification question, please write it down on the card we have
provided. Please don’t ask us questions of the form “If I answered like this,
would it be ok?” or “Are you looking for ...?”

6. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

7. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 10

3. 15

4. 20

5. 10

65

Please note that there are system-call and thread-library “cheat sheets” at the end of the
exam.

If we cannot read your writing, we will be unable to assign a high score to your work.

1. 10 points Short answer.

(a) 6 points When designing a body of code, at times one finds oneself thinking, “I wonder if I can
assume X?” According to the 15-410 design orthodoxy, immediately upon having such a thought
one is required to ask oneself two questions. Please state those questions. It is probably worthwhile
to include specific examples and/or to briefly explain why these two replacement questions are
important.

Page 2

You may use this page as extra space for the “assume” question if you wish.

Page 3

(b) 4 points Register dump.

Below is a register dump produced by the “Pathos” P2 reference kernel when it decided to kill a
user-space thread. Your job is to carefully consider the register dump and:

1. Determine which “wrong register value(s)” caused the thread to run an instruction which
resulted in a fatal exception. You should say why/how the wrong value led to an exception,
i.e., merely claiming a register has a “wrong” value will not receive full credit.

2. Briefly state the most plausible way you think that register could have taken on that value
(i.e., try to describe a bug which could have this effect).

3. Then write a small piece of code which would plausibly cause the thread to die in the fashion
indicated by the register dump. This code does not need to implement exactly the set of steps
that you identified as “most plausible” above, or result in the same register values; you should
aim to achieve “basically the same effect.” Most answers will probably be in assembly language,
but C is acceptable as well. Your code should assume execution begins in main(), which has
been passed the typical two parameters in the typical fashion.

Please be sure that your description of the fatality and the code, taken together, clearly support
your diagnosis.

Registers:

eax: 0x00000000, ebx: 0x00000000, ecx: 0xffffeec4,

edx: 0xffffefc4, edi: 0x00000000, esi: 0x00000000,

ebp: 0x01000066, esp: 0x01000066, eip: 0x01000029,

ss: 0x002b, cs: 0x0023, ds: 0x002b,

es: 0x002b, fs: 0x002b, gs: 0x002b,

eflags: 0x00000282

Page 4

You may use this page for the register-dump question if you wish.

Page 5

2. 10 points Deadlock.

Consider a large multi-threaded program running on a multi-core machine — for example, 1,000
threads running on 64 cores. Clearly it would be frustrating to debug deadlocks in such a program.
But it might be worse if the program supports “plug-ins,” meaning pieces of code that can be added
to the program after it is built — perhaps via dynamic linking of shared libraries. That would
mean that the program would in effect be written by many authors, so it might be very challenging
to use the deadlock-prevention approach of banning large classes of allocation behavior, since it
would be necessary to make sure that many authors understood on which behavior was banned
and never made a mistake.

(a) 4 points State the four ingredients necessarily present in every deadlock. Provide a brief

example (one or two sentences should suffice) that makes it clear you understand each
element.

Page 6

You may use this page as extra space for the deadlock-ingredients question if you wish.

Page 7

Imagine one of your coworkers proposes using deadlock detection and recovery for this program.

(b) 3 points State a policy problem/challenge that would plausibly arise when applying dead-
lock detection and recovery to this class of program.

Page 8

(c) 3 points State an implementation problem/challenge that would plausibly arise when
applying deadlock detection and recovery to this class of program.

Page 9

3. 15 points Nemo’s Algorithm (Dekker / Dijkstra / Raynal / Eckhardt).

Consider the following critical-section protocol. This protocol is designed for use by multiple
threads. In each thread, i is the thread number, ranging from zero through N, the number of
threads in the system. For the purposes of this question we can assume that N is a compile-time
constant.

volatile int turn = -1; // initially, it’s nobody’s turn

int entering[N] = {0, }; // per-thread flags (initially all zero)

1. int n_entering(void) {

2. int n_entering = 0;

3. for (int t = 0; t < N; t++)

4. n_entering += entering[t];

5. affirm(n_entering > 0);

6. return (n_entering);

7. }

8.

9. void lock(void) {

10. do {

11. do {

12. entering[i] = 0;

13. if (turn == -1)

14. turn = i;

15. } while (turn != i);

16. entering[i] = 1;

17. } while (n_entering() != 1);

18. }

19.

20. void unlock(void) {

21. turn = -1;

22. entering[i] = 0;

23. }

There is a problem with this critical-section protocol. Identify a required property which this
protocol does not have and then present a trace, using the format presented in class, that
supports your claim. You may use more or fewer columns or lines in your trace.

Execution Trace

time Thread 0 Thread 1

0

1

2

Page 10

Be sure that the execution trace you provide us with is easy to read and conclusively demon-
strates the claim you are making. You may introduce temporary variables or other obvious
notation as necessary to improve the clarity of your answer. You should report a problem with
code that is visible to you rather than assuming a problem in code that you have not been shown.
It is possible to answer this question with a clear trace, so you should do what is necessary
to ensure that you do. It is strongly recommended that you write down a draft version of any
execution trace using the scrap paper provided at the end of the exam, or on the back of some
other page, before you begin to write your solution on the next page. If we cannot understand
the solution you provide, your grade will suffer! If you wish, you may abbreviate entering[]

as e[] and n entering() as n e().

Page 11

This page is for your Nemo’s-Algorithm solution.

Page 12

This page can be used for your Nemo’s-Algorithm solution.

Page 13

This page can be used for your Nemo’s-Algorithm solution if you wish.

Page 14

4. 20 points Pausable semaphores.

In lecture we talked about two fundamental operations in concurrent programming: brief mutual
exclusion for atomic sequences (provided in P2 by mutexes) and long-term voluntary descheduling
(provided by condition variables). As you know, these can be combined to produce higher-level
objects such as semaphores or readers/writers locks.

Something we largely do not cover in this class, that is increasingly important to workers in the
field of operating systems, is managing heat and power. It is one thing to correctly compute a
required answer, but it is often important to perform a computation while remaining within a
heat and/or power budget. In this question you will implement a synchronization object called
a “pausable semaphore.” This object will provide the standard semaphore services allowing a
pool of threads to acquire and release logical items, but it will also allow a power-management
thread to, from time to time, suspend and resume threads when they are in the act of acquiring
and releasing those logical items. While most of the threads are invoking psem signal() and
psem wait() on a pausable semaphore, a power-management thread will be invoking psem pause()

and psem resume(). While a pausable semaphore is paused, signal() and wait() operations both
cause threads to block; when the pausable semaphore is resumed, threads “artifically” blocked by
the pause operation resume, and signal() and wait() operate normally. Like a regular semaphore,
a pausable semaphore object does not know how many threads will invoke it.

A small example program using a pausable semaphore is displayed on the next page.

The remainder of this page is intentionally blank.

Page 15

// Assumes that printf() of a short single-line message is atomic.

// Test code: not required to exhibit reasonable synchronization behavior.

#define WIDTH 8 // number of coprocessors

#define THREADS 16 // number of clients

#define RUN_TICKS 10

#define SLEEP_TICKS 5

#define TOTAL_TICKS 15410

static psem_t limiter;

void *threadbody(void *vid) {

int id = (int) vid;

int base;

while (1) {

psem_wait(&limiter);

printf("Thread %d running...fans will be ON\n", id);

base = get_ticks();

while (get_ticks() < base + RUN_TICKS)

continue;

printf("Thread %d done for now\n", id);

psem_signal(&limiter);

sleep(SLEEP_TICKS);

}

return (0);

}

int main(void) {

thr_init(8192); // exam: cannot fail

psem_init(&limiter, WIDTH); // exam: cannot fail

printf("Starting %d threads\n", THREADS);

for (int n = 0; n < THREADS; ++n)

affirm(thr_create(threadbody, (void *)n) > 0); // exam: cannot fail

int base, ticks;

base = get_ticks();

while ((ticks = get_ticks()) < base + TOTAL_TICKS) {

sleep(ticks % 67); // heating is likely now

psem_pause(&limiter);

sleep(ticks % 23); // cool down a bit

psem_resume(&limiter);

}

printf("All done!\n");

task_vanish(0);

panic("task_vanish() didn’t???");

}

Page 16

Your task is to implement pausable semaphores with the following interface:

• int psem init(psem t *psp, int count) — initializes a pausable semaphore (which
begins unpaused). In the case of an error, this function will return an error code less than
zero.

• void psem wait(psem t *psp) — acquires a logical object from the pool, blocking if
necessary, and also blocking while the semaphore is paused.

• void psem signal(psem t *psp) — places a logical item into the pool, also blocking
while the semaphore is paused.

• void psem pause(psem t *psp) — places a pausable semaphore into the “paused” state.
It is expected that this operation is “fairly prompt.”

• void psem resume(psem t *psp) – removes a pausable semaphore from the “paused”
state, returning it to normal semaphore operation. It is expected that this operation is
“more or less prompt in accordance with circumstances.”

• void psem destroy(psem t *psp) – deactivates a pausable semaphore. It is illegal for a
program to invoke psem destroy() if any threads are operating on it.

The remainder of this page is intentionally blank.

Page 17

Assumptions:

1. You may use regular Project 2 thread-library primitives: mutexes, condition variables,
semaphores, readers/writers locks, etc.

2. You may assume that callers of your routines will obey the rules. But you must be
careful that you obey the rules as well!

3. You may not use other atomic or thread-synchronization synchronization operations, such
as, but not limited to: deschedule()/make runnable(), or any atomic instructions (XCHG,
LL/SC).

4. You must comply with the published interfaces of synchronization primitives, i.e., you
cannot inspect or modify the internals of any thread-library data objects.

5. You may not use assembly code, inline or otherwise.

6. For the purposes of the exam, you may assume that library routines and system
calls don’t “fail” (unless you indicate in your comments that you have arranged, and
are expecting, a particular failure).

7. You may not rely on any data-structure libraries such as splay trees, red-black trees,
queues, stacks, or skip lists, lock-free or otherwise, that you do not implement as part of
your solution.

8. You may use non-synchronization-related thread-library routines in the “thr xxx() fam-
ily,” e.g., thr getid(). You may wish to refer to the “cheat sheets” at the end of the
exam. If you wish, you may assume that thr getid() is “very efficient” (for example, it
invokes no system calls). You may also assume that condition variables are strictly FIFO
if you wish.

It is strongly recommended that you rough out an implementation on the scrap paper provided at
the end of the exam, or on the back of some other page, before you write anything on the next page.
If we cannot understand the solution you provide, your grade will suffer!

Note that this problem involves subtleties. It is possible to write code that “runs ok,” but important
to avoid code that is “correct but wrong,” “arguably less wrong,” or otherwise behaves in ways that
are unwarranted.

Page 18

(a) 5 points Please declare your psem_t here. If you need one (or more) auxilary structures,

you may declare it/them here as well. Then please implement psem init().

typedef struct {

} psem_t;

Page 19

[You may use this page for your pausable semaphore declaration(s) and init if you wish.]

Page 20

(b) 15 points Now please implement psem wait(), psem signal(), psem pause(), psem resume(),
and psem destroy().

Page 21

. . . space for pausable-semaphore implementation . . .

Page 22

. . . space for pausable-semaphore implementation . . .

Page 23

[You may use this page for your pausable-semaphore implementation if you wish.]

Page 24

5. 10 points Nuts & Bolts.

In the Project 1 environment, where all code runs in kernel mode, when an interrupt, exception,
or other “surprise” happens, the CPU pushes a “trap frame” onto the existing stack (there is no
“stack switch” as happens during a user-to-kernel transition in Project 2 or Project 3).

List the three elements of the Project 1 (kernel-only) trap frame. Briefly say why each of those
elements is saved onto the stack by the CPU (for example, you should probably be able to
suggest something that would go wrong if that element were not saved and later restored).

Page 25

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t)(void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */

void misbehave(int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 26

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);

void mutex_destroy(mutex_t *mp);

void mutex_lock(mutex_t *mp);

void mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

void cond_destroy(cond_t *cv);

void cond_wait(cond_t *cv, mutex_t *mp);

void cond_signal(cond_t *cv);

void cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func)(void *), void *arg);

int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);

void sem_wait(sem_t *sem);

void sem_signal(sem_t *sem);

void sem_destroy(sem_t *sem);

#define RWLOCK_READ 0

#define RWLOCK_WRITE 1

int rwlock_init(rwlock_t *rwlock);

void rwlock_lock(rwlock_t *rwlock, int type);

void rwlock_unlock(rwlock_t *rwlock);

void rwlock_destroy(rwlock_t *rwlock);

void rwlock_downgrade(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 27

Ureg Cheat-Sheet

#define SWEXN_CAUSE_DIVIDE 0x00 /* Very clever, Intel */

#define SWEXN_CAUSE_DEBUG 0x01

#define SWEXN_CAUSE_BREAKPOINT 0x03

#define SWEXN_CAUSE_OVERFLOW 0x04

#define SWEXN_CAUSE_BOUNDCHECK 0x05

#define SWEXN_CAUSE_OPCODE 0x06 /* SIGILL */

#define SWEXN_CAUSE_NOFPU 0x07 /* FPU missing/disabled/busy */

#define SWEXN_CAUSE_SEGFAULT 0x0B /* segment not present */

#define SWEXN_CAUSE_STACKFAULT 0x0C /* ouch */

#define SWEXN_CAUSE_PROTFAULT 0x0D /* aka GPF */

#define SWEXN_CAUSE_PAGEFAULT 0x0E /* cr2 is valid! */

#define SWEXN_CAUSE_FPUFAULT 0x10 /* old x87 FPU is angry */

#define SWEXN_CAUSE_ALIGNFAULT 0x11

#define SWEXN_CAUSE_SIMDFAULT 0x13 /* SSE/SSE2 FPU is angry */

#ifndef ASSEMBLER

typedef struct ureg_t {

unsigned int cause;

unsigned int cr2; /* Or else zero. */

unsigned int ds;

unsigned int es;

unsigned int fs;

unsigned int gs;

unsigned int edi;

unsigned int esi;

unsigned int ebp;

unsigned int zero; /* Dummy %esp, set to zero */

unsigned int ebx;

unsigned int edx;

unsigned int ecx;

unsigned int eax;

unsigned int error_code;

unsigned int eip;

unsigned int cs;

unsigned int eflags;

unsigned int esp;

unsigned int ss;

} ureg_t;

#endif /* ASSEMBLER */

Page 28

Typing Rules Cheat-Sheet

τ ::= α | τ → τ | µα.τ | ∀α.τ
e ::= x | λx:τ.e | e e | fix(x:τ.e) | foldα.τ (e) | unfold(e) | Λα.e | e[τ]

Γ, α type ` α type
istyp-var

Γ ` τ1 type Γ ` τ2 type
Γ ` t1 → t2 type

istyp-arrow

Γ, α type ` τ type
Γ ` µα.τ type istyp-rec

Γ, α type ` τ type
Γ ` ∀α.τ type istyp-forall

Γ, x : τ ` x : τ
typ-var

Γ, x : τ1 ` e : τ2 Γ ` τ1 type
Γ ` λx:τ1.e : τ1 → τ2

typ-lam
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
typ-app

Γ, x : τ ` e : τ Γ ` τ type
Γ ` fix(x:τ.e) : τ

typ-fix

Γ ` e : [µα.τ/α]τ Γ, α type ` τ type
Γ ` foldα.τ (e) : µα.τ

typ-fold
Γ ` e : µα.τ

Γ ` unfold(e) : [µα.τ/α]τ
typ-unfold

Γ, α type ` e : τ

Γ ` Λα.e : ∀α.τ typ-tlam
Γ ` e : ∀α.τ Γ ` τ ′ type

Γ ` e[τ ′] : [τ ′/α]τ
typ-tapp

λx:τ.evalue
val-lam

foldα.τ (e)value
val-fold

Λα.τ value
val-tlam

e1 7→ e′1
e1 e2 7→ e′1 e2

steps-app1

e1 value e2 7→ e′2
e1 e2 7→ e1 e

′
2

steps-app2

e2 value

(λx:τ.e1) e2 7→ [e2/x]e1
steps-app-β

fix(x:τ.e) 7→ [fix(x:τ.e)/x]e
steps-fix

e 7→ e′

unfold(e) 7→ unfold(e′)
steps-unfold1 unfold(foldα.τ (e)) 7→ e

steps-unfold2

e 7→ e′

e[τ] 7→ e′[τ]
steps-tapp1

(Λα.e)[τ] 7→ [τ/α]e
steps-tapp1

Page 29

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 30

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 31

