15-410

“My other car is a cdr” -- Unknown

Exam #1
Mar. 12, 2023

Dave Eckhardt

120 Exam 15-410, S'23

Synchronization

Checkpoint schedule

= Friday during class time
= Meet in Wean 5207
= If your group number ends with
» 0-2 try to arrive 10:55-11:00 (5 minutes early)
» 3-b arrive at 11:12:30
» 6-9 arrive at 11:30:27
= Preparation
= Your kernel should be in mygroup/p3ck2
= We are expecting everybody (even if not quite done)
» Unless you notify us by noon on Thursday

15-410, S'23

Synchronization

Checkpoint 2 - alerts

= Reminder: context switch # timer interrupt!
= Timer interrupt is a special case
= Looking ahead to the general case can help you later
= Please read the handout warnings about context switch
and mode switch and IRET very carefully

= Each warning is there because of a big mistake which was
very painful for previous students

15-410, S'23

Synchronization

Book report!

= This your approximately-mid-semester reminder about the
book report assignment

15-410, S'23

Synchronization

Asking for trouble?

If you aren't using source control, that is probably a
mistake
If your code isn't in your 410 AFS space every day, you are
asking for trouble

= GitHub sometimes goes down!

» $'13: on P4 hand-in day (really!)
= Roughly 50% of groups have blank REPOSITORY
directories...

If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

= Don't forget about CC=clang / CC=clangalyzer

= Using a variety of compilers is likely to expose issues
Running your code on the crash box may be useful

= But if you aren't doing it fairly regularly, the first “release”
may take a /ong time
15-410, S'23

11

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

15-410, S'23

12

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

Ym_:r problem just got bigger.
I'hink, what have you done?

Image credit: Kartik Subramanian

15-410, S'23

15

A Note for Posterity

The S'23 mid-term exam occurred during COVID-19

But it was an “arguably roughly typical” exam

15-410, S'23

A Word on the Final Exam

Disclaimer
= Past performance is not a guarantee of future results

The course will change

= Up to now: “basics” - What you need for Project 3

= Coming: advanced topics
= Design issues
= Things you won't experience via implementation

Examination will change to match

= More design questions
= Some things you won't have implemented (text useful!!)

= Still 3 hours, but could be more stuff (~85 points,
~6 questions)

17 15-410, §'23

19

Please Avoid Faint Pencil!

Some people wrote using pencil

= Some wrote with faint pencil!
= Luckily we did not use Gradescope this time
= But some graders expressed some concern

= Please do not write faintly with pencil on the final exam!
= In any class!

15-410, S'23

“See Course Staff”

If your exam says “see course staff”...
= ...you should!

This generally indicates a serious misconception...

= ...which we fear will seriously harm code you are writing
now...

= ...which we believe requires personal counseling, not just
a brief note, to clear up.

..though it might instead indicate a complex
subtilety...

= ...which we believe will benefit from personal counseling,
not just a brief note, to clear up.

“See Instructor”...

= ...means it is probably a good idea to see an instructor...
20 = ...it does not imply disaster. 15-410, §'23

21

“Low Exam-Score Syndrome”

What if my score is really low????

= It is frequently possible to do dramatically better on the
final exam

= Specific suggestions later

15-410, S'23

22

Outline

Question 1
Question 2
Question 3
Question 4
Question 5

15-410, S'23

25

Q1 - Short Answer

Three parts
= “Three kinds of error”
= P2 examples of two kinds
= “Paradise Lost”

15-410, S'23

Q1ia/b — Three kinds of error

Purpose: demonstrate grasp of a robustness practice

= Hopefully P2 involved careful error handling
= Hopefully P3 will involve careful error handling
= “Robust code is structurally different than fragile code”

= P3 requires not just code but siructurally non-fragile
code.

If you were lost on this question...

= We had a lecture on this topic (February 3)

= Other “odd” lectures to possibly review
= Debugging, Questions
= #define, #include
= We expect you to know and apply all of this material

26 15-410, §'23

27

Q1ia/b — Three kinds of error

Official trichotomy
= Resolvable — so resolve it
= Reportable — so report it

= “It's over”
= Involve the developer, because the program is broken
= Stop the program before propagating lies

Not really in the same space

= “l shouldn't have written this code, so | need to re-design”
= That was generally accepted anyway

15-410, S'23

28

Q1ia/b — Three kinds of error

Not the core issue: “common error vs. rare error”

= That doesn't help with, e.g., “page fault”
= Page faults aren't super-common
= Some page faults are resolvable
= Some page faults are fatal

15-410, S'23

Q1ia/b — Three kinds of error

Not the core issue: “common error vs. rare error”

= That doesn't help with, e.g., “page fault”
= Page faults aren't super-common
= Some page faults are resolvable
= Some page faults are fatal
= The core issue is which {...} code is needed
= It is important to write different code for {...}

» Xmalloc() is wrong (for robust code) exactly because it is
a way to write the same code for different cases

= [t is important to be confident about which case is which

29 15-410, §'23

Q1ia/b — Three kinds of error

Not the core issue: “common error vs. rare error”

= That doesn't help with, e.g., “page fault”
= Page faults aren't super-common
= Some page faults are resolvable
= Some page faults are fatal
= The core issue is which {...} code is needed
= It is important to write different code for {...}

» Xmalloc() is wrong (for robust code) exactly because it is
a way to write the same code for different cases

= [t is important to be confident about which case is which

Extraneous

= “Lock contention”
= Forgot to increment loop variable

= O(N**2) instead of O(log log N)
30 15-410, S'23

31

Q1ia/b — Three kinds of error

Alarming problems (practice)

= “return;” from a void function
= That is covering up a problem, not handling it
= yield loop
= Hoping somebody else can solve the problem won't work
well if nobody does

= “Hold & yield” is basically “hold & wait”...uh-oh...
= silent vanish
= This is not supportive of anybody fixing anything

15-410, S'23

32

Q1ia/b — Three kinds of error

Practice suggestions

= Try to have a centralized reporter
= Java, Rails, ... produce stack traces
» Useful for many errors
= The Pathos reference kernel produces register dumps
» Useful for many errors
= Try to have a good invocation pattern

= assert(0) is not a very good invocation pattern

15-410, S'23

33

Qic - “Paradise Lost”

Purpose: Demonstrate understanding of a
concurrency anti-pattern

= Key points
= A condition was true; then revoked; expected to be true later
= |t is possible to be unlucky and observe while revoked
= Can often be fixed by replacing “if” with “while”

Outcomes

= Many solid answers
= Some alarming answers
= “Something involving 3 threads and dequeue()”
= “Paradise Lost == TOCTTOU == race condition”
» Arguably there is a subset relationship
» But causes and fixing are very different

e “Add locks” != “Change 'if' to 'while"
15-410, S'23

34

Q1 — Results

Scores
= ~60% of the class scored 8/10 or above (good)
= ~25% of the class scored below 6/10 (...)

15-410, S'23

35

Q2 - Critical-Section Problem

What we were testing

= Ability to find a bounded-waiting problem
= Ability to write a clear execution trace
= Ability to solve a bounded-waiting problem

Odd feature of the problem
= This code was discussed in class!

Many scores were high
= Good!

15-410, S'23

Q2 - Critical-Section Problem

Some disturbing features were observed

= Some traces were not easy to read
= |t is to your benefit to be good about thinking
scenarios through, and notation matters
= Plus, you still have a final exam to take...
= A few people misinterpreted the code (that can happen)

= Roughly 10% of suggestions for fixing the problem made
it worse

= Spin-waiting
= Deadlock

If you had trouble with this question...

= ...please figure out why, and how to practice. This is
core material.

15-410, S'23

Q3 - Library Deadlock

Parts of the problem

= Find the deadlock
= Suggest a fix

Results - finding

= Most people correctly described a reachable deadlock
= Roughly 1/3 found a minimal-thread-count deadlock
= The problem structure strongly implies how many that is
= Some people used 1 extra thread (ok)

= Some people didn't attempt an explanation of how many
threads are necessary

Most-common mistakes

= Insufficient justification of a claimed deadlock state
= Impossible traces (oo many copies of a book)
» Writing a clear trace is an important mental tool

37 15-410, S'23

38

Q3 - Library Deadlock

Results - fixing

= Many solutions are plausible and received credit

= Terminology note: preemption is taking a resource from
somebody else

Overall
= While analysis, thought, and tracing were required, this
was a mostly straightforward question

= 75% of the class scored 80% or better

15-410, S'23

39

Q4 - “Simulation Clock”

Question goals
= Variant of typical “write a synchronization object” exam
question
= This one was “roughly typical” (maybe “medium-hard”)
= Requirements / solution structure were a little atypical
= Spec and test code were arguably better than typical

15-410, S'23

40

Q4 - “Simulation Clock”

Question goals
= Variant of typical “write a synchronization object” exam
question
= This one was “roughly typical” (maybe “medium-hard”)

Scores varied!

= Median score was 14/20 (70%))
= 30% of class got 16/20 (80% score) or better
= 60% of class got 14/20 (70% score) or better
= But ~33% of class got 10/20 (50% score) or worse
= Primary low-score causes
» Parts missing (tick() not waiting ever)
» Progress failure (wait before ack)
» “Double churn”, “Churn”
» Yield loop(!) / spinning(!!)

15-410, S'23

41

Q4 - “Simulation Clock”

Alarming memory mishaps

= mutex_init() passed an uninitialized pointer
= init() refusing to work on random pieces of memory
= free() called on memory that didn't come from the heap

These alarming things should be fixed soon!

15-410, S'23

42

Q4 - “Simulation Clock”

“Structurally not ok”

= #define MAX_THREADS 1000

= A thread cap is so rare that it must be explicitly authorized
= The problem provides a handy alternative
= Assuming thr_getid() returns values between 0 and 1000

= This can happen only in super-special-case situations
= So rare it must be explicitly authorized

= The problem has iwo workable alternatives (at least)
= malloc() on demand for linked-list nodes
= This is a “structurally wrong meme” - always strive to avoid!
= The problem provides a handy alternative
= Please review P2 handout material on “return values”
= Beware: P3 faces similar considerations!

15-410, S'23

43

Q4 - “Simulation Clock”

Synchronization problems

= Waiting before acking is simple progress failure
“Double churn”

= Each waiter is awakened many times, not once

= tick() thread is awakened many times, not once
= “Excessive tick() serialization”

= tick() must awaken N threads

= tick() must hear back from N threads

= But the N threads should be allowed to run in parallel!
Holding a mutex for O(N)

= Mutexes are not the sole locking tool available
Scanning a collection without holding any lock
Returning a random value

= mutex_unlock(&m); return (ptr->field);

15-410, S'23

o

Q4 - “Simulation Clock”

“Glitches”

lock() twice on the same mutex
Forgot cond_wait() takes fwo parameters
= [tis really hard to write correct code without this
Forgot unlock()
Forgot signal()
Forgot destroy()
Forgot free()

15-410, S'23

45

Q4 - “Simulation Clock”

Approach

= Pseudo-code/outline strongly suggested
= block(), register(), ack(), collect(), awaken()
= Pseudo-code/outline all parts before coding any part
= Consider writing helper functions!
= “First I'll code up wait(), then I'll code up tick()” is much
less likely to result in correct code

15-410, S'23

46

Q4 - “Simulation Clock”

General synchronization-calamity checklist

Deadlock
Progress failures (e.g., losing threads)
= Unlocking not-held locks
Mutual exclusion failures
Spinning is not ok
= Yield loops are “arguably less wrong” than spinning

Motto: “When a thread can't do anything useful for a
while, it should block; when a thread is unblocked, there
should be a high likelihood it can do something useful.”
= Special case: mutexes should not be held for genuinely
indefinite periods of time

15-410, S'23

Q4 - “Simulation Clock”

Important general advice!

» It's a good idea to trace through your code and make sure
that at least the simplest cases work without races or
threads getting stuck

= Maybe figure out which operation/case is “the hard one”
and pseudo-code that one before coding the easy ones?

Other things to watch out for

= Memory leaks

= Memory allocation / pointer mistakes

= Forgetting to shut down underlying primitives
= Parallel arrays (use structs instead)

47 15-410, S'23

48

Q5 — Nuts & Bolts: “wrapper()”

Purposes

= Verify “stack planning”
= Confirm x86-32 asm coding conventions

Outcomes
= 75% of class got 8/10 or better

15-410, S'23

49

Q5 — Nuts & Bolts: “wrapper()”

Concerning
= Not restoring %esp / %ebp
= Forgetting to call f()

= Forgetting that x86 stacks grow down
= Quick reference by a former student: stackgrowsdown.com

Common
= Off-by-one: storing into *stack_high
= Inverting order of parameter pushes
= Forgetting f() can trash caller-save registers

15-410, S'23

50

Breakdown

90%
80%
70%
60%
50%
40%
<40%

58.5
52.0
45.5
39.0
32.5
26.0

0

students
students
students
students
students
student

students

Comparison/calibration
= These scores don't look blatantly problematic

(57.0

(45.0
(38.0
(32.0

and up)

and up)
and up)
and up)

15-410, S'23

51

Implications

Score below 45?

= Form a “theory of what happened”
= Not enough textbook time?
= Not enough reading of partner's code?
= Lecture examples “read” but not grasped?
= Sample exams “scanned” but not solved?

= It is important to do better on the final exam

15-410, F'21

52

Implications

Score below 45?

= Form a “theory of what happened”
= Not enough textbook time?
= Not enough reading of partner's code?
= Lecture examples “read” but not grasped?
= Sample exams “scanned” but not solved?
= It is important to do better on the final exam

= Historically, an explicit plan works a lot better than “I'll try
harder”

= Strong suggestion:
» ldentify causes, draft a plan, see instructor

15-410, F'21

Implications

Score below 39?

= Something went noticeably wrong

= It's important to figure out what!
= Passing the final exam could be a challenge
= Passing the class may be at risk!

= To pass the class you must demonstrate proficiency on
exams (not just project grades)

= We don't know the format of the final exam yet, but a strong
grasp of key concepts, especially concurrency, is important

53 15-410, F'21

54

Implications

Score below 39?

= Something went noticeably wrong

= It's important to figure out what!
= Passing the final exam could be a challenge
= Passing the class may be at risk!

= To pass the class you must demonstrate proficiency on
exams (not just project grades)

= We don't know the format of the final exam yet, but a strong
grasp of key concepts, especially concurrency, is important

= Try to identify causes, draft a plan, see instructor
= Good news: explicit, actionable plans usually work well

15-410, F'21

55

Action plan

Please follow steps in order:

1. Identify causes
2. Draft a plan
3. See instructor

15-410, S'23

Action plan

Please follow steps in order:

1. Identify causes
2. Draft a plan
3. See instructor

Please avoid:

= “l am worried about my exam, what should | do?”
= Each person should do something different!

= The “identify causes” and “draft a plan” steps are individual,
and depend on some things not known by us

56 15-410, S'23

Action plan

Please follow steps in order:
1. Identity causes
2. Draft a plan
3. See instructor

Please avoid:

= “l am worried about my exam, what shouid | do?”
= Each person should do something different!

= The “identify causes” and “draft a plan” steps are individual,
and depend on some things not known by us

General plea

= Please check to see whether there is something we
strongly recommend that you have been skipping
because you never needed to do that thing before
= This class is different

57 15-410, S'23

