
15-410, S'231

Exam #1
Mar. 12, 2023

Dave EckhardtDave Eckhardt

L20_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, S'232

Synchronization

Checkpoint scheduleCheckpoint schedule
 Friday during class time
 Meet in Wean 5207

 If your group number ends with

» 0-2 try to arrive 10:55-11:00 (5 minutes early)

» 3-5 arrive at 11:12:30

» 6-9 arrive at 11:30:27
 Preparation

 Your kernel should be in mygroup/p3ck2
 We are expecting everybody (even if not quite done)

» Unless you notify us by noon on Thursday

15-410, S'236

Synchronization

Checkpoint 2 - alertsCheckpoint 2 - alerts
 Reminder: context switch ≠ timer interrupt!

 Timer interrupt is a special case
 Looking ahead to the general case can help you later

 Please read the handout warnings about context switch
and mode switch and IRET very carefully

 Each warning is there because of a big mistake which was
very painful for previous students

15-410, S'238

Synchronization

Book report!Book report!
 This your approximately-mid-semester reminder about the

book report assignment

15-410, S'239

Synchronization

Asking for trouble?Asking for trouble?
 If you aren't using source control, that is probably a

mistake
 If your code isn't in your 410 AFS space every day, you are

asking for trouble
 GitHub sometimes goes down!

» S'13: on P4 hand-in day (really!)
 Roughly 50% of groups have blank REPOSITORY

directories...
 If your code isn't built and tested on Andrew Linux every

two or three days, you are asking for trouble
 Don't forget about CC=clang / CC=clangalyzer
 Using a variety of compilers is likely to expose issues

 Running your code on the crash box may be useful
 But if you aren't doing it fairly regularly, the first “release”

may take a long time

15-410, S'2311

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

15-410, S'2312

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, S'2315

A Note for Posterity

The S'23 mid-term exam occurred during COVID-19The S'23 mid-term exam occurred during COVID-19

But it was an “arguably roughly typical” examBut it was an “arguably roughly typical” exam

15-410, S'2317

A Word on the Final Exam

DisclaimerDisclaimer
 Past performance is not a guarantee of future results

The course will changeThe course will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but could be more stuff (~85 points,

~6 questions)

15-410, S'2319

Please Avoid Faint Pencil!

Some people wrote using pencilSome people wrote using pencil
 Some wrote with faint pencil!

 Luckily we did not use Gradescope this time
 But some graders expressed some concern

 Please do not write faintly with pencil on the final exam!
 In any class!

15-410, S'2320

“See Course Staff”

If your exam says “see course staff”...If your exam says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.

...though it might instead indicate a complex...though it might instead indicate a complex
subtlety...subtlety...

 ...which we believe will benefit from personal counseling,
not just a brief note, to clear up.

““See Instructor”...See Instructor”...
 ...means it is probably a good idea to see an instructor...
 ...it does not imply disaster.

15-410, S'2321

“Low Exam-Score Syndrome”

What if my score is really low????What if my score is really low????
 It is frequently possible to do dramatically better on the

final exam
 Specific suggestions later

15-410, S'2322

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, S'2325

Q1 – Short Answer

Three partsThree parts
 “Three kinds of error”
 P2 examples of two kinds
 “Paradise Lost”

15-410, S'2326

Q1a/b – Three kinds of error

Purpose: demonstrate grasp of a robustness practicePurpose: demonstrate grasp of a robustness practice
 Hopefully P2 involved careful error handling
 Hopefully P3 will involve careful error handling
 “Robust code is structurally different than fragile code”
 P3 requires not just code but structurally non-fragile

code.

If you were lost on this question...If you were lost on this question...
 We had a lecture on this topic (February 3)
 Other “odd” lectures to possibly review

 Debugging, Questions
 #define, #include
 We expect you to know and apply all of this material

15-410, S'2327

Q1a/b – Three kinds of error

Official trichotomyOfficial trichotomy
 Resolvable – so resolve it
 Reportable – so report it
 “It's over”

 Involve the developer, because the program is broken
 Stop the program before propagating lies

Not really in the same spaceNot really in the same space
 “I shouldn't have written this code, so I need to re-design”
 That was generally accepted anyway

15-410, S'2328

Q1a/b – Three kinds of error

Not the core issue: Not the core issue: “common error vs. rare error”“common error vs. rare error”
 That doesn't help with, e.g., “page fault”

 Page faults aren't super-common
 Some page faults are resolvable
 Some page faults are fatal

15-410, S'2329

Q1a/b – Three kinds of error

Not the core issue: Not the core issue: “common error vs. rare error”“common error vs. rare error”
 That doesn't help with, e.g., “page fault”

 Page faults aren't super-common
 Some page faults are resolvable
 Some page faults are fatal

 The core issue is which {…} code is needed
 It is important to write different code for {…}

» xmalloc() is wrong (for robust code) exactly because it is
a way to write the same code for different cases

 It is important to be confident about which case is which

15-410, S'2330

Q1a/b – Three kinds of error

Not the core issue: Not the core issue: “common error vs. rare error”“common error vs. rare error”
 That doesn't help with, e.g., “page fault”

 Page faults aren't super-common
 Some page faults are resolvable
 Some page faults are fatal

 The core issue is which {…} code is needed
 It is important to write different code for {…}

» xmalloc() is wrong (for robust code) exactly because it is
a way to write the same code for different cases

 It is important to be confident about which case is which

ExtraneousExtraneous
 “Lock contention”
 Forgot to increment loop variable
 O(N**2) instead of O(log log N)

15-410, S'2331

Q1a/b – Three kinds of error

Alarming problems (practice)Alarming problems (practice)
 “return;” from a void function

 That is covering up a problem, not handling it
 yield loop

 Hoping somebody else can solve the problem won't work
well if nobody does

 “Hold & yield” is basically “hold & wait”...uh-oh...
 silent vanish

 This is not supportive of anybody fixing anything

15-410, S'2332

Q1a/b – Three kinds of error

Practice suggestionsPractice suggestions
 Try to have a centralized reporter

 Java, Rails, … produce stack traces

» Useful for many errors
 The Pathos reference kernel produces register dumps

» Useful for many errors
 Try to have a good invocation pattern

 assert(0) is not a very good invocation pattern

15-410, S'2333

Q1c – “Paradise Lost”

Purpose: Demonstrate understanding of aPurpose: Demonstrate understanding of a
concurrency anti-patternconcurrency anti-pattern

 Key points
 A condition was true; then revoked; expected to be true later
 It is possible to be unlucky and observe while revoked
 Can often be fixed by replacing “if” with “while”

OutcomesOutcomes
 Many solid answers
 Some alarming answers

 “Something involving 3 threads and dequeue()”
 “Paradise Lost == TOCTTOU == race condition”

» Arguably there is a subset relationship

» But causes and fixing are very different

• “Add locks” != “Change 'if' to 'while'”

15-410, S'2334

Q1 – Results

ScoresScores
 ~60% of the class scored 8/10 or above (good)
 ~25% of the class scored below 6/10 (… … ...)

15-410, S'2335

Q2 – Critical-Section Problem

What we were testingWhat we were testing
 Ability to find a bounded-waiting problem
 Ability to write a clear execution trace
 Ability to solve a bounded-waiting problem

Odd feature of the problemOdd feature of the problem
 This code was discussed in class!

Many scores were highMany scores were high
 Good!

15-410, S'2336

Q2 – Critical-Section Problem

Some disturbing features were observedSome disturbing features were observed
 Some traces were not easy to read

 It is to your benefit to be good about thinking
scenarios through, and notation matters

 Plus, you still have a final exam to take...
 A few people misinterpreted the code (that can happen)
 Roughly 10% of suggestions for fixing the problem made

it worse
 Spin-waiting
 Deadlock

If you had trouble with this question...If you had trouble with this question...
 ...please figure out why, and how to practice. This is

core material.

15-410, S'2337

Q3 – Library Deadlock

Parts of the problemParts of the problem
 Find the deadlock
 Suggest a fix

Results – findingResults – finding
 Most people correctly described a reachable deadlock
 Roughly 1/3 found a minimal-thread-count deadlock

 The problem structure strongly implies how many that is
 Some people used 1 extra thread (ok)
 Some people didn't attempt an explanation of how many

threads are necessary

Most-common mistakesMost-common mistakes
 Insufficient justification of a claimed deadlock state
 Impossible traces (too many copies of a book)

» Writing a clear trace is an important mental tool

15-410, S'2338

Q3 – Library Deadlock

Results – fixingResults – fixing
 Many solutions are plausible and received credit
 Terminology note: preemption is taking a resource from

somebody else

OverallOverall
 While analysis, thought, and tracing were required, this

was a mostly straightforward question

 75% of the class scored 80% or better

15-410, S'2339

Q4 – “Simulation Clock”

Question goalsQuestion goals
 Variant of typical “write a synchronization object” exam

question
 This one was “roughly typical” (maybe “medium-hard”)

 Requirements / solution structure were a little atypical
 Spec and test code were arguably better than typical

15-410, S'2340

Q4 – “Simulation Clock”

Question goalsQuestion goals
 Variant of typical “write a synchronization object” exam

question
 This one was “roughly typical” (maybe “medium-hard”)

Scores varied!Scores varied!
 Median score was 14/20 (70%)
 30% of class got 16/20 (80% score) or better
 60% of class got 14/20 (70% score) or better
 But ~33% of class got 10/20 (50% score) or worse

 Primary low-score causes

» Parts missing (tick() not waiting ever)

» Progress failure (wait before ack)

» “Double churn”, “Churn”

» Yield loop(!) / spinning(!!)

15-410, S'2341

Q4 – “Simulation Clock”

Alarming memory mishapsAlarming memory mishaps
 mutex_init() passed an uninitialized pointer
 init() refusing to work on random pieces of memory
 free() called on memory that didn't come from the heap

These alarming things should be fixed These alarming things should be fixed soonsoon!!

15-410, S'2342

Q4 – “Simulation Clock”

““Structurally not ok”Structurally not ok”
 #define MAX_THREADS 1000

 A thread cap is so rare that it must be explicitly authorized
 The problem provides a handy alternative

 Assuming thr_getid() returns values between 0 and 1000
 This can happen only in super-special-case situations
 So rare it must be explicitly authorized
 The problem has two workable alternatives (at least)

 malloc() on demand for linked-list nodes
 This is a “structurally wrong meme” - always strive to avoid!
 The problem provides a handy alternative
 Please review P2 handout material on “return values”
 Beware: P3 faces similar considerations!

15-410, S'2343

Q4 – “Simulation Clock”

Synchronization problemsSynchronization problems
 Waiting before acking is simple progress failure
 “Double churn”

 Each waiter is awakened many times, not once
 tick() thread is awakened many times, not once

 “Excessive tick() serialization”
 tick() must awaken N threads
 tick() must hear back from N threads
 But the N threads should be allowed to run in parallel!

 Holding a mutex for O(N)
 Mutexes are not the sole locking tool available

 Scanning a collection without holding any lock
 Returning a random value

 mutex_unlock(&m); return (ptr->field);

15-410, S'2344

Q4 – “Simulation Clock”

““Glitches”Glitches”
 lock() twice on the same mutex
 Forgot cond_wait() takes two parameters

 It is really hard to write correct code without this
 Forgot unlock()
 Forgot signal()
 Forgot destroy()
 Forgot free()

15-410, S'2345

Q4 – “Simulation Clock”

ApproachApproach
 Pseudo-code/outline strongly suggested

 block(), register(), ack(), collect(), awaken()
 Pseudo-code/outline all parts before coding any part
 Consider writing helper functions!

 “First I'll code up wait(), then I'll code up tick()” is much
less likely to result in correct code

15-410, S'2346

Q4 – “Simulation Clock”

General synchronization-calamity checklistGeneral synchronization-calamity checklist
 Deadlock
 Progress failures (e.g., losing threads)

 Unlocking not-held locks
 Mutual exclusion failures
 Spinning is not ok

 Yield loops are “arguably less wrong” than spinning
 Motto: “When a thread can't do anything useful for a

while, it should block; when a thread is unblocked, there
should be a high likelihood it can do something useful.”

 Special case: mutexes should not be held for genuinely
indefinite periods of time

15-410, S'2347

Q4 – “Simulation Clock”

Important general advice!Important general advice!
 It's a good idea to trace through your code and make sure

that at least the simplest cases work without races or
threads getting stuck

 Maybe figure out which operation/case is “the hard one”
and pseudo-code that one before coding the easy ones?

Other things to watch out forOther things to watch out for
 Memory leaks
 Memory allocation / pointer mistakes
 Forgetting to shut down underlying primitives
 Parallel arrays (use structs instead)

15-410, S'2348

Q5 – Nuts & Bolts: “wrapper()”

PurposesPurposes
 Verify “stack planning”
 Confirm x86-32 asm coding conventions

OutcomesOutcomes
 75% of class got 8/10 or better

15-410, S'2349

Q5 – Nuts & Bolts: “wrapper()”

ConcerningConcerning
 Not restoring %esp / %ebp
 Forgetting to call f()
 Forgetting that x86 stacks grow down

 Quick reference by a former student: stackgrowsdown.com

CommonCommon
 Off-by-one: storing into *stack_high
 Inverting order of parameter pushes
 Forgetting f() can trash caller-save registers

15-410, S'2350

Breakdown

90% = 58.590% = 58.5 9 students (57.0 and up) 9 students (57.0 and up)

80% = 52.080% = 52.0 7 students 7 students

70% = 45.570% = 45.5 17 students (45.0 and up)17 students (45.0 and up)

60% = 39.060% = 39.0 3 students (38.0 and up) 3 students (38.0 and up)

50% = 32.550% = 32.5 2 students (32.0 and up) 2 students (32.0 and up)

40% = 26.040% = 26.0 1 student 1 student

<40%<40% 0 students 0 students

Comparison/calibrationComparison/calibration
 These scores don't look blatantly problematic

15-410, F'2151

Implications

Score below 45?Score below 45?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam

15-410, F'2152

Implications

Score below 45?Score below 45?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam
 Historically, an explicit plan works a lot better than “I'll try

harder”
 Strong suggestion:

» Identify causes, draft a plan, see instructor

15-410, F'2153

Implications

Score below 39?Score below 39?
 Something went noticeably wrong

 It's important to figure out what!
 Passing the final exam could be a challenge
 Passing the class may be at risk!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 We don't know the format of the final exam yet, but a strong
grasp of key concepts, especially concurrency, is important

15-410, F'2154

Implications

Score below 39?Score below 39?
 Something went noticeably wrong

 It's important to figure out what!
 Passing the final exam could be a challenge
 Passing the class may be at risk!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 We don't know the format of the final exam yet, but a strong
grasp of key concepts, especially concurrency, is important

 Try to identify causes, draft a plan, see instructor
 Good news: explicit, actionable plans usually work well

15-410, S'2355

Action plan

Please follow steps in order:Please follow steps in order:
1. Identify causes
2. Draft a plan
3. See instructor

15-410, S'2356

Action plan

Please follow steps in order:Please follow steps in order:
1. Identify causes
2. Draft a plan
3. See instructor

Please avoid:Please avoid:
 “I am worried about my exam, what should I do?”

 Each person should do something different!
 The “identify causes” and “draft a plan” steps are individual,

and depend on some things not known by us

15-410, S'2357

Action plan

Please follow steps in order:Please follow steps in order:
1. Identity causes
2. Draft a plan
3. See instructor

Please avoid:Please avoid:
 “I am worried about my exam, what should I do?”

 Each person should do something different!
 The “identify causes” and “draft a plan” steps are individual,

and depend on some things not known by us

General pleaGeneral plea
 Please check to see whether there is something we

strongly recommend that you have been skipping
because you never needed to do that thing before

 This class is different

