
Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (A), Spring 2023

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below.

3. PLEASE DO NOT WRITE FAINTLY WITH PENCIL. Please write in
ink, or, if writing in pencil, please ensure that zero strokes in zero words
are faint. Using a mechanical pencil with thin lead is probably unwise.

4. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

5. If you have a clarification question, please write it down on the card we have
provided. Please don’t ask us questions of the form “If I answered like this,
would it be ok?” or “Are you looking for ...?”

6. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

7. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 10

3. 15

4. 20

5. 10

65

Please note that there are system-call and thread-library “cheat sheets” at the end of the
exam.

If we cannot read your writing, we will be unable to assign a high score to your work.



1. 10 points Short answer.

(a) 3 points According to the 15-410 orthodoxy, there are three kinds of error. Briefly
present them: for each, provide a name, describe in a general high-level sense what should
be done in response to that kind of error, and explain why that reponse is what should
be done about that kind of error. We are expecting approximately two sentences for each
kind.

Page 2



(b) 2 points Please present, based on your P2 thread library, an example of two of the three
kinds of error. For each, briefly describe what the code was trying to do, how the failure
qualifies as that particular kind of error, and the action that your P2 implementation
should have taken. We are not expecting you to provide code (we are interested in your
description/analysis).

Page 3



(c) 5 points Describe the “Paradise Lost” phenomenon as used in this class. We are expect-
ing three to five sentences or “bullet points.” Your goal is to make it clear to your grader
that you understand the concept and can apply it when necessary.

Page 4



2. 10 points Consider the following critical-section protocol:

#define NTHREAD 32 // a global static limit on the number of threads!

int tid(); // returns thread id from 0..(NTHREAD-1)

int lock_available = 1;

int waiting[NTHREAD] = { 0, };

int atomic_exchange(int *ip, int val); // behaves as expected

void lock() {

int i = tid(), got_it = 0;

waiting[i] = 1;

while (waiting[i] && !got_it) {

got_it = atomic_exchange(&lock_available, 0);

}

waiting[i] = 0;

}

void unlock() {

int i;

for (i = 0; i < NTHREAD; ++i) {

if (waiting[i]) {

waiting[i] = 0;

return;

}

}

atomic_exchange(&lock_available, 1);

}

(a) 7 points There is a problem with this protocol. That is, it does not ensure that all three
critical-section algorithm requirements are always met. Identify a requirement which is
not met and lay out a scenario which demonstrates your claim. Use the format presented
in class, i.e.,

P0 P1

w[0] = 1;

w[1] = 1;

You may introduce temporary variables or other obvious notation as necessary to improve
the clarity of your answer. Be sure that the execution trace you provide us with is easy to
read and conclusively demonstrates the claim you are making. It is possible to answer this
question with a brief, clear trace, so you should do what is necessary to ensure that you
do.

Please don’t accidentally skip the second part of this problem.

Page 5



You may use this page for the critical-section protocol question.

Page 6



You may use this page as extra space for the critical-section protocol question if you wish.

Page 7



(b) 3 points Please clearly demonstrate (probably using code, though very clear explanatory

text might work also) how to fix the problem you described above.

Page 8



3. 15 points Deadlock.

In a parallel universe, the 15-410 book report assignment (remember that???) requires students to
do research using a small library maintained by the course staff. In this library, a book may refer
to material that is more thoroughly discussed in some other book, so students may need to check
out multiple books to fully understand a concept and complete the assignment. Each student is
instructed to research some topic chosen from the many described in the official course textbook,
Operating Systems: Design and Implementation, using the related books as additional sources.

The good news is that the course library has a copy of the main textbook for each student. Sadly,
due to budget constraints, the library has only a few copies of each of the other books. In the
15-410 library, all copies of a single book are stored in a “pile” of books of that type—there is one
pile of the official course textbook, one pile of the book on scheduling algorithms, etc.

To ensure that the book report project would run smoothly, the TAs wrote a multi-threaded
simulation of the student/library system. Some notes on the simulation are below.

• Each distinct book owned by the library is assigned an id from 0 to NTITLES-1.

• The library stores books that are not currently checked out in “piles.” There are NTITLES

piles, each storing all checked-in copies of a given book.

• Each student is simulated by a thread that concurrently interacts with the library. All
students follow the same algorithm.

• At various times, a student may check out a book or return a book, but at any point
in time no student may have more than BPSIZE books checked out at once (“BPSIZE”
stands for “backpack size”).

• At the start of the semester, every student checks out the course textbook (id = 0).

• At various points in time, if a student has fewer than BPSIZE books checked out, the
student will check out a book referenced by a book that student is currently reading.

• Once a student has BPSIZE books checked out, the student will return the book checked
out the furthest in the past (books are returned in FIFO order).

The code for the simluation follows.

The remainder of this page is intentionally blank.

Page 9



#define NUMSTUDENTS 20

#define NTITLES 4

#define BPSIZE (NTITLES - 1)

#define MAX_REFERENCES (NTITLES - 1) // references per book

#define MAX_PILE_SIZE NUMSTUDENTS

#define MAX_PILES NTITLES

typedef struct {

unsigned int id;

const char *title;

unsigned numreferences;

unsigned references[MAX_REFERENCES];

} book_t;

typedef struct {

mutex_t lock;

unsigned int size;

book_t books[MAX_PILE_SIZE];

cond_t returned;

} pile_t;

pile_t library[MAX_PILES];

void add_to_pile(pile_t *pile, book_t book) {

mutex_lock(&pile->lock);

assert(pile->size < MAX_PILE_SIZE);

pile->books[pile->size++] = book;

cond_signal(&pile->returned);

mutex_unlock(&pile->lock);

}

book_t remove_from_pile(pile_t *pile) {

book_t book;

mutex_lock(&pile->lock);

while (pile->size == 0) {

cond_wait(&pile->returned, &pile->lock);

}

book = pile->books[--pile->size];

mutex_unlock(&pile->lock);

return book;

}

Page 10



void library_init() {

// init pile data structures

for (int i = 0; i < MAX_PILES; i++) {

mutex_init(&library[i].lock);

cond_init(&library[i].returned);

library[i].size = 0;

}

book_t books[NTITLES] = {

{

.id = 0,

.title = "Operating Systems: Design and Implementation",

.numreferences = 3,

.references = { 1, 2, 3 }

}, {

.id = 1,

.title = "Synchronization",

.numreferences = 1,

.references = {2}

}, {

.id = 2,

.title = "Scheduling Algorithms",

.numreferences = 1,

.references = {3}

}, {

.id = 3,

.title = "Interprocess Communication",

.numreferences = 1,

.references = {1}

}

};

unsigned counts[NTITLES] = { NUMSTUDENTS, 2, 2, 2 };

for (int p = 0; p < NTITLES; p++)

for (int b = 0; b < counts[p]; b++)

add_to_pile(&library[p], books[p]);

}

book_t checkout_book(int id) {

return remove_from_pile(&library[id]);

}

void return_book(book_t book) {

add_to_pile(&library[book.id], book);

}

Page 11



void *student(void *arg) {

unsigned int checked_out;

book_t books[BPSIZE];

int holding[NTITLES] = {0}; // boolean: do we have a copy of each title?

checked_out = 0;

books[checked_out++] = checkout_book(0);

/* study tirelessly */

while (1) {

if (checked_out < BPSIZE) {

/* check out some reference we don’t currently have */

for (int b = 0; b < checked_out; b++) {

for (int r = 0; r < books[b].numreferences; r++) {

if (!holding[books[b].references[r]]) {

books[checked_out++] =

checkout_book(books[b].references[r]);

holding[books[b].references[r]] = 1;

goto done;

}

}

}

} else {

/* Return first book and slide the others to front */

holding[books[0].id] = 0;

return_book(books[0]);

for (int b = 1; b < BPSIZE; b++)

books[b-1] = books[b];

checked_out--;

}

done:

continue;

}

}

int main() {

thr_init(PAGE_SIZE);

library_init();

for (int i = 0; i < NUMSTUDENTS; i++) {

thr_create(student, (void *)0);

}

while(1) {

yield(-1);

}

}

Page 12



(a) 10 points Unfortunately, the code shown above can deadlock. Show clear, convincing
evidence of deadlock. Begin by describing the problem in one or two sentences; then clearly
specify a scenario. Your description should state, for example, the minimum number of
threads needed to form the deadlock you envision, and should justify that number; you
should describe which books are held/requested by which threads, and justify your claims
(perhaps, but not necessarily, through the use of one or more traces).

If you cannot describe a particular exact deadlock, or are having trouble describing how it
would occur, you may receive partial credit by describing which deadlock ingredients are
and/or are not exhibited by the code above. It is to your advantage to use scrap paper or
the back of some page to experiment with draft traces, so that the answer you write below
is easy for us to read.

Page 13



You may use this page for your deadlock answer if you wish.

Page 14



(b) 5 points Explain in detail (though code is not required!) how the course staff could

prevent the students from deadlocking during their research. Be sure to explain (in a
theoretical / conceptual sense) why your solution works. Solutions judged as higher-quality
by your grader will receive more points. This means that it is probably better to “genuinely
fix” some problem than to replace a sensible assumption/parameter with an unrealistic
assumption/parameter, though we will consider any solution you clearly describe.

Page 15



4. 20 points Simulation clock.

In lecture we talked about two fundamental operations in concurrent programming: brief mutual
exclusion for atomic sequences (provided in Project 2 by mutexes) and long-term voluntary de-
scheduling (provided by condition variables). As you know, these can be combined to produce
higher-level objects such as semaphores or readers/writers locks, which you implemented in P2.
But concurrent programs may use a variety of other synchronization objects.

In this question, you will implement a synchronization object called a “simulation clock,” loosely
inspired by some problematic pseudo-code from one of our thread-synchronization lectures. The
synchronization objects we have studied so far have the property that some operations stall or
block threads (mutex lock(), cond wait(), sem wait()), while other operations liberate threads
(mutex unlock(), cond signal(), sem signal()). But other synchronization objects, e.g., barri-
ers, have the property that a single operation may stall threads, liberate threads, or both. You will
be implementing such a synchronization object.

The basic idea is that there are multiple simulation threads that want to carry out activities
at specific times, and also a single time-keeping thread that declares when new simulated times
have arrived. The lecture pseudo-code we discussed suffered from the problem that a simulation
thread might be awakened by a specific time but not be able to run before later times occurred.
This happened because the code blocked simulation threads but let the clock thread move ahead
without knowing that the simulation threads had time to do their work. So this synchronization
object blocks both worker threads and the clock thread in a taking-turns fashion.

For exam purposes we have simplified the simulation-clock API as follows. First, this simulation-
clock object mostly does not support absolute time. Worker threads always ask to be blocked
for relative time, i.e., “block me for three time steps.” Likewise, the clock thread does not
declare that absolute times, i.e., “April 18, 1906,” or “timestamp 357,” have occurred, but
instead merely indicates “seven ticks have passed.” And to save “typing” the simulation-clock
object does not have a function for querying the absolute time, though most likely your im-
plementation will track that. These simplifications do not fundamentally change the nature of
good solutions, but they do reduce the amount of code you will need to produce.

The two key operations are sc wait() and sc tick(). The job of sc wait() is to block the
invoking thread until an indicated number of ticks have passed from “the current time.” One
job of sc tick() is to awaken however many threads (maybe zero blocked threads, maybe all
of them) wanted to be awakened before or at the time that has arrived. Because sc tick()

can move the simulation time forward by any number of ticks, it may awaken some threads
later than they had asked for. The other job of sc tick() is to block the invoking clock thread
until all of the awakened simulation worker threads have had a chance to run—this is the tricky
part! Each of the awakened worker threads does some work and then must call back to the
synchronization-clock object; when all have done so, the sc tick() operation returns to the
invoking clock thread. For reasons we will not discuss, “call back” is not a separate operation.

Because each simulation worker thread will be invoking sc wait() over and over, in the common
case a simulation worker will acknowledge one awakening by invoking sc wait() the next time.
There are two special cases: each thread’s first invocation of sc wait() does not acknowledge
a previous awakening, and each thread’s final invocation of sc wait() does acknowledges its
final awakening but does not block. To simplify your work, it is the responsibility of each

Page 16



worker thread to specify with each invocation of sc wait() whether it is an initial invocation,
a continuing invocation, or a final invocation.

Also note that because of the API design this simulation-clock object can operate by tracking
merely the number of acknowledgements, without needing to track which threads are issuing
acknowledgements. Finally, as a convenience, the code using a simulation-clock object pre-
declares the maximum number of simulation worker threads that will blcok on it at the same
time. This is not typical of synchronization objects in general (e.g., cond init() does not do
this) but it may make your job simpler.

It is expected that the number of threads that a given simulation-clock object is tracking on will
typically be “fairly small,” and it is ok if a simulation clock experiences “reasonable slowdown”
if the number of simultaneously blocked threads is larger than expected.

The remainder of this page is intentionally blank.

Page 17



Below are declarations for the simulation-clock functions. The next page has sample code that uses
them.

typedef enum {

SC_FIRST, // no ack, just wait

SC_CONT, // ack, then wait

SC_LAST // ack only, then return

} sc_mode_t;

// sc_init() initializes a simulation-clock object in the provided memory,

// indicating the maximum number of worker threads that can simultaneously

// block on it. It is expected that this number is typically under 1,000.

//

// sc_init() returns a negative error code less than zero, or zero for success.

int sc_init(sc_t *sp, int nthreads);

// sc_destroy() deactivates a simulation-clock object. The invoking thread

// must ensure that no threads are using the object.

void sc_destroy(sc_t *sp);

// sc_wait() acknowledges a previous wakeup and/or blocks until the indicated

// future simulation time has arrived (or passed). Each thread must specify

// SC_FIRST the first time it calls sc_wait() on a particular sc_t, must

// specify SC_CONT to acknowledge a previous wakeup and block again, and

// SC_LAST to acknowledge a wakeup without blocking. In the SC_LAST case

// the delta parameter is ignored. In other cases the delta value must

// be non-negative.

//

// sc_wait() returns the simulation timestamp at which it was awakened,

// which may be later than the time that the thread had requested, or

// a negative error code less than zero.

int sc_wait(sc_t *sp, sc_mode_t mode, int delta);

// sc_tick() applies the provided positive delta to the simulation time

// and then awakens all threads who requested to be awakened at or before

// the new simulation time.

//

// sc_tick() blocks until that number of threads acknowledge via sc_wait(),

// and then returns the number of threads that were awakened.

//

// sc_tick() may return a negative error code less than zero.

int sc_tick(sc_t *sp, int delta);

Page 18



#define NTHREAD 42

#define EVENTS 10

#define MAX_DELTA 13

static sc_t clock;

static mutex_t nrunm;

static int nrunning = 0;

void *threadbody(void *vid)

{

int id = (int) vid;

int delta = (id * 10) % MAX_DELTA, mode = SC_FIRST;

mutex_lock(&nrunm); ++nrunning; mutex_unlock(&nrunm);

for (int n = 0; n < (EVENTS-1); ++n) {

printf("Thread %d sleeping %d ticks\n", id, delta);

int result = sc_wait(&clock, mode, delta);

printf("Thread %d awake again at %d\n", id, result);

sleep(2); // fake "simulation work"

mode = SC_CONT;

}

sc_wait(&clock, SC_LAST, -99);

mutex_lock(&nrunm); --nrunning; mutex_unlock(&nrunm);

return (0);

}

int main(void)

{

int tid[NTHREAD], done = 0, delta = 7;

thr_init(8192);

sc_init(&clock, NTHREAD); // exam: cannot fail

mutex_init(&nrunm); // exam: cannot fail

affirm (sc_tick(&clock, 1) == 0); // "Just checking!"

for (int n = 0; n < NTHREAD; ++n)

tid[n] = thr_create(threadbody, (void *)n); // exam: cannot fail

do {

int awoke = sc_tick(&clock, delta);

printf("Woke %d threads\n", awoke);

sleep(1); // game time runs slower than real time

mutex_lock(&nrunm);

if (nrunning == 0)

done = 1;

mutex_unlock(&nrunm);

} while (!done);

for (int n = 0; n < NTHREAD; ++n)

thr_join(tid[n], NULL);

thr_exit(0);

}

Page 19



Assumptions:

1. You may use regular Project 2 thread-library primitives: mutexes, condition variables, semaphores,
readers/writer locks, etc.

2. You may not use other atomic or thread-synchronization synchronization operations, such
as, but not limited to: deschedule()/make runnable(), or any atomic instructions (XCHG,
LL/SC).

3. You may assume that callers of your routines will obey the rules. But you must be careful
that you obey the rules as well!

4. You must comply with the published interfaces of synchronization primitives, i.e., you cannot
inspect or modify the internals of any thread-library data objects.

5. You may not use assembly code, inline or otherwise.

6. For the purposes of the exam, you may assume that library routines and system
calls don’t “fail” (unless you indicate in your comments that you have arranged, and are
expecting, a particular failure).

7. You may not rely on any data-structure libraries such as splay trees, red-black trees, queues,
stacks, or skip lists, lock-free or otherwise, that you do not implement as part of your solution.

8. You may use non-synchronization-related thread-library routines in the “thr xxx() family,”
e.g., thr getid(). You may wish to refer to the “cheat sheets” at the end of the exam. If you
wish, you may assume that thr getid() is “very efficient” (for example, it invokes no system
calls). You may also assume that condition variables (etc.) are strictly FIFO if you wish.

The remainder of this page is intentionally blank.

Page 20



It is strongly recommended that you rough out an implementation on the scrap paper provided
at the end of the exam, or on the back of some other page, before you write anything here. If
we cannot understand the solution you provide on this page, your grade will suffer!

(a) 5 points Please declare a struct sc and implement:

• int sc init(sc t *sp, int nthreads) and

• void sc destroy(sc t *sp).

If you wish, you may also declare an auxiliary structure, struct aux, but this is strictly
optional.

typedef struct sc {

} sc_t;

typedef struct aux {

} aux_t;

Page 21



...space for int sc init(sc t *sp, int nthreads) void sc destroy(sc t *sp)...

Page 22



(b) 15 points Now please implement:

• int sc wait(sc t *sp, sc mode t mode, int delta), and

• int sc tick(sc t *sp, int delta).

Page 23



...space for simulation clock implementation...

Page 24



You may use this page as extra space for your simulation clock solution if you wish.

Page 25



You may use this page as extra space for your simulation clock solution if you wish.

Page 26



You may use this page as extra space for your simulation clock solution if you wish.

Page 27



5. 10 points Nuts & Bolts.

Your friend, Grave O’Danger, is excited about a new idea for running C functions. He believes
that performance will be improved by running certain functions inside their own independent stack
regions (which we could call “stacklets”)—for some reason he believes that “the cache will be less
polluted” if some functions run “far away from” other functions. Instead of running f(x) the usual
way, he wants to invoke far call(f,x); the far call() function will allocate some memory for a
new stacklet, and “somehow” invoke f() so that it runs on the new stacklet. Once f() returns,
regular execution will resume on whatever stack was used before far call() was invoked.

Grave has begun hacking together a crude prototype of far call() as follows.

typedef (*intfun)(int);

extern wrapper(char *stack_high, intfun f, int arg); // TBD

#define FAR_SIZE 4096

int far_call(intfun f, int arg) {

int result;

unsigned char *stack_low, *stack_high;

stack_low = malloc(FAR_SIZE); // Guaranteed to be 8-byte aligned

if (stack_low) {

stack_high = stack_low + FAR_SIZE - 8;

result = wrapper(stack_high, f, arg);

free(stack_low);

} else {

result = f(arg); // oh well

}

return (result);

}

Grave understands that the wrapper() function will need to be written in assembly code, but so
far all of his attempts have resulted in program crashes. Because you are a helpful stack expert,
your mission will be to write the wrapper for him. You should assume the standard “Linux x86-32”
stack convention that we have been using.

Page 28



Please write code for the wrapper() function. In addition to the code, you may provide docu-
mentation, such as a clear supporting diagram, which we will try to use to better understand
your code. However, your score will be derived from your code as we understand it (i.e.,
diagrams without code will not score very highly).

Page 29



You may use this page for your wrapper() solution if you wish.

Page 30



System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t)(void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */

void misbehave(int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 31



Thread-Library Cheat-Sheet

int mutex_init( mutex_t *mp );

void mutex_destroy( mutex_t *mp );

void mutex_lock( mutex_t *mp );

void mutex_unlock( mutex_t *mp );

int cond_init( cond_t *cv );

void cond_destroy( cond_t *cv );

void cond_wait( cond_t *cv, mutex_t *mp );

void cond_signal( cond_t *cv );

void cond_broadcast( cond_t *cv );

int thr_init( unsigned int size );

int thr_create( void *(*func)(void *), void *arg );

int thr_join( int tid, void **statusp );

void thr_exit( void *status );

int thr_getid( void );

int thr_yield( int tid );

int sem_init( sem_t *sem, int count );

void sem_wait( sem_t *sem );

void sem_signal( sem_t *sem );

void sem_destroy( sem_t *sem );

#define RWLOCK_READ 0

#define RWLOCK_WRITE 1

int rwlock_init( rwlock_t *rwlock );

void rwlock_lock( rwlock_t *rwlock, int type );

void rwlock_unlock( rwlock_t *rwlock );

void rwlock_destroy( rwlock_t *rwlock );

void rwlock_downgrade( rwlock_t *rwlock );

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 32



Ureg Cheat-Sheet

#define SWEXN_CAUSE_DIVIDE 0x00 /* Very clever, Intel */

#define SWEXN_CAUSE_DEBUG 0x01

#define SWEXN_CAUSE_BREAKPOINT 0x03

#define SWEXN_CAUSE_OVERFLOW 0x04

#define SWEXN_CAUSE_BOUNDCHECK 0x05

#define SWEXN_CAUSE_OPCODE 0x06 /* SIGILL */

#define SWEXN_CAUSE_NOFPU 0x07 /* FPU missing/disabled/busy */

#define SWEXN_CAUSE_SEGFAULT 0x0B /* segment not present */

#define SWEXN_CAUSE_STACKFAULT 0x0C /* ouch */

#define SWEXN_CAUSE_PROTFAULT 0x0D /* aka GPF */

#define SWEXN_CAUSE_PAGEFAULT 0x0E /* cr2 is valid! */

#define SWEXN_CAUSE_FPUFAULT 0x10 /* old x87 FPU is angry */

#define SWEXN_CAUSE_ALIGNFAULT 0x11

#define SWEXN_CAUSE_SIMDFAULT 0x13 /* SSE/SSE2 FPU is angry */

#ifndef ASSEMBLER

typedef struct ureg_t {

unsigned int cause;

unsigned int cr2; /* Or else zero. */

unsigned int ds;

unsigned int es;

unsigned int fs;

unsigned int gs;

unsigned int edi;

unsigned int esi;

unsigned int ebp;

unsigned int zero; /* Dummy %esp, set to zero */

unsigned int ebx;

unsigned int edx;

unsigned int ecx;

unsigned int eax;

unsigned int error_code;

unsigned int eip;

unsigned int cs;

unsigned int eflags;

unsigned int esp;

unsigned int ss;

} ureg_t;

#endif /* ASSEMBLER */

Page 33



Useful-Equation Cheat-Sheet

cos2 θ + sin2 θ = 1

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ

eix = cos(x) + i sin(x)

cos(x) =
eix + e−ix

2

sin(x) =
eix − e−ix

2i

∫
lnx dx = x lnx− x+ C∫ ∞
0

√
x e−x dx =

1

2

√
π∫ ∞

0
e−ax

2
dx =

1

2

√
π

a∫ ∞
0

x2e−ax
2
dx =

1

4

√
π

a3
when a > 0

Γ(z) =

∫ ∞
0

tz−1e−t dt

ih̄
∂

∂t
Ψ(r, t) = ĤΨ(r, t)

ih̄
∂

∂t
Ψ(r, t) = − h̄2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t)

E = hf =
h

2π
(2πf) = h̄ω

p =
h

λ
=

h

2π

2π

λ
= h̄k

∇ ·E =
ρ

ε0

∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0J + µ0ε0
∂E

∂t

Page 34



If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 35



If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 36


